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Abstract 
In a Web database that dynamically provides 
information in response to user queries, two distinct 
schemas, interface schema (the schema users can 
query) and result schema (the schema users can 
browse), are presented to users. Each partially reflects 
the actual schema of the Web database. Most previous 
work only studied the problem of schema matching 
across query interfaces of Web databases. In this 
paper, we propose a novel schema model that 
distinguishes the interface and the result schema of a 
Web database in a specific domain. In this model, we 
address two significant Web database schema-
matching problems: intra-site and inter-site. The first 
problem is crucial in automatically extracting data 
from Web databases, while the second problem plays 
a significant role in meta-retrieving and integrating 
data from different Web databases. We also 
investigate a unified solution to the two problems 
based on query probing and instance-based schema 
matching techniques. Using the model, a cross 
validation technique is also proposed to improve the 
accuracy of the schema matching. Our experiments on 
real Web databases demonstrate that the two problems 
can be solved simultaneously with high precision and 
recall. 

1. Introduction 
Besides web pages crawlable by specific URLs, the Web 
also contains a vast amount of non-crawlable content. 
This hidden part of the Web is comprised of a large 

number of online Web databases consisting of a 
searchable interface (usually an HTML form) and a 
backend database, which dynamically provides 
information in response to user queries [5] [13]. As 
compared to the static surface Web, the hidden Web 
contains a much larger amount of high-quality (often 
structured) information [8]. 

In the hidden Web, it is usually difficult or even 
impossible to directly obtain the schemas of the Web 
databases without cooperation from the web sites. Instead, 
the web sites present two other distinct schemas, interface 
and result schema, to users (Figure 1). The interface 
schema presents the query interface, which exposes 
attributes that can be queried in the Web database. The 
result schema presents the query results, which exposes 
attributes that are shown to users. The interface schema is 
useful for applications, such as mediators, that query 
multiple Web databases, since they need complete 
knowledge about the query interface of each database. 
The result schema is critical for applications, such as data 
extraction, which extract instances from the query results. 
In addition to the importance of the interface and result 
schemas themselves, attribute matching1 across different 
schemas is also important. First, matching between 
different interface and result schemas (i.e., inter-site 
schema matching) is critical for meta-searching and data-
integration among related Web databases. Second, 
matching between the interface and result schema of a 
single Web database (i.e., intra-site schema matching) 
enables automatic data annotation and database content 
crawling. Therefore, in this paper we focus on 
automatically discovering both the interface and result 

                                                           
* This work was carried out when the author was visiting at 

Microsoft Research Asia. 
1 Attribute matching is the process of determining the semantic 

correspondences among the attributes of two schemas. 
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schemas of Web databases and matching semantically-
related attributes between them. 

Previous approaches [16], [17], [21] to Web database 
schema matching primarily focus on matching query 
interfaces (i.e., on inter-site interface schema matching). 
The basic idea is to identify attribute labels from the 
descriptive text surrounding interface elements and then 
find synonym relationships between the identified labels. 
The performance of these approaches may be affected 
when no attribute description can be identified or the 
identified description is not informative (e.g., “Search” in 
the homepage of Amazon.com). In contrast, in this paper 
we propose a novel instance-based schema matching 
approach, motivated by the necessity to identify the result 
schemas of Web databases that often lack available 
attribute names or labels and the goal of simultaneously 
solving inter-site and intra-site schema matching.  

Our approach is mainly based on three observations 
about Web databases. First, improper2 queries often cause 
search failure or no returned results. Second, the 
keywords of proper queries that return results very likely 
reappear in the returned results’ corresponding attributes. 
Third, there is an underlying global schema3 for related 
Web databases in the same domain (proposed and verified 
in [16]). Accordingly, we introduce a query probing 
technique that first exhaustively sends query keywords 
residing in a domain-specific global schema, whose 
semantics are known in advance, then analyzes the re-
occurrences of submitted query keywords in the returned 
result data, and finally identifies the semantically 
corresponding attributes from both the interface and result 
schemas based on the previous analysis.  

Using a domain-specific global schema, we present a 
combined schema model that can describe five kinds of 
schema matching for Web databases in the same domain: 
global-interface, global-result, interface-result, interface-
interface, and result-result. The model not only describes 
the matching relationships among different schemas of 
Web databases in a specific domain, but, more 
importantly, also provides a global view about how to 
reinforce the matching accuracy by conducting multiple 
kinds of schema matching simultaneously. Using the 
model, we also present a cross validation technique that 
improves the accuracy of the schema matching results. 

The main contributions of this paper are: 
• Introduction of a novel schema model of a single Web 

database that distinguishes what information users can 
query and what information users can browse. 

• Introduction of a generative view that includes five 
kinds of schema matching for related Web databases 
in a specific domain. 

                                                           
2 “Proper” means that the semantics of the query keywords 

match the semantics of the input element. 
3 The global schema is a view capturing common attributes of 

data in the specific domain. 

• Introduction of an instance-based method based on 
domain-specific query probing, along with mutual 
information and vector similarity analysis, to 
automatically match various schemas of Web 
databases (intra-site and inter-site). 

• Benefiting from the above generative view, 
introduction of a cross validation technique based on 
an approximate solution of the graph partitioning 
problem to improve the accuracy of different kinds of 
schema matching. 
The rest of this paper is organized as follows. In 

section 2, we present our model with five schema 
matchings for Web databases. In section 3, the domain-
specific query probing technique is introduced. We 
propose, in section 4, an instance-based schema matching 
approach with a cross validation technique, to solve both 
the intra-site and inter-site schema matching problems at 
the same time. Section 5 presents the experimental results 
of testing our approaches on real Web databases. Section 
6 reviews existing work on the schema matching problem 
and how it correlates with our approach. Finally, we give 
our conclusions and future work in section 7. 

2.  Combined Schema Model 
A Web database is usually comprised of a query interface 
and a backend database. When a user query is submitted 
through the query interface, the site accesses its backend 
database for relevant data and returns the results to the 
user. Specifically, the query interface of the Web database 
usually contains multiple input elements, each of which 
may be associated with a schema attribute of the backend 
database. Data objects that the Web database returns to 
users are usually semi-structured, as their attribute values 
are encoded into HTML tags. Therefore, both the Web 
database interface and the returned results partially reflect 
the schema of the backend database, but in different ways. 

For instance, Figure 1 shows an example of an online 
bookstore4 . The part labelled Data Attributes shows a 
possible schema of the backend database consisting of 
six 5  attributes {Title, Author, Publisher, ISBN, Format, 
Publication Date}. The part labelled Interface shows the 
query interface, which contains five input elements with 
surrounding text describing their semantics. When the 
keyword query “Harry Potter” is submitted through the 
“Title” element in the interface, a result page is returned 
by the web site containing its answer to the query 
(labelled Result in Figure 1 and containing three book 
instances with associated attribute values). 

From this example we can clearly see the difference 
between the attribute information contained in the query 
interface and that contained in the result pages. Although 
the site may provide an element in the interface for users 
to search on a particular data attribute (e.g., “ISBN” 
                                                           
4 http://www.mysimon.com/ 
5 The exact number is not known. 
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element), this attribute’s data values may not appear in the 
result pages. Likewise, the returned results may have 
attributes that users cannot query in the interface (e.g., 
Publisher attribute). Furthermore, Figure 1 shows three 
kinds of semantic correspondence represented by different 
line styles (dotted, dashed and solid). They are 
respectively, the correspondence between data attributes 
of the primary schema and elements in the query interface
, the correspondence between the data attributes of the 
primary schema and instance values in the result pages, 
and the correspondence between elements in the query 
interface and instance values in the result pages. 

In the deep Web, the primary schema of a Web 
database is hard to obtain directly as it is hidden behind 
query interfaces. However, previous work [16] makes the 
significant observation that, by examining the query 
interfaces of Web databases, an underlying generative 
global schema can be discovered for related Web 
databases in a specific domain. Thus, we introduce a 
global schema (i.e., a view capturing common attributes 
of data in the specific domain.) to substitute for the 
primary schema of the Web database and propose a 
combined 3-layer schema model for matching the 
schemas of Web databases. Besides its availability, 
another advantage of introducing a global schema is that it 
simplifies the process of matching schemas of different 
Web databases in the same domain as they share the same 
global schema. 

Formally, we define a schema as a set of attributes, 
each of which corresponds to some unique meaning. In 
our model, the Web databases can be categorized into a 

number of domains, where Web databases in the same 
domain provide information about the same type of 
product (e.g., Book or Used-car) or on the same topic 
(e.g., Job). In each specific domain, there exists a unified 
global schema (GS) representing the common knowledge 
about the domain. In addition, each Web database in this 
model consists of two different schemas, the interface 
schema (IS) and the result schema (RS) (illustrated in 
Figure 2 as nodes). In particular, the global schema 
consists of the representative attributes of the data objects 
in this domain. The interface schema of an individual 
Web database consists of data attributes over which users 
can query, while the result schema consists of data 
attributes that users can browse. The three schemas of a 
Web database all partially represent the data objects 
contained in the backend database, varying only on the 
number of attributes and attribute names. 

A matching between two schemas S1 and S2 
determines that certain attributes of schema S1 
semantically correspond to certain attributes of schema S2. 
For an individual Web database, there exist three kinds of 
intra-site schema matching, between GS and IS, between 
GS and RS, and between IS and RS (illustrated in Figure 
2 as edges between heterogeneous nodes of each single 
site). Furthermore, given multiple Web databases in the 
same domain, the interface schemas of different Web 
databases can also be pair-wise matched (between IS and 
IS), as can the result schemas of different Web databases 
(between RS and RS). Such inter-site schema matching is 
illustrated in Figure 2 as dashed edges between 
homogenous nodes of different sites. 

Figure 1. An example of a Web database with its search interface and result page.  
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The benefits of such a model are that it allows us to: 
• Automatically understand the semantics of schema 

attributes. If the attribute semantics of one particular 
schema are accurately identified or known beforehand, 
then the attribute semantics of other schemas can also 
be discovered as long as they are correctly matched to 
an identified one. Even if the semantics of one 
particular schema are somehow wrongly identified in 
a matching with another schema, there is still 
opportunity for correction when it is matched to other 
schemas. 

• Automatically extract relevant content from Web 
databases. Crawling the massive information hidden 
behind the query interfaces of Web databases is a 
major problem for the Web search community. 
Automatic understanding of interface schemas can 
make it possible for crawlers to intelligently submit 
“appropriate” queries into the right input elements. 
Furthermore, automatic understanding of result 
schemas can make it possible for crawlers to 
intelligently obtain valid query results according to 
their semantics (i.e., to automatically extract relevant 
Web database content). 

• Meta-search multiple Web databases. In this model, 
related Web databases are categorized by their 
domain. With a meta-search interface built for each 
domain, users can simultaneously search multiple 
Web databases of the domain. Given a user query, first 
some promising Web databases that may contain 
relevant information are picked and then queries are 
sent to these Web databases according to the identified 
semantics of their query interfaces. Finally, their query 
results are integrated and displayed to users according 
to the match among their result schemas. 

3.  Domain-specific Query Probing 
Database schema matching is the task of finding 
mappings between attributes of two schemas that 
semantically correspond to each other [3]. Previous 
approaches to schema matching can be categorized into 
two classes, label-based and instance-based, according to 
the different information on which they rely (see [22] for 
a survey). Label-based methods only consider the 
similarity between schema definitions or attribute labels 
of two databases. Instance-based methods, such as [12] 
and [18], depend on the content overlap or statistical 
properties, such as data range and pattern, to determine 
the similarity of two attributes.  

Recent work ([16], [17], and [21]) on matching query 
interfaces of Web databases fall into the first category, 
based on identifying the descriptive text surrounding 
interface elements as the attribute labels and finding 
synonym relationships between the labels. Such methods 
are not stable and robust in the Web context as no 
description may exist or the identified description may not 
be informative. On the other hand, instance-based schema 
matching has seldom been employed in the deep Web 
scenario because of the difficulty of automatically 
acquiring database contents hidden behind query 
interfaces. Paradoxically, a key prerequisite for automatic 
data acquisition from the deep Web is to understand the 
semantics of query elements. 

Different from the previous work, our goal is to 
understand and match not only interface schemas but also 
result schemas of Web databases. Consequently, the label-
based matching approach is insufficient and even 
inapplicable due to the frequent lack of explicit attribute 
labels and descriptions in result pages. Therefore, we 
propose an instance-based solution to this problem. We 

Figure 2. Global view of the Deep Web and combined schema model of Web databases. 
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first submit semantically pre-identified query keywords 
through query interfaces (section 3.2). After obtaining 
returned result data, we then analyze the results to 
understand the semantics of both the query interfaces and 
data attributes, as well as to match the homogeneous 
schemas of different Web databases (section 4). 

3.1 Observations 
During the interaction with Web databases, we observe 
two interesting phenomena. 

On the one hand, when an improper query is 
submitted to a Web database there are often few results or 
even no results returned. Improperness here means the 
query keywords submitted into a particular element are 
not applicable values of the database attribute to which 
the element is associated. Taking the Web database shown 
in Figure 1 as an example, the site reports only 4 matches 
for the query “Harry Potter” when submitted through the 
“Author” element, while it reports 228 matches for the 
same query when submitted through the “Title” element. 
On the other hand, we observe that when a proper query 
that returns a result web page is submitted through the 
input elements of a Web database, then the query 
keywords very likely reappear in the returned result’s 
corresponding attributes. For example, in Figure 1, when 
we submit query “Harry Potter” through the “Title” 
element, the three returned book instances all contain the 
query keywords (i.e., “Harry Potter”) in their Title 
attribute. 

Generally, how many times the keywords for a query 
re-appear in the result pages and where they appear tell us 
important information about both the interface schema 
and the result schema. Specifically, if we employ the 
values of some semantically pre-identified data attributes 
as queries to submit into a Web database, we can 
accomplish two tasks. First, the re-occurrence of the 
query keywords in the returned results can be used as an 
indicator of which query submission is appropriate (i.e., to 
discover semantically associated elements in the interface 
schema). Second, the position or location of the submitted 
query keywords in the result pages can be used to identify 
the semantically associated attributes in the result schema. 

3.2 Query Probing 
Given some target Web databases in a specific domain, 
our query probing process aims to send domain-specific 
queries to these target Web databases and collect their 
returned results for later analysis.  

To accomplish this task, we make two assumptions 
about the query probing process. First, a global schema 
for the specific domain is pre-defined or pre-generated. 
Second, a number of sample data objects under the 
domain global schema are also available. In fact, global 
schema generation over information sources to 
conceptualize the underlying domain is an interesting 
problem. Proposed approaches rely on either the names of 

the schema elements and the structure of the schema ([7] 
and [16]) or formal ontologies ([4] and [15]). We consider 
this problem as a separate research direction and do not 
deal with it in this paper. In our experiments, we manually 
define the global schema and collect sample instances. In 
future work, we plan to implement one of the previously 
proposed approaches to automatically generate a global 
schema over a sample set of Web databases and then map 
new Web databases to the generated global schema. 

3.2.1 Workflow 
We show in Figure 3 the workflow of an automatic 
probing process. Given the Web database with its query 
interface, an element identification component first 
locates qualified input elements in the query interface. 
Equipped with instances under a global schema, a query 
submission component then exhaustively submits the 
attribute values of pre-known instances into those 
identified input elements. After collecting the returned 
results for all submitted queries, a wrapper induction 
component induces a regular-expression wrapper 
composed of HTML-tags. Next, a data extraction 
component employs the induced wrapper to extract 
structured data objects from query result pages and 
arrange them into a data table. Finally, the re-occurrences 
of submitted queries in the columns of this table are 
counted and stored into a query occurrence cube, which 
will be introduced in the next subsection.   

Figure 3. Flow of the query probing process and the 
query occurrence cube. 
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Given a Web database, the first task is to identify 
input elements in its query interface, which can be done 
by searching for the input-related tags 6  in a HTML 
searchable form. In the HTTP protocol, a query 
submission is carried out by sending a query request to 
the server containing the names of input elements and 
their corresponding query keywords. In this paper, we 
only submit one value to one element each time while 
keeping the default values for the other elements. We will 
consider the complex submission of querying multiple 
elements at one time in future work. 

For each TEXTBOX element in HTML forms, as we 
do not know its value domain, we exhaustively try all the 
attribute values from the given sample instances. For each 
SELECT element, its domain values are limited to its 
OPTION elements (i.e., we can only choose one or more 
of its OPTION values as the query keywords). Thus, for 
each attribute value of the given instances, we try to find 
and submit an option “similar”7 to the value. For other 
elements like CHECKBOX and RADIOBOX, the process is 
similar. As a consequence, the maximum submission time 
will be the product of the number of attributes in the 
global schema, the number of provided sample instances 
and the number of interface elements considered. 

After sending queries to the identified interface 
elements and collecting returned result pages from the 
Web database, the next task is to extract structured data 
from the pages. While dealing with hundreds or possibly 
thousands of Web databases in one domain, each of which 
encloses its data in the result pages according to some 
specific HTML-tag structures, how to automatically 
extract data objects from the pages is a very challenging 
problem that has attracted increasing research interest. 
Recently, attempts have been made to develop fully 
automatic approaches for inducing wrappers to extract 
embedded semi-structured data content from dynamic 
template-generated HTML pages [1], [9], [10], [23]. 
Discussion of these approaches is beyond the scope of this 
paper and interested readers are referred to the above 
papers for further information. 

In this paper, we choose our previous work [23] to 
induce a regular-expression wrapper based on nested 
repeated-pattern discovery in HTML pages. We also 
employ the data extraction module of [23] to extract the 
enclosed data objects into a table so that each column of 
the result table corresponds to one attribute of the returned 
result (i.e., of the result schema). 

                                                           
6 Please refer to the HTML specification [24]. 
7 The attribute value and the option value (two text strings) are 

similar as long as they contain at least one common keyword. 

3.2.2 Query Occurrence Cube 
After counting the re-appearance of each submitted value 
in the query results, a Query Occurrence Cube (QOCube) 
is constructed for the target Web database, as shown in 
Figure 3. The cube height represents the number of 
attributes in the given global schema. The cube width 
represents the number of interface elements considered 
(i.e., attributes of the interface schema). The cube depth is 
the number of columns in the result table (i.e., attributes 
of the result schema). Moreover, each cell in this cube 
stores an occurrence count associated with the three 
dimensions. For example, in Figure 3, cell<1, 2, 0> equal 
to 55 means that when all given values for the 1st attribute 
of GS are submitted to the 2nd element of IS, the query 
keywords re-appear 55 times in the 0th column of RS.  

Conveniently, the constructed QOCube provides a 
unified solution to match the 3 pairs of Web database 
schemas. The 3-dimensional cube can be easily projected 
onto three Query Occurrence Matrices (front, top and 
left), which exactly reflect the relationship between pairs 
of the three schemas (i.e., IS and GS, IS and RS, and GS 
and RS). Suppose the number of attributes in the global 
schema is N, the number of elements in the interface 
schema is M, and the number of columns in the result 
table is L. Once a projection function is selected, say sum, 
the 3-dimensional cube QOCN×M×L can be projected into 
three 2-dimensional occurrence matrices, OMIG

M×N for IS 
and GS, OMIR

M×L for IS and RS, and OMGR
N×L for GS and 

RS. The main research issue now becomes how to find the 
correspondence between a pair of schemas in the 
projection matrices. 

4. Instance-based Schema Matching 

4.1 Intra-site Schema Matching 
In this section, we focus on how to match the attributes 
between IS and GS, IS and RS, and GS and RS based on 
the obtained matrices: OMIG

M×N, OMIR
M×L, and OMGR

N×L. 
An example8 of OMIG

5×4 is shown in Example 1 with 
the correct matching in the gray rectangles, when GS = 
{TitleGS, AuthorGS, PublisherGS, ISBNGS} and IS = 
{AuthorIS, TitleIS, PublisherIS, KeywordIS, ISBNIS}. 
EXAMPLE 1:  

45258000
275143248120
246818462
0501345451
053449893

×
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
TitleIS

TitleGS AuthorGS

AuthorIS

PublisherIS

PublisherGS ISBNGS

KeywordIS

ISBNIS

 
In fact, there are some properties of the occurrence 

matrix to consider when searching for the correspondence 
                                                           
8  All examples in this section are obtained from real Web 

databases in our experiments. 
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or correlation between its rows and columns that represent 
the attributes of the two schemas. First, an absolute high 
occurrence may not represent a correct matching. For 
example, the matrix element for AuthorIS and PublisherGS 
(534) has the highest value in the matrix while AuthorIS 
and PublisherGS do not semantically correspond to each 
other.  Second, given a particular matrix element mij, its 
relative value (magnitude) among all elements for its row 
i and column j is more important than its absolute value. 
For example, for KeywordIS, which is in fact not a real 
attribute for book objects, its similar performance on all 
columns indicates that it may not be a good match for any 
one of the columns. The matrix element for PublisherIS 
and PublisherGS (468) does not have the highest value 
among the elements for PublisherGS. However, it is 
relatively larger than the values of other matrix elements 
in the row for PublisherIS. 

Interestingly, we can view the schema-matching 
problem as follows. By sending sample queries, a part of 
the database content relevant to the queries is fetched 
from the Web database. For any two schemas, S1 and S2, 
of one Web database, the obtained database content can 
be partitioned according to the attributes of S1 and S2, 
respectively. Suppose the partitions by the attributes of S1 
are A1, A2, … An and the partitions by the attributes of S2 
are B1, B2, … Bm. The element mij in the occurrence 
matrix for S1 and S2 actually indicates the content overlap 
between partitions Ai and Bj with respect to the 
occurrences of submitted values re-appearing in the two 
partitions. The schema-matching problem now becomes 
that of finding the pair of partitions that belong to two 
schemas (e.g., Ai and Bj) such that their overlap with each 
other is more than their overlap with other partitions 
belonging to the opposite schema (e.g., Ai and Bk or Ak 
and Bj). 

To help solve this problem, we employ the concept of 
mutual information, which interprets the overlap between 
two partitions X and Y of a random event set as the 
“information about X contained in Y” or the “information 
about Y contained in X” [20].  
DEFINITION 1: Suppose X and Y are two partitions over 
a collection of events, and xi and yj are partition elements 
of X and Y with joint probability p(xi, yj) and respective 
marginal probability p(xi) and p(yj). The mutual 
information of the partition X and Y is 

∑∑=
i j ji

ji
ji ))p(yp(x

),yp(x
),yp(xYXI log);(  

Accordingly, we can estimate the mutual information 
between a pair of attributes from two schemas using the 
following definition. 
DEFINITION 2: Given a query occurrence matrix 

JI
SSOM ×21 of two schemas S1 and S2, the estimated mutual 

information (EMI) between the ith attribute of S1 (say Ai) 
and the jth attribute of S2 (say Bj) is 

M
m

M
m

M
ijm

M
ijm

BAEMI
ji

ji
++ ∗

= log),(  

with M being ∑
ji

ijm
,

, mi+ being ∑
j

ijm and m+j being 

∑
i

ijm . Note that if mij equals to 0, EMI is assumed to be 

0 as well. 
Thus, the occurrence matrix in Example 1 can induce 

the EMI matrix shown in Example 2, with each matrix 
element being the estimated mutual information value for 
the corresponding schema attributes.  
EXAMPLE 2: 

45055.0000
029.0011.0001.0002.0
001.0025.0003.0004.0

0001.0005.0033.0
0010.0019.0007.0

×⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−−

−−
−

TitleGS AuthorGS PublisherGS ISBNGS

TitleIS

AuthorIS

PublisherIS

KeywordIS

ISBNIS
 

To find a 1-1 attribute matching of the two schemas is 
easy in the EMI matrix. If one matrix element is larger 
than the other elements in the same row and also larger 
than the other elements in the same column, its related 
attributes will have a larger overlap between each other 
than their overlap with other attributes of the other 
schema, as shown by the gray rectangles. For example, 
EMI(AuthorIS, AuthorGS) = 0.019 is the largest value in 
both its row and its column and it is a correct match. 
Therefore, we propose the following definition to quantify 
the intra-site schema matching. 
DEFINITION 3: Assume two schemas S1 and S2 with the 
corresponding EMI matrix [eij]. The ith attribute of S1 
matches with the jth attribute of S2 if 

jkee ikij ≠≥ | and ikee kjij ≠≥ | . 

4.2 Inter-site Schema Matching 
In this section, we focus on how to find the corresponding 
attributes for homogeneous schemas, namely, IS and IS, 
and RS and RS, of different Web databases. 

Borrowing the idea of vector similarity used in the 
Vector Space Model of Information Retrieval [2], we 
propose an approach to match interface/result schemas of 
different Web databases by computing their vector 
similarity. In the vector space model, documents are 
represented as vectors in a multi-dimensional space. In 
this space, each dimension represents a term or concept 
found in a document and the values are the corresponding 
frequencies of the terms in the document. Similarity 
between two vectors is measured by the cosine of the 
angle between their two vectors, which is computed as the 
inner product of the two vectors, normalized by the 
products of the vector lengths.  
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If we consider each attribute of an individual 
interface/result schema as a “document” and each 
attribute of the global schema as a “concept”, then each 
row in the occurrence matrix represents a corresponding 
document vector. Therefore, we can calculate the 
similarity (i.e., semantic correspondence) between 
attributes from different schemas by measuring their 
vector similarity. The following definition quantifies the 
inter-site schema matching between two Web databases.  
DEFINITION 4: Given two query occurrence matrices 
of two Web databases’ interface/result schemas 

GSOM 1 = mnija ×][  and GSOM 2 = mlijb ×][  with respect to 
the same global schema, the estimated vector similarity 
(EVS) between the ith attribute of S1 (say Ai) and the jth 
attribute of S2 (say Bj) is 
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To find a 1-1 attribute matching of two schemas in the 
EVS matrix is the same as in the EMI matrix (Definition 
3). A matrix element whose value is the largest both in its 
row and column represents a match. For instance, 
Example 3 shows two occurrence matrices of two 
interface schemas with respect to a global schema GS = 
{Title, Author, Publisher, ISBN}, where IS1 = {Author1, 
Title1, Publisher1, Keyword1, ISBN1}, IS2 = {Title2, 
Author2, ISBN2}. The grey rectangles depict the largest 
similarity values among rows and columns, which is also 
the correct matching. Interestingly, although the second 
attribute of IS2, Author2, is wrongly matched to Publisher2 
of GS in the previous intra-site schema matching 
(underlined element in EMI matrix of S2), our method still 
can find the right inter-site matching. 
EXAMPLE 3:  
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4.3 Cross Validation 
Given multiple Web databases in the same domain, we 
can employ the techniques proposed in sections 4.1 and 
4.2 to identify the matching attributes belonging to 
schemas of an individual Web database and the matching 
attributes belonging to schemas of different Web 
databases. Consequently, we can employ the five types of 
matching results (i.e., GS-IS, GS-RS, IS-RS, IS-IS and 
RS-RS) to cross validate each other (i.e., to recognize 
which matching is correct and which is not). In this 
section, we focus on how to cross validate different 
matching results produced from both inter-site and intra-
site matching. Note that in this step, we do not limit how 
the schemas are previously matched (i.e., we can employ 
any applicable label-based or instance-based method) as 
long as the matching results are provided.  

Given all the attributes from the interface schemas (or 
result schemas) of the target Web databases, we can 
categorize the IS (or RS) attributes into multiple clusters 
with respect to the GS attributes to which they have been 
matched. For example, the attributes, which are 
previously matched to the attribute AG of the global 
schema, are categorized into one cluster, while the 
attributes, which are previously matched to the attribute 
PG of the global schema, are categorized into another 
cluster. Recall that attributes are also matched to each 
other in inter-site schema matching. In the ideal case, an 
attribute in one cluster only matches with attributes in the 
same cluster. When a matching across clusters does exist 
(i.e., two attributes in two different clusters have a match) 
there must be a mismatch. The possible reason for the 
mismatch could be either that one of the two attributes 
was put into the wrong cluster or that the matching 
between these two attributes is wrong.  

Interestingly, if we consider the attributes as vertices 
and matching between attributes as edges, we can convert 
the problem of deciding which matching is incorrect into 
a graph partitioning problem: given a set of vertices and 
edges, divide the vertices into N partitions such that the 
edge-cut is minimized. The edge-cut is the sum of the 
weights (1 in this case) of all the edges between the 
partitions. This graph partitioning problem is known to 
be NP-hard [14]. Therefore, we can only expect 
approximate solutions in general.  

In our case, where there is already an initial partition 
of the vertices (according to the matching results with 
respect to GS), a simple approximate approach is to move 
vertices over partitions as long as the number of cuts 
decreases. Accordingly, a vertex v is moved to the 
partition in which most of its “neighbours” reside. Since a 
vertex v needs to be moved if many of its neighbours 
jump, multiple passes are likely to be needed before the 
process converges on a local optimum. When the process 
stops, we resolve the cross cluster matching between 
attributes  Ai of site S1 and Bj of site S2 contained in two 
clusters C1 and C2 by first discarding it and then re-
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matching Ai to attribute Bk of site S2 clustered into C1 or 
vice versa. 
EXAMPLE 4: 
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Example 4 illustrates one pass of such an approximate 

approach. For simplicity, suppose that the global schema 
only contains two attributes {Author, Publisher} and there 
are five Web databases with the IS attributes IS1 = {Aa}, 
IS2 = {Ba, Bp}, IS3 = {Ca, Cp}, IS4 = {Da, Dp} and IS5 = 
{Ea, Ep}. The two ellipses on the left depict how the 
attributes are primarily clustered according to which GS 
attribute they are matched (by intra-site schema 
matching), and the edges between two attributes show 
whether they are matched or not (by inter-site schema 
matching). In the initial state, Aa is wrongly matched to 
the Publisher attribute of GS and also wrongly matched to 
Bp while it has been correctly matched to three other 
attributes in the Author cluster. Therefore, Aa is moved to 
decrease the number of edges across clusters from 3 to 1, 
as shown in Example 4. By such a “moving” process, we 
correct the matching attribute of Aa from the Publisher to 
the Author attribute of GS. After the move, the edge 
between Aa and Bp is replaced by a new edge between Aa 
and Ba (the attribute of site 2 that is matched to the global 
attribute Author). 

Due to space limitations, we omit the detailed 
algorithm for the above cross-validation technique and 
only show the experimental results in the next section to 
verify its effectiveness. 

5.  Experiments 
We performed a comprehensive evaluation of the 
proposed instance-based schema matching approaches on 
thirty complex Web databases over two domains: Book 
and Used-car. The main goal was to investigate the 
feasibility of a unified and accurate solution to matching 
schemas both in a single site and from different sites. We 
first describe the Web databases employed for the testing. 
Then we present the results for intra-site schema matching 
and inter-site schema matching, and the improvement 
achieved by cross validating the matching results.  

5.1 Test Web Databases 

For our evaluation, we used 20 Web databases for 
purchasing books online and 10 Web databases for 
searching for used-cars online. The global schema for the 

two domains are manually defined as Book = {Title, 
Author, Publisher, ISBN} and Used-car = {Make, Model, 
Postal-zip, State, Price, Mileage, Year}. We also manually 
collected 20 book instances and 10 car instances (details 
can be found in [25]) and took their attribute values as 
sample queries to be used to probe the test Web databases. 
After obtaining the query result pages from each Web 
database, we employed our previous work [23] on 
wrapper induction to automatically extract the result 
records according to their specific structures and re-
arrange them into a result table. 

Table 1.  Characteristics of test Web databases. 

 #Interface 
Elements #TS %SS #Result 

Columns 
#Extracted 

Data 

Book 4.2 343.3 32% 6.25 1322.9 
Car 6.0 123.1 72% 5 995.3 

 

The columns #TS and %SS of Table 1 represent, 
respectively, the number of total submissions made to the 
test Web databases and the corresponding success rate9. 
The reason that the Used-car domain has a lower number 
of submissions and a higher success rate than the Book 
domain is because SELECT and TEXTBOX input elements 
were treated differently when submitting the queries. We 
exhaustively tried all the attributes of the pre-known 
instances for a TEXTBOX element, while we only 
submitted the OPTION values of a SELECT element if 
they were found to be similar to one or more attribute 
values of the pre-known instances (see section 3.2.1). In 
our experiments, most of the Web databases in the Book 
domain only contain TEXTBOX elements. Therefore, this 
domain has a higher number of submissions, but a lower 
success rate. 

5.2 Matching Results  
In this subsection, we report and discuss the experimental 
results for both intra-site and inter-site schema matching 
of the two domains. The intra-site schema matching 
results are listed in Table 2. To verify the effectiveness of 
our proposed instance-based matching approach (EMI) 
derived from mutual information analysis, we 
implemented a simple method as our baseline (MAX). 
The baseline method works as follows: in the query value 
occurrence matrix, the matrix element with the largest 
value both among the elements in the same column and 
among the elements in the same row is identified as an 
attribute matching.  

In our evaluation, precision and recall originating 
from the information retrieval area are used as the 
metrics. Precision is measured as the ratio of the number 
of correctly identified matching attribute-pairs to the total 
number of attribute-pairs identified by the methods. 

                                                           
9 A query submission is successful if the induced wrapper can 

extract at least one instance from the query result page. 
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Recall is measured as the ratio of the number of correctly 
identified matching attribute-pairs to the total number of 
matching pairs in the two schemas. Suppose the number 
of correctly identified matching attribute-pairs is C, the 
number of wrongly identified matching attribute-pairs is 
W and the number of correct matching attribute-pairs but 
somehow missed in the approach is M, then the precision 

of the approach is
WC

C
+

 and its recall is
MC

C
+

. 

Table 2. Intra-site schema matching results. 

IS — GS RS — GS IS — RS  

P R P R P R 
MAX 68% 50% 91% 81% 90% 84% Book 
EMI 80% 71% 95% 88% 93% 87% 
MAX 97% 63% 96% 57% 100% 67% Car 
EMI 97% 64% 93% 63% 100% 73% 

 

In Table 2, we can see that our EMI-based method 
significantly outperforms the baseline method. In the 
Book domain, both the EMI-based and Max-based 
methods produce the worst results on IS-GS schema 
matching. The reason is that Web databases of this 
domain tend to include a “Keyword” input element in the 
interface schema for the convenience of end-users who 
may want to use keyword search. Using the “Keyword” 
element often returns results for any query no matter to 
which global attribute the query belongs. Since there is no 
“noisy” keyword attribute in the global schemas and the 
result schemas, our matching approach can achieve a 
higher accuracy in GS-RS matching. In the Used-car 
domain, both MAX-based and EMI-based methods have a 
relatively low recall. The reason is that our matching 
techniques are based on counting the re-appearance of 
submitted queries in the result data, which is more 
suitable for database attributes accepting the “equal” 
select operator. When handling numeric-field attributes 
that accept “less than” or “greater than” select operators, 
such as Price and Mileage, the returned results sometimes 
may not include the exact query keyword, such as 
“$10,000”. 
 

 

65% 
70% 
75% 
80% 
85% 
90% 
95% 

5 10 15 20 

Precision

Recall

 
Figure 4. Result achieved by different number of sample 

instances. 

We show in Figure 4 how the achieved results vary 
when the number of sample instances is increased. The 
columns in Figure 4 are achieved average precision and 

recall of the intra-site schema matching results of the 
Book domain, when the number of instances is set to 5, 
10, 15 and 20. From the figure, we can see that the 
achieved results generally increase as the number of 
sample instances increases. However, more sample 
instances mean more query submissions to the Web 
database. Since we do not want to overburden the target 
Web databases, an interesting future research direction 
might be to find a trade-off between the number of 
submissions and the achieved results.  

Table 3. Inter-site schema matching results. 

IS-IS RS-RS  

P R P R 
Label-based 90% 87% 95% 14% Book 

EVS 91% 71% 94% 86% 
Label-based 89% 88% 98% 25% Car 

EVS 92% 72% 89% 66% 
 

In Table 3 we compare the inter-site schema matching 
results achieved by our proposed approach (EVS) based 
on vector similarity analysis to the matching results 
achieved by label-based approaches. Label-based 
approaches are mainly based on finding the synonym 
relationship between attribute labels. In matching 
interface schemas, we manually identified the surrounding 
text of input elements as their labels [16], [17], [21]. In 
matching result schemas, we manually found either 
explicit author-supplied column headers in the result 
pages or the text strings commonly shared by all extracted 
instances as the attribute labels. Table 3 shows that the 
performance of the EVS-based method is close to that of 
label-based methods in IS-IS matching, while it performs 
much better in RS-RS matching since attribute labels are 
often unavailable in result pages. In addition, our 
approach does not require intelligent layout analysis to 
precisely identify the correct attribute labels. 

Table 4. Effectiveness of cross validation. 

Before CV After CV 
 

 P R P R 
IS — GS 80% 70% 96% 83% 
RS — GS 95% 88% 98% 91% 
IS — RS 93% 87% 97% 90% 
IS — IS 91% 71% 94% 74% 

Book 

RS — RS 94% 86% 99% 87% 
IS — GS 97% 64% 97% 72% 
RS — GS 93% 63% 97% 70% 
IS — RS 100% 73% 100% 75% 
IS — IS 92% 72% 95% 77% 

Car 

RS — RS 89% 66% 92% 69% 

We present in Table 4 the effectiveness of the 
proposed cross validation approach in improving the 
overall accuracy. Table 4 shows that the cross validation 
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method does improve the overall matching accuracy, 
especially in the Book domain. It is notable that we cannot 
achieve as high a recall as we can precision (over 90%). 
We believe that the cause is not due to the ineffectiveness 
of the cross validation, but is due to the nature of the 
probing-based approach itself. 

5.3 Discussion  
In our experiments, we observed some issues that need 
further consideration.  

The performance of our instance-based matching 
approaches to some extent depends on the selection of the 
sample instances. More specifically, two properties of the 
sample instances could influence the matching process: 
the topics that they cover and their attribute-distinguishing 
capability. Take the Book domain as an example. Some 
Web databases may only contain books about computer 
programming while others only have novels. Therefore, to 
ensure that result data can be extracted from the Web 
databases’ answers to the sample queries, various topics 
are required to be covered in the sample instances. At the 
same time, the attribute-distinguishing capability of the 
sample instances may also influence the matching results. 
For example, the name of a famous person usually 
frequently appears both in the Author attribute of the 
books he/she wrote and the Title attribute of his/her 
biographies, such as “Jane Austen” in our chosen sample 
instances.  

We also notice that, as Web databases vary in their 
designs, some of them might generate result pages with 
different formats for different queries. For example, when 
answering a Title query, a Web database returns a list of 
qualified book instances and each of the instances is 
described by some text. However, when answering an 
ISBN query, the same Web database returns only one 
unique book instance with its detailed information shown 
in the result page. It is obvious that these two kinds of 
results are generated by two different templates. To deal 
with this issue, an intelligent result analysis method is 
needed to first extract results with different formats and 
then combine them into one uniform result table.  

6.  Related Work 
Schema matching is a basic problem in database research 
with numerous techniques proposed to address the 
problem (see [11] and [22] for surveys). Existing work 
that addresses the problem of automatic schema matching 
for Web databases adopts the prior techniques on 
matching schemas of traditional databases. [16] presented 
a statistical approach to integrate the interface schemas of 
Web databases in the same domain. It hypothesizes that 
given Web databases in the same domain, the aggregate 
vocabulary describing the interface input elements tends 
to have a relatively small size. Furthermore, there exists a 
unified hidden schema underlying these interfaces. A 
statistical probability model is employed to find the 

hidden schema by the co-appearance of attribute names. 
The schema matching methods employed are label-based. 

[17] introduced a tool, WISE-Integrator, that performs 
automatic integration of Web search interfaces in a 
product domain. WISE-Integrator employs 
comprehensive meta-data, such as element labels and 
default value of the elements, to automatically identify 
matching attributes from different search interfaces.  

[19] investigated algorithms for generic schema 
matching, outside of any particular data model or 
application. An algorithm called Cupid was proposed to 
discover mappings between schema elements based on 
their names, data types, constraints, and schema structure.  

[18] used a classifier to categorize attributes according 
to their field specifications and data values, and then train 
a neural network to recognize similar attributes. However, 
this method may not be applicable for Web databases 
since both field specifications and data values are 
incomplete in many cases. 

[11] developed the COMA schema-matching system 
as a platform to combine multiple matchers in a flexible 
way. While their approach may seem similar to our cross 
validation method, it is fundamentally different since the 
goal of our method is the reinforcement of multiple 
matchers, not the straightforward combination of the 
matchers. 

[21] presented HiWe, a prototype deep-web crawler 
that can extract the labels of interface elements and 
automatically submit queries through the elements. 
Interface elements with the same/similar labels are 
matched in order to obtain each other’s domain values 
for automatic query submission. 

The main difference between our work and previous 
work is that we aim to provide a general framework for 
schema matching of Web databases. To the best of our 
knowledge, no previous work has presented such a 
framework, especially the combined schema model. 
Moreover, the instance-based schema-matching method is 
seldom used for schema matching in the Web database 
context since it is hard to get instances from Web 
databases. Supplied with a set of sample instances, our 
work proves that instance-based methods can also be very 
effective for Web database schema matching. 

7.  Conclusion 
In this paper, we investigate the problem of schema 
matching for Web databases. We propose a combined 
schema model to describe the various schemas associated 
with a Web database and a generative view to include five 
kinds of schema matching of related Web databases in a 
specific domain.  

In the combined schema model, we address two 
significant schema-matching problems for Web databases, 
intra-site schema matching and inter-site schema 
matching. We then investigate a unified solution to the 
two problems based on domain-specific query probing 
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and attribute content overlap. Our instance-based 
approaches, which adopt the mutual information concept 
and vector similarity analysis, are quite powerful for 
precisely identifying the matching relationships among 
attributes of Web databases’ interface and result schemas. 
Benefiting from our general framework, a cross validation 
technique, converted to a graph-partitioning problem, is 
introduced and shown to improve the matching 
performance. 

Currently our approach needs some human 
involvement to provide a precise global schema and 
instance samples. One direction to extend this work is to 
adopt automatic global schema generation techniques to 
make the whole system fully automatic. Another direction 
of improvement is to combine our work with previous 
label-based approaches to build a more robust matching 
system. In addition, we plan to extend this work to handle 
not only 1:1 mappings but also 1:N mappings over Web 
database schema attributes.    
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