Combining SAT Solving and Integer Programming
for Inductive Verification of Lustre Programs

Anders Franzén

Department of Computer Science and Engineering
Chalmers University of Technology
2004

Abstract

This thesis examines whether a combination of SAT solving and integer pro-
gramming for inductive verification of safety properties for Lustre programs
is a viable alternative to other verification methods. The two methods used
for comparison are inductive verification based on SAT solving as imple-
mented in Luke, and abstract interpretation using the NBAC tool. Luke is
a tool developed at Chalmers Univerity of Technology for use in a course on
software engineering using formal methods, and NBAC has been developed
by Bertrand Jeannet at TRISA in France during his PhD studies.

Two methods of combining the decision procedure, offline and online
integration are presented. Together with methods of analysing infeasible in-
teger programming problems and a preprocessing stage of constraints, these
methods have been implemented in a tool based on Luke. This tool is used
to evaluate the different options for the decision procedure, and also to com-
pare these methods to Luke and NBAC.

The method of combining decision procedures is shown to be comple-
mentary to existing methods of verification of Lustre programs.

ii

Preface

This Masters’ thesis work has been done as the concluding part of a Mas-
ters program in Computer Science and Engineering. The project gives 20
Swedish credit points and is equivalent of 20 weeks full time work.

The thesis supervisor has been Koen Claessen at the department of Com-
puting Science at Chalmers University of Technology.

Goteborg, December 2004

iii

v

Contents

Introduction
1.1 Formal verification
1.1.1 Translation to the logic
1.1.2 The decision procedure
1.2 Outline of the thesis
1.3 Aimofthethesis
1.4 Acknowledgements L.
Background
2.1 Lustre e
2.1.1 Localstreams
2.1.2 Booleans and if-then-else
2.1.3 Node instantiation
2.2 Propositional logico oL
2.3 Integer linear programming
2.4 Temporal induction
2.4.1 Completeness
2.5 Turing-completeness of Lustre

Formal language

3.1 Language definition oo
3.2 Semantics
3.3 Restrictionso
3.3.1 Standard constraints
3.3.2 Guarded constraints

Translation from Lustre to £-formulas

4.1 Per operator instantiation00
4.1.1 Formalities
4.1.2 Anexample

4.2 Maximal instantiation
4.2.1 Formalities

4.3 Guarded maximal instantiation

— o e

\)

19
19
20
22
22
22

4.3.1 Formalities
4.3.2 Anexample

5 The decision procedure for L-formulas
5.1 Offline integration
5.1.1 Standard constraints
5.1.2 Guarded constraints
5.1.3 Soundness and completeness
5.2 Creating explanations of infeasible systems
53 Asmallexample
5.4 Preprocessing constraints L.
5.5 Online integration
5.5.1 Basic algorithm
5.5.2 Making inferences
5.6 Combining online and offline integration

Analysing infeasible integer programming problems

6.1 Infeasible irreducible system
6.2 Deletion filteringo oL
6.3 Additive filtering
6.4 Elastic filtering oo
6.5 Discussion Lo
6.6 Finding more thanone IIS.
6.7 An incomplete infeasibility detector for ILP

6.7.1 Preliminaries

6.7.2 The algorithm

6.7.3 Anextension
6.8 Preprocessing constraints
6.9 Using the incomplete procedure

Analysis

7.1 Experimental setupo oo
7.2 Test suite description oL
7.3 The tool Rantanplan
7.3.1 Formalizations
7.3.2 Offline integration
7.3.3 Online integration
7.3.4 1IS filtering L.
7.3.5 Multiple IISs
7.3.6 Preprocessing of constraints
74 Testplan Lo
75 Analysis
7.5.1 Dependence on parameters
7.5.2 Interaction between parameters

vi

29
29
30
31
31
32
32
34
34
35
35
35

37
37
38
39
41
42
43
44
44
44
45
45
46

7.6 Identifying candidates 51

7.7 Comparisons with NBAC 54
7.8 Comparison with Luke 54
7.9 Explanation of the differences 57
7.10 Other examples 57
7.10.1 Invalid properties 57
7.10.2 Bounded integerso oL 58
7.10.3 Limitations with GLPK 58
7.10.4 Non-linear expressions 59
7.10.5 Incompleteness of induction 59
7.10.6 modulo not supported in NBAC 59
7.10.7 Other problems 59
Related work 61
8.1 Verification of Lustre programs 61
8.2 Combining SAT solving with arithmetic 62
8.3 Complete SAT characterization 63
Conclusions and future work 65
9.1 Conclusions e 65
9.2 Futurework 66
9.2.1 Use a complete ILP procedure 66
9.2.2 Support for more Lustre constructs 66
9.2.3 Incremental ILP 67
9.2.4 Backwards instantiation 67
9.2.5 Heuristics for faster IIS discovery 67
9.2.6 Isomorphy inference 68
9.2.7 Complete SAT characterization 68
9.2.8 Improved incomplete procedure 68
9.2.9 Automatic strengthening of properties 68

vil

viii

Chapter 1

Introduction

The purpose of this thesis is to evaluate a new decision procedure for formal
verification of Lustre programs.

1.1 Formal verification

A formal method is a method which uses a formal notation for mathematical
modelling and analysis. With a mathematical model, it is possible to analyze
a software program formally, and even construct mathematical proofs of
correctness. Verifying software in this way is called formal verification.

The verification method used in this thesis is temporal induction, which
is induction over time. The base case is used to prove that the property
is true during the k first time points. In the step case, it is proven that if
the property is true in k consecutive time points, then it is also true in the
following time point.

1.1.1 Translation to the logic

The formal language used in verification is propositional logic extended with
integer linear constraints with free variables. Lustre programs can be trans-
lated to this language in one of three ways; By creating one constraint for
each operator used, by creating one constraint for each expression contain-
ing only addition, subtraction or multiplication. The last variant creates
guarded constraints.

1.1.2 The decision procedure

The decision procedure is a combination of SAT solving and integer lin-
ear programming. A propositional approximation of the original formula
is created such that the approximation is unsatisfiable only if the original
formula is unsatisfiable. A SAT solver is used to decide satisfiability of
the approximation. If it is satisfiable, the SAT model is checked against

the integer constraints in the original formula. If the model conflicts with
the constraints, the propositional formula is refined by adding information
about the constraints. This is reapeated until either a model for the original
formula can be constructed, or the propositional formula becomes unsatis-
fiable.

1.2 Outline of the thesis

In chapter 2 the programming language Lustre is introduced, together with
proposition logic and integer programming. A short explanation of the ver-
ification method of induction is also described.

Chapter 3 describes the formal language which will be used in the ver-
ification procedure. The chapter contains both an informal description of
the language, and a more formal definition of the language and its seman-
tics for the interested reader. The less interested reader may safely skip the
formalities.

In chapter 4 it is described how this language is used to describe Lustre
programs and their properties.

The decision procedures used for deciding satisfiability are described in
chapter 5. In chapter 6, the problem of infeasible integer programming prob-
lems is discussed, and several algorithms for handling these are described.

The different methods of verifying Lustre programs are evaluated in
chapter 7. Related work is described in chapter 8, and the conclusions
of the experiments are summarized in 9 together with a desciptions of the
future work.

1.3 Aim of the thesis

The thesis aims at evaluating the usefulness of a combined SAT /integer pro-
gramming decision procedure in inductive verification of Lustre programs.
These types of decision procedures have been shown to be useful in other
areas, such as planning or verification of discrete-continuous systems. The
method developed in the thesis will be compared to two freely available
tools for Lustre verification; Luke (see section 8.1), which uses induction
on top of a SAT solver, and NBAC (see section 8.1) which uses abstract
interpretation.

1.4 Acknowledgements

I would like to thank my supervisor Koen Claessen for his support, his good
advice, and the idea of the thesis subject, David Merchat at VERIMAG
in Grenoble, France for contributing many of the Lustre programs used for
evaluating the tool. Also Bertrand Jeannet at the “Institut de recherche

en informatique et systemes aléatoires” (IRISA), in Rennes, France for the
use of his verification tool NBAC, and his invaluable assistance on how to
use it properly. For the statistical analysis, the help of Stefan Franzén was
instrumental in developing a sound test plan and analysis method for the
evaluation.

Any errors or incorrect statements in the thesis are mine alone.

Chapter 2

Background

As a background to the thesis, this chapter describes the Lustre program-
ming language. Also included is an introduction to propositional logic and
Davis-Putnam style SAT solvers, as well as integer linear programming.

2.1 Lustre

This is an informal introduction to the programming language Lustre. For
more information, see [31, 33].

A Lustre program consists of nodes. A node operates on streams, which
are an infinite sequence of values of a certain type. A node has zero or more
input streams, and one or more output streams. The node defines its output
streams in a declarative style. The interface of a node specifies its name,
inputs and outputs:

node AddOne(X : int) returns (Y :int);
The outputs are defined using equations
Y=X+1,
A node definition would then become

node AddOne(X : int) returns (Y :int);
let

Y=X+1;
tel

Here we have a node where the values of the output stream Y is the value of
the input stream X, plus one. When given the input stream [0,1,2,3,...],
the node will produce the output stream [1,2,3,4,...]. There can be more

— AddOne | — »

Figure 2.1: The AddOne node

than one input stream, as in this example, where two integers are added
together:

node Add(X, Y :int) returns (Z : int);
let

Z=X+4Y,
tel

Sometimes it is necessary to refer to old values of streams, this is done
with the pre operator. The operand of pre is evaluated in the previous time
point. Since there is no values before the initial time point, expressions
involving pre may need an alternate definition for the initial time point.
This is accomplished with the “followed by” operator —, which takes two
operands. In the inital time point, it evaluates to the left operand, and in
all others the right operand.

node Accumulate(X : int) returns (Y :int);
let

Y=0— X+ pre,;
tel

In this example, given the input stream [1,2,3,4,...], we get 0 in the first
time point because of the use of the — operator, and so the stream becomes
[0,2,5,9,...]. This version of Accumulate accumulates all but the first value
on the input stream. To accumulate all values on the input stream, a small
change is necessary:

node Accumulate(X : int) returns (Y :int);
let

Y=X+(0—preY);
tel

The right operand of the addition is now 0 in the first time point, and the
previous value of Y in all others.

2.1.1 Local streams

A node can have local, internal streams as well. These are declared before
the definitions. Local streams must be defined, in the same way as output
streams.

node Counter(X : int) returns (Y :int);

var C : int;

let
C=0—preC+1;
Y =X+ C;

tel

The local stream C becomes [0, 1,2, .. .], regardless of the values on the input
stream. Given the input [1,2,3,...], the output stream becomes [1,4,6, .. .].

2.1.2 Booleans and if-then-else

Lustre also support boolean streams as we can see below.

node Counter(X : bool) returns (Y :int);
var PY : int;

let
PY =0 — pre,;
Y = if X then PY+1 else PY;

tel

Here the if—then—else expression is used to increment the value of the
output stream at all time points where the input stream is true. With the
input stream alternating between true and false, the output stream would
become

Variable |t =1 t=2 t=3 t=4 t=5
X true false true false true
PY 0 1 1 2 2

Y 1 1 2 2 3

The stream PY is the previous value of the stream Y.

2.1.3 Node instantiation
Nodes can use other nodes by instantiation.
node Accumulate(X : int) returns (Y :int);

let
Y=0—- X+ preY,;

tel

node Equal(X : int) returns (Y :int);
var Al, A2 : int;

let
Al = Accumulate(X);
A2 = —Accumulate(X);

Y = Al — A2;
tel

2.2 Propositional logic

Propositional logic is composed of propositional variables p, g, r, ... and then
connectives A (conjuction or “and”), V (disjunction or “or”) and — (negation
or “not”). A propostional value can be either true or false, and variables can
be connected with the connectives to form propositional formulas. Formulas
in propositional logic are often written in Conjunctive Normal Form (CNF).
Formulas in CNF are built from literals, which are either variables or negated
variables (—p). A set of literals is called a clause. Clauses are true if at least
one of the literals in the clause is true.

{p,—q,r}

For clause above is true if p or r is true, or if ¢ is false. A formula on
conjunctive normal form is a set of clauses. The formula is true if and only
if all clauses in the formula is true. Take for example the formula

{pa _'q}
{q7 _'T}

{pa q, _'T}

This formula is true if both p and ¢ are true. If one of p and ¢ are false,
the formula becomes false. A formula which can be made true with some
combination of values for the variables is said to be satisfiable. Formulas
which can not be made true regardless of the value of the variables are
unsatisfiable.

The SAT problem is the problem of determining satisfiablility for propo-
sitional logic. There are several SAT algorithms in existence today. The
Davis-Logemann-Loveland procedure, often called DPLL, extended with
conflict clauses [24] is the algorithm which is used here.

The algorithm is a branching search procedure. Initially, none of the
variables is assigned a value. The procedure starts by selecting one of

the variables which does not have a value, and assigns a previsously un-
tried value (either true or false) to that variable. This is done in the “de-
cide_next_branch” procedure. This new assignment is used to simplify the
formula. The procedure “decide” determines what new variable assignments
are a direct consequence of the set of currently assigned variables that are
needed for satisfiability of the formula. In a clause

{p,—q,r}

if both p and r has been assigned to false, then ¢ must be false for the
clause to be true. If all variables can be assigned in this way, the formula
is satisfiable. In some cases, however, the deduce procedure will run into
trouble. If we have assigned both p and r to false in this formula

{pa g, T}
{p,a.r}

Then the varaible ¢ would have to be both true and false to satisfy the for-
mula. This is called a conflict, and the DPLL procedure then backtracks,
unmaking the assignments that lead to the conflict. Modern implementa-
tions of the DPLL procedure also add a conflict clause which describes the
reason for the conflict. In this case the reason is that both p and ¢ were
false at the same time. The conflict clause is a new clause which explicitly
forbids these variable assignments

{r.q¢}

For the clause to be true, at least one of p and ¢ must be true. If the
procedure assigns one of these variables to false, the consequence would be
that the other variable is assigned to true.

For more information on SAT solving using a DPLL-style algorithm, see
for example [50].

2.3 Integer linear programming

A constraint is a relation on the form

Zalxlgb a;,b € R
A

Constraints are often written a’x < b, where a’ is a transposed vector of

reals and x is a vector of variables. An linear programming (LP) problem is
a system of constraints

altx < bl

aQtX < b2

ap’x < b,

Algorithm 2.1 The DPLL procedure
loop
decide next branch
loop
status < deduce
if status = CONFLICT then
blevel «+ analyse conflict
if blevel = 0 then
return UNSATISFIABLE
else
backtrack
end if
else if status = SATISFIABLE then
return SATISFIABLE
else
break
end if
end loop
end loop

Where the variables are reals. A solution to a LP problem is a variable
assignment which satisfies all inequalities in the problem. If a problem lacks
a solution it is infeasible. A problem that is solvable is called feasible. For
an infeasible system, there are no combinations of values for the variables
which satisfy all constraints. Often it is not enough to find an arbitrary
solution to a LP problem. Usually, there is a goal function which describe a
preference for certains solutions. A goal function is a linear expression over
the variables on the form

goal(x) = c¢'x + ¢

The problem is then solved with the added constraint that the goal function
must be maximal/minimal.

Integer (linear) programming ILP is just like LP, with the added con-
straint that the solutions must be integer. This makes the problem of finding
optimal solutions much more difficult, though. While linear programming
has polynomial time complexity, integer programming is NP-complete.

There are several solutions to the integer programming problem. The
algorithms that are most commonly used are branch-and-bound and branch-
and-cut [49]. These algorithms are based on linear programming, and re-
peatedy solve the LP-relaxation of the problem. The LP-relaxation is the
problem one gets when one removes the requirement that solutions must be
integer. These types of algorithms are used heavily in practice, and have

10

Figure 2.2: A transition function without state

shown themselves to be effective on feasible problems. For infeasible prob-
lems using unbounded integers, however, they do not always terminate.

There are other complete methods based on variable elimination, a method
discovered by Fourier in 1826, This method was later rediscovered several
times in the 20th century, among others by Motzkin in 1936. The method
is often called Fourier-Motzkin elimination, or sometimes just Fourier elim-
ination. Their method was created to solve the LP problem, but it can be
extended to the ILP problem. One such extension is the Omega test [41].

For more information on integer programming, [49] describes branch-
and-bound and branch-and-cut. Information on other methods can be found
in [10, 11, 41].

2.4 Temporal induction

The verification method used in this thesis is called temporal induction [44,
14], which is simply induction over time, with one small addition to make it
complete for finite state systems.

In a Lustre program that does not use the temporal operator pre or
followed by (—), the program is a function from its inputs to its outputs.
This function is called a transition function. A program with a property R
can be visualized as in figure 2.2. Proving the program correct is done by
proving that there is no combinations of inputs which makes the property
false. For programs with state (which uses the temporal operators (pre and
—) this is not possible, since there may be a combination of streams of
input which makes the property false after a certain number of time points.
When the temporal operators are used, we can still view the program as a
function by adding extra state streams. S,_; is the value of the stream in
the previous time point (called the “previous” state), and S,, is the value of
the streams in the current time point (the “current” state). The program is
then a function from its inputs and the previous state, to the outputs and
the current state as in figure 2.3.

For programs with state, it may be necessary use induction over time. In
induction one tries to prove two formulas; The base case and the step case.

11

Figure 2.3: A transition function with state

In In+1
Sn—1 Sn Sn+1
ST] T
Rn Rn+1

Figure 2.4: Induction step

The base case is the behaviour in the initial time point. To verify the base
case, the transition function 2.3 for the program is examined to see if the
property is always true regardless of the inputs. The state signals S is fixed
to the initial state, given by the “followed by” operators. The property is
then a function of the inputs, just as above.

In the step case the proof obligation becomes “If the property is true at
time n, it will also be true at time n 4+ 17. The induction step is depicted
in figure 2.4. For the base case, we need to prove that the property hold
in the initial time point, see figure 2.5. If both the step case and the base
case can be proven, then we know that the property holds in all time points,
regardless of the values on the input streams.

In some cases, it is not possible to prove the step case. This is the same
problem as we have in other mathematical disciplines. Consider for instance

So S1

Figure 2.5: Base case

12

the definition of the Fibonacci sequence:

o0 if n €[0,1]
fib(n) = { fib(n — 2) + fib(n — 1) otherwise

If we want to prove Vn.fib(n) > 0 with induction, the induction step would
become
Vn.fib(n) >0 —f(n+1) >0

This is impossible to prove since no assumption is made for fib(n — 1). This
problem is normally solved with what is called induction with depth. For
the induction step to be provable, we need to assume that both fib(n) > 0
and fib(n + 1) > 0 and then try to prove fib(n 4+ 2) > 0.

Vn.fib(n) > 0Afib(n+1) >0 —f(n+2)>0

This can easily be proven by case splitting. The base case also has to be
modified, we need to prove both fib(0) > 0 and fib(1) > 0. The depth of
the induction proof is the number of base cases/assumptions that are used.
The original, “normal” induction attempt has depth 1, and the new variant
has depth 2. This can of course be generalized to induction with depth k.

In verification of Lustre programs, we have the same problem. The
property that the Fibnacci sequnce is non-negative can be defined in Lustre
as

node Fibonacci() returns (OK : bool);
var Fib, PFib, PPFib : int;
let
PFib = 0 — pre Fib;
PPFib = 0 — pre PFib;
Fib = PFib + PPFib;
OK = Fib > 0;
tel

For examples such as these, we can apply the same technique. Each induc-
tion depth can be attempted in sequence until a provable depth is reached.
This is not enough however. In the example below, the induction step will
always fail, regardless of depth.

node Changer(Start, Change : bool) returns (Y : bool);

var Started : bool;
let

Started = Start — pre Started or Start;

Y = false — if Change and Started then pre not Y else pre Y;
tel

13

node Prop(Start, Change : bool) returns (OK : bool);
var HasStarted, Y : bool;

let
HasStarted = Start — pre HasStarted or Start;
Y = Changer(Start, Change);

OK = not HasStarted = not Y;
tel

It can not be verified because there is an arbitrary long sequence of states
which lead to a state where the property is false.

Variable t=n t=n—-1 t=n—-2 ... t=n—k
Start false false false ... false
Change false false false ... true
Started true true true ... true
Y false false false ... true
HasStarted | false false false ... false
OK true true true ... false

The solution is the unique path restriction. We require that the sequence of
states Sy, Sp+1,-- -, Sntk—1 18 unique. For this example the extra assump-
tions would be that each state must have a unique set of values on the state
variables Started, Y and HasStarted.

2.4.1 Completeness

For bounded integers, induction is complete. For unbounded integers it is
not. It is easy to see why: Take a counter which enumerates the natural
numbers, together with the property that —1 is not a natural number (the
counter will never reach —1).

node Counter() returns (R1 : bool);

var C : int;

let
C=0—preC+1;
Rl =C+# -1,

tel

This property can not be verified with induction, since there is an unbounded
path of valid unreachable states {. .., —4, —3, —2} leading to the invalid state
where the counter is —1. In this example it is possible to strengthen the
property with a property saying that the counter is non-negative.

14

node Prop() returns (R1, R2 : bool);

C:int;
let
C = Counter();
Rl=C>0;
R2 = C # -1,
tel

Having two properties like this is the same as the conjunction of the prop-
erties. The new property is provable, and therefore the conjunction of prop-
erties is provable.. Since the conjunction is valid, then the original property
must be valid also, since Vx.x >0 — = # —1.

Incompleteness of induction is not such bad news as it may seem. In fact,
Lustre with unbounded integers is Turing-complete, and thus no method
exists of automatically strengthening properties to make induction complete.
No other verification technique is complete either, of course.

2.5 Turing-completeness of Lustre

The normal way of proving that a language is Turing-complete is to show
that it is possible to implement a Turing machine in the language. A Turing
machine has a tape machine with the operations in table 2.1. The operations
that can be performed are; Writing a bit (0 or 1) to the position of the tape
under the tape head and moving the tape to the left or the right. The tape
machine is controlled by a finite state machine (FSM), which given the bit
under the tape head and its current state, sends an intruction to the tape
machine and changes to a new state.

It is possible to implement a Turing machine in the small fragment of
Lustre that only has linear integer expressions. That is, multiplication, divi-
sion and modulo operators are only allowed with a constant right operand,
while addition and subtraction are allowed with arbitrary operands. This is
the fragment that is supported by the method discussed in the thesis. The

Operation Op code
Do nothing 0
Write 1 1
Write 0 2
Move to right 3
Move to left 4

Table 2.1: Opcodes for tape

operations are encoded using an integer, as indicated in table 2.1. The tape
itself is encoded in two integers Left and Right. These are seen as infinite

15

streams of bits, Left being the bits in the left half of the tape and Right the
bits in the right half. The bit under the tape head is the least significant
bit in Right. Moving the tape one step to the right is equivalent to dividing
Left by two and multiplying Right by two. The least significant bit in Left
before the operation is added to Right. Moving to the right then becomes

PLeft = Init_Left — pre Left;
PRight = Init_Right — pre Right;
Left = PLeft / 2;

Right = PRight * 2 + PLeft mod 2;

where PLeft and PRight was the previous value of the tape. Moving to the
left is analogous. Reading and writing from/to the tape is simply a matter
of manipulating the least significant bit in Right.

The tape machine then becomes

node Tape_Machine(Init_Left, Init_Right : int; Operation : int)
returns (Value : bool; Left, Right : int);

var PlLeft, PRight : int;
let

PLeft = Init_Left — pre Left;
PRight = Init_Right — pre Right;

Left = if Operation = 0 then PLeft
else if Operation = 1 then PLeft
else if Operation = 2 then PLeft
else if Operation = 3 then PLeft / 2;
else PLeft x 2 + PRight mod 2;

Right = if Operation = 0 then PRight
else if Operation = 1 then (PRight / 2) x 2 + 1
else if Operation = 2 then (PRight / 2) x 2
else if Operation = 3 then PRight x 2 + PLeft mod 2
else PRight / 2;

Value = Right mod 2 =1
tel

The finite state machine has the states sg, s1,. .., Sk, which can be mod-
eled with an integer variable. The initial state sg is 0, and the other & states
are the k first positive numbers. The machine is a function taking the state
and the value under the tape head and returns a new state and an opera-

16

tion for the tape machine. Since the state machine is finite, it is possible to
implement this with a finite number of nestled if-then-else expressions.

node FSM(Value : bool) return (Operation : int);
var PState : int;
State : int;
let
PState = 0 — pre State;
State = if PState = 0 and Value then <new state>
else if PState = 0 and not Value then <new state>
else if PState = 1 and Value then <new state>
else if PState = 1 and not Value then <new state>

Operation = if State = 0 then <operation>
else if State = 1 then <operation>
else if State = 2 then <operation>

tel

The Turing machine is the tape machine and the finite state machine
connected together.

node Turing_Machine(Init_Left, Init_Right : int)
returns (Left, Right : int);
var Operation : int;
Value : bool;

let

(Value, Left, Right) = Tape_Machine(Init_Left, Init_Right,

0 — pre Operation);

Operation = FSM(Value);

tel

17

18

Chapter 3

Formal language

For formal verification we need a formal language, i.e. a language with a
well-defined meaning. The fragment of Lustre that we are interested in has
both boolean and integer variables. Therefore, propositional logic extended
with integer arithmetic would be a natural choice. This language is not one
of the “standard” languages in logic, so this chapter will give a definition of
the language and its semantics. Those readers not interested in the details
of the language may safely skip this chapter.
The language definition and semantics is inspired by [42].

3.1 Language definition

Propositional logic uses a set of propositional variables Vp and the connec-
tives = (negation), A (conjunction), V (disjunction), — (implication) and
— (equivalence). The language of propositional logic can be defined in the
usual way:

1. A variable p € Vp is a L-formula

2. If a is a L-formula, then —« is a L-formula

3. if « and (is are L-formulas, then o A § is a L-formula
4. if a and (is are L-formulas, then a VvV § is a L-formula
5. if o and § is are L-formulas, then o — 3 is a L-formula
6. if « and § is are L-formulas, then « < J is a L-formula

Examples of L-formulas are for instance

(p—a)N(g—p)
(p—q) V(g 2)

19

We can now extend this language with by adding relations between integer
expressions. First, we start by defining linear expressions. Z is the set of
integers, and Vz is the set of integer variables.

1. A constant ¢ € Z is a L-term

2. A variable v € V7 is a L-term

3. If ce Z and v € Vy, then cv is a L-term

4. If I1 and [y are L-terms, then I; + [o is a L-term
5. If [1 and l5 are L-terms, then [{ — [y is a L-term

This means that if x,y € Vz, then 42, 2z + 3 and 7Tx — 2y are all L-terms,
but xy, £/2 and 2/x are not. We can now define linear relations, where all
such relations are L-formulas.

1. If I; and ls are L-terms and < is one of =, #, <, <, >, >, then [; < [y
is a L-formula.

This means that relations beteen two linear expression is a L-formula. For
example,

7=3

1>0

T+ 2y <2x+2
(>y)A(y>2)—(z>2)
pAg— —(z>2y—1)
(z+1=2) < (1<0)

are all £-formulas.

3.2 Semantics

It is not enough to have a language, we also need to define the meaning of
formulas. In our case we are interested in knowing if a variable assignment
of the propositional and integer variables makes the formula true or not.
This is done formally by defininig an interpretation.

An interpretation I is a map from propositional and integer variables to
truth values and integer values, respectively. Formally I = (I,,,17), where
I,: Vp— {L, T}, Iz : Vz — Z. This interpretation can be extended over
integer expressions in this way:

o Iz(c)=ciffceZ

o Iz (v) = Iz(v) for every v € Vg,

20

° ﬁz(a + b) = ﬂz(a) + HZ(b)
o Iz(a—b) =Iz(a) — Iz(b)

e Iy(ca) = c¢-Iz(b) for every c € Z

We can now define satisfiability for £-formulas. That a formula ¢ is
satisfiable with an interpretation I = (I, Iz) is written I |= ¢, and is defined
in this way:

el=viffveVpand I)(v) =T

I —piff 1¥ ¢

IEpAyiffIEpand =y
IEeVvyiffIEporlE=vy

IFre—vif IFporlEY

Ik ¢« iff either [=@ and I |= 1), or I ¥ ¢ and 1 ¥ ¢

I = a > B, where i is one of =, #, <, <, >, > iff ﬁz(a) < le(ﬂ) where
»« is the semantic function of <.

Lets look at an example formula:
(p—=@+1<y)A(g—(y=0))
This formula can be satisfied with the interpretation
I={p—L,qg—=T}{z—1y—0}

If the interpretation is changed to make p true, then the formula would not
be satisfied.

We now have a language where we can describe relations over integer
expressions, and propositional logic. The language has a precise meaning
of what it means for a formula to be satisfiable. What we need is a deci-
sion procedure which can given an arbitrary formula in our language decide
whether of not the formula is satisfiable. If it is we also need the proce-
dure to generate an interpretation (a variable assignment) which satisfies
the formula. Deciding satisfiability for these £-formulas is an NP-complete
problem [42], so it is possible to create such procedures. In chapters 5 we
will give two such algorithms.

21

3.3 Restrictions

We do not need general relations over integers, so we limit ourselves to two
restricted variants of the language. A constraint is a relation on the form

E a;T; X b
7

where a;, b are constants and z; are variables. Constraints arre often written
on the form
alx b

t

taken from linear algebra, where a’ is a transposed vector of constants, x a

vector of variables and b a constant.

3.3.1 Standard constraints

A standard constraint is a constraint of the form a‘x < b. A formula with
general constraints can easily be rewritten into a equivalent formula with
only standard constraints. First all variables are moved to the left hand
side and all constants to the right hand side. After simplification, they are
rewritten in this way:

Original Replacement

alx<b alx<b-1

alx >b —alx < -—b

alx>b —alx<-b—-1

alx=b ax<bA-alx<-b
alx#4b ax<b-1V-ax<-b-1

3.3.2 Guarded constraints

Constraints that are guarded by a propositional variable, p — constraint are
called guarded constraints, and the literal is called a guard. The constraints
that are allowed are on the form a'x < b or a’x = b. The advantage of
this is that in interpretation where the guard is false, the truth value of the
contraint does not matter for the truth value of the formula. This means
that it is possible to have equality constraints, since we never have to negate
them.

22

Chapter 4

Translation from Lustre to
L-formulas

The verification idea is to take programs and properties written in Lustre,
and use induction to verify those. Each base or step case should be translated
to a L-formula which can be analyzed with the procedures described in
chapter 5. In this chapter three differrent methods of translating Lustre
nodes to transition functions in our logical language is presented. For the
casual reader, it is recommended to only read the first paragraph of each
section below, which gives an informal description of the methods.

For each Lustre variable v, we create one integer variable per time point
{vi]i € N}, where vy is the variable in the initial time point, v; the next time
point, and so on. A transition function is created, or instantiated, at time
point n with the function inst, which takes a Lustre expression and returns
the value of the expression. It also creates a number of constraints, which
define the returned expression.

4.1 Per operator instantiation

In the “per operator” translation scheme, each operator is tranlated sepa-
rately into standard constraints. For each operator, two cosntraints will be
created which defines the value of the expression. A stream definition for
an integer stream is defined as a set of two constraints a’x < b, —alx < —b
for each operator used in the expression. For the Lustre definition

X=Y +1;

two constraints are needed to describe this using standard constraints:

X, +Y,< 1
X, — Y,<—1

23

X, is the value of the stream X at time point n, and Y,, is the value of the
stream Y at time point n. For larger expressions, it is necessary to introduce
extra variables for the intermediary expressions.

4.1.1 Formalities

Instantiation using the function inst of a arithmetic integer expression is
performed in this way: The function returns a value for a Lustre expression,
and also creates a number of constraints.

inst,(c) = ¢ ifcelZ
inst, (v) = v, ifveVy
inst, (a +) = 2z where —z—y+2<0
r+y—2<0
x = inst, ()
y = inst,, ()
z is a fresh variable
inst, (o — f3) = 2z where —xz+y+2<0
r—y—2<0
x = inst, (@)
y = inst,, ()
z is a fresh variable
inst,, (a * 3) = 2z ifceZ
where —cz+2<0
cx—2<0
x = inst, ()
¢ = inst,(B)
z is a fresh variable
inst, (a/3) = 2z ifceZ
where z+c¢2<0
r—cz<c—1
x = inst, ()
¢ = inst,(B)
z is a fresh variable
if ceZ
where x — cinst,(a/3) — 2 <0
—x + cinst,(a/B) +2 <0
x = inst, ()
¢ = inst,(0)
z is a fresh variable

inst,(a« mod §)=

I

24

For if—then—else, the instantiation is defined as

inst,(if « then [elsey) = =z
where c¢— z=2
—Cc— 2z =2
¢ = inst,(a)
z1 = inst,(5)
29 = instn(ﬁ)
z is a fresh variable

For the followed by operator —, it is simply a matter of checking if we are in
the initial time point, and for the pre operator, we instantiate the operand
on the previous time point.

inst,(a=>3) = instg(a) if n=10
inst,, () otherwise
inst,(pre a) = inst,_1()

Applying pre in the initial time point is undefined, since there is no previous
time point.

Comparison operators are translated in a straightforward way, here ex-
emplified with the less-than operator:

instp,(a <) = x—y<-1 wherez =inst,(a)
y = inst,(0)

4.1.2 An example

To illustrate how the translation works, here is a small example. The pro-
gram is a single Lustre node with a counter, counting from 0 and upwards
together with the property that the counter is non-negative.

node Counter() returns (OK : bool);
var C : int;

let
C=0—preC+1;
OK=C2>0;

tel

For the initial time point, this would be translated to a L-formula in CNF
as

{Ci<0}

{-Ci<0}

{ 70Ky, (-C1<0) }

{ OKm (Cn < _1) }

25

The first two clauses define C as 0 in the first time point. The last two
correspong to the property. If OK is true, then C must be greater than or
equal to 0. Otherwise C must be a negative number. For all other time
points, the translation becomes

{ Cn - Cn—l S 1 }
{ _Cn+cn71 < -1 }
{ —0K,, (_Cn < 0) }

4.2 Maximal instantiation

If large expressions are used in the program, the number of extra variables
may become large. In “Maximal” instantiation, the unnecessary variables
are eliminated. In the example

X=Y+7Z+1,

The constraints that describe this definition becomes

Xy + Y, +Z,< 1
X, — Y, — Zy<—1

In this case one variable and two constraints could be saved in this way.

4.2.1 Formalities

inst,(a+ B) = inst,(«a) + inst,(5)
inst,(a — B) = insty(a) — inst,(B3)
inst,(a*x B) = insty(a)-inst,(5), if inst,(a) € Z or inst,(a) € Z

The other cases are identical to “per operator” instantiation.

4.3 Guarded maximal instantiation

In the “Guarded maximal” method, only guarded constraints are used. With
guarded contraints, two types of constraints are allowed in the formula a‘x <
b and a'x = b. This means that definitions can use equality constraints
instead of two inequality constraints, which leads to a “simpler” formula.
Another advantage is that integer if-then-else expressions can be written in
a more efficient way.

4.3.1 Formalities

The instantiation function inst returns a tuple (e, z) where x is the expres-
sion and e is an enabler. When the enabler is false, the constraints that

26

are associated with then expression x have no effect on satisfiability of the
formula.

inst,, (c) =(e,c) if ceZ

inst, (v) =(e, vp) iftvelVy

inst, (o + B)=(e,z +y) where (a,z) = inst, ()
(b,y) = inst,(0)
e—a
e b
e is a fresh variable

inst,(a — f)=(e,x —y) where (a,x) = inst, ()
(b, y) = inst, ()
e—a
e b

e is a fresh variable
inst,(ax) =(e,z-y) fxc€ZoryeclZ

where (a,x) = inst, ()
(b,y) = inst,(0)
e—a
e b

e 1s a fresh variable

For if—then—else, the instantiation becomes

inst, (if o then felsey) = (e, 2)

where (a,b) = inst,(a)
(c,z) = inst, ()
(d,y) = inst,(7y)
e—a
eNa<c
eNa <« c
c—T=2z
d—y==z
e is a fresh variable

We enable the condition only if the if-then-else expression is enabled, and
the “then”-expression is enabled only if the if-then-else expression is enabled
and the condition is true. The “else”-expression in enabled only if the if-
then-else expression is enabled and the condition is false.

Comparison operators are translated in this way, as exemplified by the

27

less-than (<) operator:

inst,(a < B) = (e,p) where (a,x) = inst,(a)
(b,y> = inStn(ﬁ)
e a
e—b

eNp—z—y<—1
eN—p— —z—y <0
e, p are fresh variables

e is the enabler for the comparison, and p is a propositional variable which
represents the truth value of the comparison.

4.3.2 An example

node Counter() returns (OK : bool);
var C : int;

let
C=0—preC+1,;
OK=C>0;

tel

For the initial time point, this would be translated to a L-formula in CNF
as (simplified)

{ —a, (C1=0) }

{a}

{ b, (-Crn<0)}

{ G, (Cn <-1) }

{ d, b }

{ d, —c }

{ —b, —c }

{—d, b, ¢}

{d}
The two first clauses say that C is 0. The next two are the constraints for
the property, guarded by propositional variables b and c. Exactly one of
them should be true, which is described in the last clauses.

28

Chapter 5

The decision procedure for
L-formulas

A simple decision procedure is based on the following observation. Treating
the problem as a purely propositional problem, iff there is any propositional
model for which the constraints are consistent, then the original problem is
satisfiable. Offiine integration uses a SAT solver to generate propositional
models, and an integer programming package to check these models.

5.1 Offline integration

The original formula ¢ is translated into a purely propositional formula
¢p by replacing each integer constraint with a fresh propositional variable,
called an in-place variable. Thus, in the example

{z <0,y <0}
{—y <-1}

if we replace x < 0 with p, y < 0 with ¢ and —y < —1 with r, we get the

{p.q}

{r}
This formula is submitted to a SAT solver, called Psat in the algorithm. In
this example, the formula is satisfiable, for example with the model M, =
{p, q,r}. From this model a constraint problem is created with the function
generate by checking the valuation of the in-place variables.

propositional formula

Feasibility of the resulting constraint problem is checked in Csat. If the
constraint problem is feasible, the solution can be merged with the SAT
model to form a model for the original formula.

29

If the constraint problem is not feasible, like in the example above, then
an explanation is generated by the function explain. It generates a propo-
sitional formula with the in-place variables explaining why the constraint
problem was infeasible. This formula is added to the original propositional
formula, and the procedure starts over. If the explain function returns the
exmplanation p, ¢, r, then the cause {—p, ~¢, —r} is added to the formula.

{p,q}
{r}

{—p,~q,—r}

The new clause prevents the SAT solver from finding the same model again.
This is repeated until either a feasible constraint problem is found, or
the propositional formula becomes unsatisfiable.

Algorithm 5.1 Offline integration
Require: ¢ is a standard or guarded constraint formula
loop
I, < Psat(yp)

if I, = () then
return unsatisfiable
else

if Csat(generate(ip,1,)) then
return satisfiable
else
¢ «— ¢ A —explain(generate(p, I,))
end if
end if
end loop

5.1.1 Standard constraints

For standard constraints, the translation to a propositional formula is done
by creating a fresh propositional variable for each constraints, and keeping
track of which in-place variable corresponds to which constraint. Construct-
ing the constraint problem is done by checking the valuation of each in-place
variable. If it is true, the corresponding constraint is added to the constraint
problem. If it is false, the negation of the corresponding constraint is added.
Since all standard constraints are on the form a’x < b, negating a constraint
is simple:

—(a'x <b)—alx>be —ax< —be —alx<—b—1

30

Algorithm 5.2 generate(yp,,) (Standard variety)

C « all constraints in ¢
A0
for all c € C' do
p < in-place variable for ¢
if I,(p) = T then
A— AU{c}
else
A— AU{~c}
end if
end for
return A

5.1.2 Guarded constraints

When using guarded constraints, all constraints are guarded by a proposi-
tional variable p — c. These constraints are all on the top elevel, meaning
that the guards and constraints only occurs in clauses like this:

{_'pac}

The formula is translated to propositional form simply by removing these
guarded constraints. This is done by simply removing these clauses. Con-
straint problems are constructed by checking the valuation of each guard in
the original formula. A constraint is added to the constraint problem iff the
corresponding guard is true.

Algorithm 5.3 generate(yp,],,) (Guarded variety)

C « all constraints in ¢
A—10
for all c € C' do
g <« guard for ¢
if I,(g) = T then
A— AU{c}
end if
end for
return A

5.1.3 Soundness and completeness

The decision procedure described here is sound as long as the integer pro-
gramming procedure Csat is sound, and the explanations all correspond to
infeasible systems.

31

It is also complete, given a complete integer programming procedure [42].
Procedures based on branch-and-bound or branch-and-cut are not complete,
and if one of those is used, then the abose algorithm will also be incomplete.
There are only a finite number of SAT models to the propositional formula,
and for each spurious model we add an explanation preventing the SAT
solver from generating the same model again. The SAT solver will eventually
either find a correct model, or the formula will become unsatisfiable.

5.2 Creating explanations of infeasible systems
There are many possibilities for an explain function. The most naive version

is to simply create a conjunction of all in-place literals, whose constraints
have been asserted in the current SAT model. In this example

(1) A-B< 1
(2) —A+B<-1
(3) —A< 0
(4) A<—1

we can see that the constraints 3 and 4 contraidicts each other, and the
in-place variable for those constraints would be a better explanation than
the in-place variables for all four constraints.

If reasons such as this can be used instread of using all in-place vari-
ables as explanations, the procedure may be more effective. With shorter
explanations, we prune more of the model space of the SAT formula, and
fewer spurious models will be generated. In integer programming, there are
methods of finding these reasons. In chapter 6 these are described.

5.3 A small example

We are now ready to look at a complete example. We take a counter that
counts from 0 upwards, and try to prove that the counter will always be a
natural number.

node Counter() returns (OK : bool);
var C : int;

let
C=0—preC+1;
OK=C>0;

tel

32

With the “per operator” translation, we would get in step 0

{ Cn - Cn—l < 1 }
{-Ch+Ch1<—1}
{ —OKp, (_Cn < 0) }
{ OKnv (Cn < _1) }

This is converted to a purely propositional problem by replacing the con-
straints with in-place variables {p; — C),, — C,,—1 < 1,ps — —C), + C—1 <
—L,p3— —Cp <0,py— C, < *1}-

{p1}

{p2}

{ -0K,, p3 }
{ OK,,, p4 }

The property corresponds to the variable OK,,, and to prove it we assume
=0OK and hope it will lead to an unsatisfiable formula. Psat has many models
to choose from, lets say it first identifies I, = {p1, p2, p3, pa, OK,,}. Since we
are using standard constraints, the constraint problem generated from this
model is

(1) Cp—Ch1 < 1
(2) —Cp+Ch1 < -1
(4) C, < -1

This is infeasible, with the IIS {3,4}. The explanation then becomes p3 Apy,
and the clause {—ps, —p4} is added to the formula. There is still one model
left, I, = {p1,p2, 7p3, pa}. The constraint problem now becomes

1) Co—Cuy < 1
2) —Ch+Cpy < -1
(3) C, < -1
(4) C, < -1

Which is feasible, for instance with the solution C,, = —1,C,,_1 = —2, and
so the original formula is satisfiable with the model

M= <{_'0Kn}a {C =-1,Ch1 = _2}>

We now know that the property is not true in all states, so we move on to
induction with depth 1. The base case becomes

{Cp <0}

{=Co <0}
{ﬁOKna _CO < O}
{OK,,Co < —1}

Which is unsatisfiable. For the step case the formula is decided in the same
way, and it will also be unsatisfiable. Since both the base case and the step
case is unsatisfiable, we can prove the property with depth 1.

33

5.4 Preprocessing constraints

It is possible to analyze the set of constraints in a formula before starting
the decision procedure. First identical constraints can be identified, and the
same in-place variable used for all identical instances of constraints [42].
This works for both standard and guarded constraint formulas, but for

guarded constraints we need to introduce an extra variable. For instance in
the formula

{=g1,2 =0}

{—g2,2 =0}

{91,792}

{=92791}

It is not possible to just replace g» with ¢;, since that would make the
formula unsatisfiable. Instead, we can add a fresh propositional variable g,
and change the formula to

{_‘97 xr = 0}
{ﬂgl, ﬂgz}
{—g92,~91}
{—91.9}
{92, 9}

For standard constraints we simply create the same in-place variable for all
occurencies of a particular constraint.

Secondly, it is possible to try to discover infeasible subsets of the con-
straints, and add explanations for these to the propositional formula [15]. In
this way, the number of spurious SAT models can be reduced. Normally, all
infeasible subsets of a certain maximal cardinality (typically 2) is discovered.
This has been reported to be successful on random formulas [6].

5.5 Online integration

In online integration, we check partial interpretations instead of only com-
plete models. Checking a partial interpretation is done in the same way as
in offline integration, except that we do not consider those constraints whose
in-place variables are not defined in the interpretation.

These checks are performed inside the SAT solver. Everytime the solver
assigns a value to an in-place variable, the corresponding constraint is as-
serted. If the set of asserted constraints is infeasible, we have a conflict,
which can be handled in the normal way in the solver. If a complete SAT
model can be found with a feasible set of asserted constraints, we know the
original formula was satisfiable. The SAT model together with the solution
to the set of asserted constraints then form a model for the original formula.

34

5.5.1 Basic algorithm

The algorithm used for online integrations is basically the generate function
described in 5.2 and 5.3. The DPLL based SAT solver is modified such that
it keeps track of a set of constraints that are asserted. Initially that set is
empty, and every time an in-place variable is assigned a value, the generate
function is used to check if the corresponding constraint has become asserted.
If it has the constraint is added to the set of asserted constraints, and if the
set has become infeasible a conflict has been discovered. The reason for the
conflict can be discovered using the methods in chapter 6 in the same way
as in offline integration, and that reason is communicated to the SAT solver
which generates a conflict clause and backtracks.

5.5.2 Making inferences

In the algorithm described here, no information is derived from partial mod-
els. In [28], the constraints that have been generated in the partial model is
used to infer other constraints. With the constraints

X=Y
Y=7
X=Z

if both X =Y and Y = Z is generated, then X = Z must be true also.
This can then be propagated to the SAT solver.

For guarded constraints, this does not work. If we have the satisfiable
formula

{a—X=Y}
{b—=Y =27}
{c—=X =27}

{a}

{0}

{—c}
In a partial model where both a and b are true, we can not infer ¢, since
that would cause a conflict.

5.6 Combining online and offline integration

It is possible to combine offline and online integration by adding the cheap
infeasibility detector from section 6.7 online, and using a complete ILP pro-
gramming procedure offline.

35

36

Chapter 6

Analysing infeasible integer
programming problems

When an integer programming problem is infeasible, it is often interesting
to find out the reason for the infeasibility. This example

() 1 >0
() ZCQ—$1:1
(3) 2x3—x1 <2
() To > 1
() xz3 >0
() 1 <0

is infeasible, and the reason of the infeasibility is the constraints 1 and 6,
which are mutually exclusive. A reason such as this is called an Infeasible
Irreducible System, or sometimes an irreducibly inconsistent system. In
this chapter we describe a few different methods of identifying such reasons.
Methods for IISs can be found in [20, 19] for LP problems, and , [29] for ILP.
The methods for finding IISs that are applicable for ILP have been included
here. These methods are useful for finding explanations of infeasible systems
in the decision procedure. A cheap incomplete method of finding infeasible
systems is presented last.

6.1 Infeasible irreducible system

Definition 6.1.1 An Infeasible Irreducible System (1IS) is a minimal set
of infeasible constraints.

This means that a system is an IIS iff

e it is infeasible.

37

e it is not possible to remove any of the constraints from the set without
making it feasible.

Any infeasible system contains at least one IIS. Lets look at a few examples.
The system

(1) z1 >0
(2) Xro — 23;1 =1
(3) X9 § 1

is an IIS, since it is infeasible, and it is impossible to remove any of the
constraints without making it feasible. The system

(1) 1 >0
(2) Xro — 23;1 =1
(3) T § 1
(4) 1 <0
on the other hand, is not an IIS. It is possible to remove both 2 and 3 without
making the system feasible. Note that if 4 is removed, neither 2 nor 3 can
be removed. This means that there are two IISs for this system, {1,2,3}
and {1,4}. Tt is also possible to have an IIS with only one constraint as in

this example:
2z =1

The system does not have any integer solutions, so it is infeasible, and an
IIS.

6.2 Deletion filtering

The simplest IIS filtering algorithm works like this. We know that any
infeasible constraint problem contains at least one IIS. If the problem is still
infeasible when one of the constraints is removed, the remaining constraints
contains at least one IIS. This idea can be applied iteratively, until it is
impossible to remove a constraint without making the problem feasible.
The IIS that is found is the one whose first member is dropped last from
the constraint set. In this example

(1) 1 <0

(2) T9 — 1 =

(3) x9 >3

(4) x3— xz =0 (6.1)
(5) 1 >1

(6) T3 <1

deletion filtering will find the IIS {3,4,6} if the constraints are removed
from top to bottom. If the order is reversed, the algorithm will find {1, 2, 3}

38

instead. Removing constraints in the order in which they appear in the
constraint problem is called forward filtering. Removing constraints from
the bottom up is called reverse filtering. To find the IIS {1,5}, a different
ordering must be chosen. The algorithm must solve one constraint problem
for each constraint on the original system C.

Algorithm 6.1 Deletion filtering
Require: (' is an infeasible set of constraints
for all c€ C' do
temporarily drop ¢ from the set
if C is feasible then
return c to the set
else
drop ¢ permanently
end if
end for
Ensure: C' is an IIS

Some of the constraint problems that have to be solved during filtering
may be difficult, and in that case the algorithm can be modified [29]. If the
constraint problem takes too much time to solve when a certain constraint
have been removed, that constraint is marked as dubious and kept in the
constraint set to ensure infeasibility. If the resulting set contains any dubious
constraints, then the set may not be an IIS. It is still infeasible, and hopefully
a good approximation of the IIS.

6.3 Additive filtering

A similar algorithm is called the additive filter. The basic idea is this.
Starting with an empty set of constraints, and adding one constraint at
a time until the set becomes infeasible, then the last constraint added is
a member of an IIS. All constraints but the last one is dropped, and the
procedure starts over. When the set of constraints which have been identified
as being a member of an IIS is infeasible, this set is an IIS. Just as in deletion
filtering there are two orderings, forward and reverse filtering. In example
6.1, using forward filtering would first identify constraint 3, then 2, and
lastly 1, forming the IIS {1,2,3}. With reverse filtering, {3,4,6} would be
identified.

It is possible to improve on this algorithm by combining the additive filter
with the deletion filter. When the first IIS member have been identified, the
set [is infeasible and therefore containts at least one IIS. By applying the
deletion filter on this set, this can be identified.

39

Algorithm 6.2 Additive filtering

t!
Require: C'is an infeasible set of constraints
I—0
repeat
T 0
for all c € C\I do
T —TU{c}
if T is infeasible then
I —T1U{c}
break
end if
end for
until [is infeasible
Ensure: [is an IIS

Algorithm 6.3 Additive/deletion filtering

Require: (' is an infeasible set of constraints
T—0
for all c € C' do
T — TU{c}
if T is infeasible then
break
end if
end for
T «— deletion(T")
Ensure: T is an IIS

40

6.4 Elastic filtering

An elastic constraint is a constraint with an extra, elastic variable(s) which
allow the constraint to “stretch” its feasible region. An elastic variable is
a real nonnegative variable which introduces elasticity to the constraint, in
this way

Nonelastic Elastic

alx <b alx—e<b

alx =b alx+e—¢e =b

Any infeasible system can be made feasible by making all constraints elastic
in this way. By setting the objective function to minimize the sum of these
elastic variables, it is possible to identify members of an IIS. Since the so-
lution is minimal, only constraints that belong to an IIS will be stretched.
The set identified by the algorithm contains at least one IIS, but is not nec-
essarily an IIS itself. In order to find an IIS using this algorithm, it must be
coupled with another algorithm (which does return an IIS). The algorithm
chosen is usually deletion filtering, which is applied to the the set of enforced
constraints. In many cases, the set of enforced constraints resulting from
elastic filtering is small compared to the original constraint set.

Algorithm 6.4 Elastic filtering
Require: C'is an infeasible set of constraints
make all constraints elastic by adding nonnegative elastic variables e;
Set objective function to min), e;
while C' is feasible do
Enforce the constraints where e; > 0 by removing those elastic variables
end while
Ensure: the set of enforced constraints contains at least one IIS

The resulting set contains a smallest cardinality IIS. It is easy to see why;
For each iteration, at least one of the constraints in a smallest cardinality
IIS will be stretched. When all of them have been streched, the set of
enforced constraints is infeasible and the algorithm terminates. Because of
this, the algorithm will iterate at most as many times as the cardinality of
the smallest IIS in the original constraint set.

In example 6.1, elastic programming will first make all constraints elastic
by adding elastic variables

(1) Tr1 — €1 < -1
(2) zg—x1+exg—e3= 1
(3) —x9 — ey < —4
(4) zz3—xz9+e5—eg= 0
(5) —r1—e7 < =2
(6) Ir3 — €8 < 0

41

Solving this problem using the objective function min), e; will stretch e,
e4, es5 and e;7. Those variables are then removed, and now the problem has
become infeasible. The set of enforced constraints is

(1) I S -1
(3) —x9 S —4
(4) zg—xz2= 0
(5) —X1 S -2

With deletion filtering, the IIS {1,5} can be identified.

The fact that the result from elastic filtering contains a smallest cardi-
nality IIS does not mean that it will be identified. In example 6.1, if we
rewrite all equality constraint into inequality, we would get the following
problem:

(1) r1 — el S —1
(2.1) Tro —T1 — €2 S 1
(2.2) —zo+x —e3<—1
(3) —X9 — €4 S —4
(41) x3—x9—€5< 0
(4.2) —x3+ 10 —eg < 0
(5) —T1 — ey S —2
(6) r3—es < 0

This problem is then solved using the objective function min) e;. The
solution will stretch the elastic variables e4 and e7, and constraints 3 and
5 are enforced. Then the solver is run again, this time e;, es and eg are
stretched. After enforcing the corresponding constraints, the problem be-
comes infeasible, and the set of enforced constraints is

(1) 1 § -1
(2.1) X9 — I S 1
(3) —XI2 < —4
(4.2) —x3+xo< 0
(5) —XI1 S —2

This set contains two IISs, {1,5} and {1,2.1,3}. Which of these will be
identified depends on the filtering algorithm, and on the order of the con-
straints. With forward deletion filtering and the current order, the IIS is
identified as {1,5}. With backward filtering {1,2.1, 3} is identified.

6.5 Discussion

Of the algorithms discussed, elastic filtering will typically be faster, since
the number of constraint problems that have to be solved to find the IIS
is much smaller on average. There are two drawbacks with elastic filtering
that may be important.

42

e In elastic filtering most of the constraint problems that have to be
solved are feasible, and an optimal solution has to be found. For dele-
tion filtering most problems will be infeasible. Also, optimal solutions
are not necessary for either the deletion or additive filter.

e In cases where there are several IISs in the constraint problem, it may
be difficult to control which of these elastic filtering identifies.

6.6 Finding more than one IIS

In cases where there are several IISs in a constraint problem, it may be useful
to try to identify more than one of them. We will look at two simple ways of
doing that by iteratively applying one of the previous filtering algorithms.

Definition 6.6.1 Two IISs are said to overlap each other if they share at
least one member [20].

Definition 6.6.2 A cluster of IISs is a maximal set of 1ISs such that each
IIS overlaps at least one other IIS in the cluster [20].

One simple way of finding several IISs is to locate one from each cluster.
This can be done by iteratively locating one IIS using one of the previous
algorithms, and removing that until the remaining constraint problem be-
comes feasible. The algorithm locates at least one IIS from each cluster in

Algorithm 6.5 Cluster filtering
Require: C'is an infeasible set of constraints
T 0
while C is infeasible do
I — filter(C)
T —TU {I }
C—C\I
end while
Ensure: T is a set of IISs.

the original system, and all IISs are non-overlapping. Instead of removing
the entire IIS in each iteration, it would be sufficient to remove one of the
members. This may lead to more IISs being identified, since overlapping
IISs can now be identified. In example 6.1 we can identify {3,4,6} and
{1,5} with cluster filtering and forward deletion filtering. With overlapping
filtering, it is possible to identify all three IISs in this way: First, we identify
{3,4,6} and remove 6. Then we identify {1,5} and remove 5. last we iden-
tify {1,2,3} and remove 3. The remaining constraints {1,2,4} are feasible
and the algorithm stops.

43

Algorithm 6.6 Overlapping filtering
Require: C' is an infeasible set of constraints
T—10
while C is infeasible do
I — filter(C)
T—TU{l}
C — C\{i}, where i € I
end while
Ensure: T is a set of IISs.

6.7 An incomplete infeasibility detector for ILP

This section describes a cheap procedure that can detect infeasible constraint
problems, and also find approximations of IISs for infeasible problems.

6.7.1 Preliminaries

We have a total ordering on all variables <. A total ordering is one where
if ¢ # j, then either v; < v; or v; < v;.
A constraint is on normal form if the greatest common divisor ged(aq, . - . , @y, b)
of the factors and the right hand side is 1. Any constraint can be rewrit-
ten to normal form by dividing every coefficient and the right hand side by
ged(ag, ..., an,b).
An equality is a definition if the coefficient of the greatest variable (in
the chosen variable ordering) is 1 or —1. Definitions can be rewritten on the
form x;, = Z#k a;z; + b.

6.7.2 The algorithm

The basic idea is that if we have two constraints

l’<b1
T > by

these two constraints are infeasible iff by < by. An algorithm that uses
this fact take one constraint at a time, simplifies it by applying all known
definitions and eliminating a number of variables. If the new simplified
constraint is a definition, this definition is applied to all known constraints,
eliminating one more variable. Then the new constraint is added to the set
of known constraints. If any pair of known constraints that are of the form
+x < b, contradicts each other, an infeasiblility has been detected. The
algorithm can find explanations of infeasibilities by keeping track of which
definitions are used when simplifying constraints. When a pair of conflicting
constraints is discovered, the reason is then besides the pair, the definitions

44

Algorithm 6.7 Detect infeasibilities
Require: C is a set of constraints
T—0
for all c € C' do
Use all definitions in T" to simplify ¢
if ¢ is a definition then
simplify all constraints in 7" with the definition ¢
end if
T—TuU{c}
if T has a pair (z < by, —z < by) where b; < —by then
return infeasible
end if

end for

return unknown

that were used, directly or indirectly, to simplify those two constraints to
their final form.

The order in which the constraints are added is important. There are two
variants; Forward method where constraints are added in the order in which
they appear in the set of constraints, and backward where the constraints are
added in the reverse order. When an infeasibility has been detected by the
procedure, it is possible to continue adding constraints from the constraint
set, perhaps discovering more infeasible subsystems.

If a pair of constraints

z< b
—x<-b

is discovered, this can easily be recognized as a definition x = b.

6.7.3 An extension

A possible extension is the recognize that the constraints

alx< b
—atz<—b

correspond to the equality constraint a’x = b.

6.8 Preprocessing constraints

If every IIS can be detected during preprocessing, then the resulting propo-
sitional formula would be be a complete characterization of satisfiability of
the original formula. That is, the propositional formula would be satisfiable
if and only if the original formula is satisfiable. The SAT solver would then

45

not generate any spurious models, and it would not be necessary to switch
back and forth between Psat and Csat iteratively in algorithm 5.1. Finding
all 1ISs are however an expensive operation in the general case !. This is
done in [45], using the Omega test.

It is usually not necessary to find all IISs, however. By looking at the
IISs identified without preprocessing, we can see that a small subset of IISs
are sufficient, if the “right” IISs can be identified.

6.9 Using the incomplete procedure

The incomplete procedure can be used in three different ways:

e In offline integration in combination with an ILP solver. For every SAT
model, the generated constraints are first tested for infeasibility in the
incomplete procedure. If the procudre could not find an infeasibility,
the ILP solver is tried. The idea is that most constraint problems
are infeasible, and the infeasibilities are usually simple enough to be
detectable with the incomplete procedure.

e In online integration, instead of an ILP solver. The incomplete pro-
cedure is placed online in the SAT solver, and an ILP solver placed
offline.

e In preprocessing. Before the SAT solver starts, all constraints are
tested in the incomplete procedure. For all infeasibilities that are de-
tected, a clause preventing the SAT solver from generating a model
wich generates that specific subset of constraints is added to the for-
mula.

! NP-hard in LP, worse in ILP, I think. ILP itself is NP-complete, so we can’t verify
a solution in polynomial time. In LP that is possible, since LP is polynomial. I have not
found a proof for this, however.

46

Chapter 7

Analysis

7.1 Experimental setup

The tests were performed on a computer with a 1.8 GHz Pentium 4 processor
with 512 kB cache, and 512 MB RAM running Linux.

7.2 Test suite description

The test suite is comprised of a number of Lustre programs together with
properties on the programs. A test is one program/property pair. Since
many programs have several properties, the same program is used in several
tests. For programs which has more than one property, there is also a test
where the property is the conjunction of all properties on the program. The
test suite consists entirely of academic examples of Lustre programs. Several
are for instance models of cache coherence protocols [9].

The tests are chosen such that they can be verified with any tool, given
enough time. Those tests which can not be verified with one or more tools
have been eliminated.

The test suite consists of 72 tests of varying complexity. All tests are
fairly small, as can be seen in figure 7.1, which shows the number of integer
and boolean variables for the tests.

7.3 The tool Rantanplan

Most of the ideas in the previous chapters have been implemented in a tool
called Rantanplan [16]. The tool is based on Luke, and uses the Lustre parser
and induction code as is. The SAT solver have been changed to MiniSat [24].
There are two reasons for this; Partly because MiniSat seems to outperform
the old solver Satnik, but primarily because MiniSat is a well designed and
well documented solver with a ready-made interface for implementing the
necessary extensions. The integer programming package that is being used

47

30 \ \
25 - —

20~ X n

15

Integer

5 5% <]

0 | | | | | |
0 20 40 60 80 100 120
Boolean

Figure 7.1: The number of boolean and integer variables for the different tests.

is GLPK, a free mixed integer linear programming package distributed by
the GNU Project.

7.3.1 Formalizations

There are three formalizations “Per operator”, “Maximal” and “Guarded
maximal”. All three formalizations are implemented.

7.3.2 Offline integration

There are two decision procedure which can be used offline; GLPK and the
incomplete infeasibility detector, called Pooh [38]. Pooh comes in several
variants: It can work both forwards and backwards. The algorithm can
also be implemented to either only find one explanation of infeasibilities, or
several.

7.3.3 Online integration

In online integration, it is possible to use either GLPK, or forward, single
explanation Pooh or no procedure.

7.3.4 IIS filtering

A host of IS filtering algorithms have been implemented: Deletion, reverse
deletion, additive, reverse additive, additive/deletion, reverse additive/dele-
tion and elastic/deletion filtering.

48

7.3.5 Multiple IISs

The filtering algorithms above can either be used to find a single IIS, or
together with cluster filtering 2 to find a set of IISs.

7.3.6 Preprocessing of constraints

The constraints can be preprocessed before every step case, with either
GLPK or Pooh. The versions of Pooh that can be used are forward and
backward Pooh, both with multiple explanations.

Using the same in-place variable for all occurencies of a constraint is not
done in Rantanplan.

7.4 Test plan

Not every combination of parameters is tested, some of them are left fixed.
This is because the tests would take a inordinate amount of time with all
combinations of parameters. Instead method has been fixed to “Guarded
maximal”.

NBAC was run with the following flags: +eliminput --cudd "-maxmem
128" The memory limit for CUDD has been increased to 128 MBytes since
some examples exceeded the default limit. +eliminput is necessary because
some properties reason about the input signals in the current time point.

Luke represents integers a vectors of bits using propositional literals.
The size of these bit vector can be changed by the user, and for these tests,
Luke was run with the default of 16 bit integers. A modified version of Luke
version 0.4beta is used form comparison. The SAT solver has been changed
to MiniSat, for performance reasons.

7.5 Analysis

Before starting to analyse the different tools, the goal of the analysis should
be specified. The aim of the analysis is to answer these two questions:

e Is my tool competitive or complementary to Luke and NBAC?
e Which combinations of parameters gives good performance?
In order to answer this question, I will first look at my tool and try to find

one or more good combination(s) of the different ideas covered in the earlier
chapters. These combinations will then be compared to NBAC and Luke.

49

Parameter P value

Offline < 0.0001
Online < 0.0001
Filter < 0.0001

Multi 1S < 0.0001
Preprocess 0.0451

Table 7.1: Dependence of parameters. A P value < 0.05 indicates that the
parameter has an effect on performance.

Parameter Offline Online Filter ~Multi IS Preprocess
Offline < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.7533
Online < 0.0001 < 0.0001 < 0.0001 < 0.0001
Filter < 0.0001 < 0.0001 0.9986
Multi 1S < 0.0001 0.8425
Preprocess 0.0451

Table 7.2: Tests of interaction between pairs of parameters. A P value < 0.05
indicates that a pair of parameters interact

7.5.1 Dependence on parameters

The first interesting question is: Does the parameters have an effect on per-
formance in the test suite. In table 7.1 the probablilities that the parameters
have no effect are shown. Since these probabilities are all well below 0.05
for all but Preprocess, we can safely say that the settings on all of these
parameters matters to the performance on the test suite. For preprocessing
the case is weaker.

7.5.2 Interaction between parameters

The next question may be if there are any interactions between the param-
eters, or if they are independent. For independent parameters, it is simple
to find an optimal combination of parameters for the tool by optimizing
each parameter individually. In table 7.2 the probabilities that a pair of
variables do not interact are shown. We can see that there are no indepen-
dent parameters, even if not all pairs interact. To see just how complex
the interactions are, lets look at 3 term interactions. In figure 7.3, we can
see that most triples interact. The triples that do not interact all include
preprocessing. We can go further and test interaction between 4-tuples of
parameters. Included in the figure is the only interesting 4-tuple where we
have an interaction.

Since all parameters interact with at least one other parameter, find-

50

Parameters P value

Offline, Online, Filter < 0.0001
Offline, Online, Multi IIS < 0.0001
Offline, Online, Preprocess 0.9229
Offline, Filter, Multi IS < 0.0001
Offline, Filter, Preprocess 1.0000
Offline, Multi IIS, Preprocess 1.0000
Online, Filter, Multi IIS < 0.0001
Online, Filter, Preprocess 1.0000
Online, Multi 1IS, Preprocess 0.9930

Offline, Online, Filter, Multi IIS < 0.0001

Table 7.3: Tests of interaction between tuples of parameters. A P value < 0.05
indicates that those parameters interact

ing an optimal combination of values is not as simple as optimizing each
parameter in turn.

7.6 Identifying candidates

I have tested the different combinations of parameters against the hypothesis
that the medians of execution times of different parameters follow a normal
distribution. This is visualized with the Q-Q plot in figure 7.2. Each circle
in the plot is a certain combination of parameters. If the hypothesis was
true, the observations would follow a straight line across the plot. Those
combinations where this is not true deviates from this line. We can see
that there a two clusters which deviates; The ones in the lower left, which
are better than expected, and the ones in the upper right which are worse
than would be expected. The combinations of parameters which are better
than expected are the ones that are interesting. There are 126 different
combinations in the lower left cluster (where the median is lower than 0.3).

It is interesting to also look at the 90th percentile. The median is the
value where 50% of the examples have a shorter execution time and 50%
have a slower execution time. The 90th percentile is the point where 90%
of the examples have a shorter execution time and 10% a longer execution
time. By plotting the median and the 90th percentile against each other,
we can identify those combinations of parameters that are both fast on
average (using the median) and also fast in the worst case (using the 90th
precentile). The result is in figure 7.3. The plot has been truncated, and
only shows those combinations of parameters where the 90th percentile is
lower than 10 seconds. Three or four different clusters can be identified;
The combinations which are fast overall and on difficult examples, those

o1

0.9

o
oo
000

0.8

0.3

021 ‘ ‘ ‘ ‘

Normal Quantiles

Figure 7.2: Tests if the medians of execution times for different combinations of
parameters are follow a normal distribution.

median
0.91

0.81 : ¢ e 4.
0.71 “ N
0.61
0.51 °
0.4

0.3

0.2+ : : : : : : : :

perform * * * bad * * * good

Figure 7.3: Scatter plot of the median and the 90th percentile of different com-
binations of parameters.

52

Offline Online Filter Multi 1S Preprocess

GLPK Pooh {deletion,rdeletion} Yes *
Pooh,GLPK Pooh {deletion,rdeletion} Yes *
PoohM,GLPK Pooh {deletion,rdeletion} Yes *
RPooh,GLPK {None,Pooh} {deletion,rdeletion} Yes *

*

RPoohM,GLPK {None,Pooh} {deletion,rdeletion} Yes

Table 7.4: The “good” combinations of parameters. Pooh = forward Pooh,
PoohM = forward multiple Pooh, RPooh = reverse pooh, RPoohM = reverse mul-
tiple Pooh, rdeletion = reverse deletion, None = no procedure

which are fast overall but slow on difficult examples, and those which are
not fast overall. The fast combinations are indicated in the plot as crosses
and the others are drawn as dots. In the interesting cluster, there are 42
different combinations of parameters. Looking more closely at those reveals
an interesting pattern. The combinations are shown in table 7.4, and several
conclusions can be drawn from this.

e For online integration it seems that the integer programming package
GLPK is too expensive. The reason is that in online integration a
large number of feasible intermediary ILP problems have to be solved,
which when adding a few more constraints will usually either become
infeasible, or the SAT solver will detect a conflict and backtrack. This
problem seems to outweigh the benefit of detecting infeasible ILP prob-
lems “early”.

e Elastic filtering is worse than deletion filtering. This does not agree
with the literature on IIS filtering [20], where elastic filtering is claimed
to be superior. There are two reasons for this difference. In elastic
filtering, most of the (M)ILP problems that have to be solved are fea-
sible, and an optimal solution has to be found. In deletion filtering
on the other hand, most of the ILP problems are infeasible, and usu-
ally, the LP relaxation is also infeasible. These infeasibilities are much
cheaper to detect than finding the optimal solutions in elastic filter-
ing. This means that even if deletion filtering have to solve more ILP
problems to find an IIS, each problem is so much cheaper that deletion
filtering is still faster.

e For these specific combinations of parameters, it is worthwhile to locate
several IISs, rather than just one. Interestingly, the combinations
which give the worst performance also locates multiple IISs, but then
in combination with elastic filtering.

e It does not matter if preprocessing is performed or not. This is of
course only true for the specific preprocessing algorithms that have

53

Offline Online Filter Multi IS Preprocess

GLPK Pooh {deletion,rdeletion} Yes None
Pooh,GLPK Pooh {deletion,rdeletion} Yes None
PoohM,GLPK Pooh {deletion,rdeletion} Yes None
RPooh,GLPK {Pooh} {deletion} Yes None
RPoohM,GLPK {None,Pooh} {deletion,rdeletion} Yes None

Table 7.5: The selected combinations of parameters. Pooh = forward Pooh,
PoohM = forward multiple Pooh, RPooh = reverse pooh, RPoohM = reverse mul-
tiple Pooh, rdeletion = reverse deletion, None = no procedure

been tested here (forward and reverse Pooh, with multiple explana-
tions).

Of these 42 combinations the ones with the lowest median and a 90th
percentile below 1 is selected for comparisons with the other tools. There
are 11 such combinations, shown in table 7.5.

7.7 Comparisons with NBAC

One way of comparing a number of tools against each other is to look at
how many examples they can verify within a certain time. It is possible to
calculate the probability that a tool has verified an example as a function
of execution time. This is done in what is called survival analysis. The
idea is to calculate the probability that a certain tool is able to verify a
given example, as a function of execution time. In figure 7.4 these functions
have been plotted for NBAC and the 11 “good” combinations of parameters
which had the best median.

For most of the test suite, NBAC and my tool are more or less com-
parable, but there are some examples where NBAC is considerably slower.
In figure 7.5 all examples which takes more than 10 seconds in NBAC have
been removed. We can see that on some examples NBAC is faster and on
others Rantanplan is faster.

7.8 Comparison with Luke

Luke can be tested in the same way. The result is shown in figure 7.6. The
same conclusion as in the comprisons with NBAC applies here. There seems
to be a large subset of the test suite where the tools are comparable, and
a subset where Luke is very slow. The difference between the two is very
sharp. Either Luke is fast, or it is very slow. There does not seem to be
anything in between. If the examples which are difficult for Luke is removed

54

1.04

0.9 rr
0.8
0.7
0.6
0.5
0.4

0.31
0.2

Cumulative incidence of completion

0.1

0 10 20 30 40 50 60 70 80 90 100

Time(s)

Figure 7.4: Comparison with NBAC. The vertical axis shows the probability
that the tool has terminated on a given test as a function of time.

1.04
0.9
0.81
0.71
0.6
0.51
0.4
0.31
0.2

Cumulative incidence of completion

0.1

Figure 7.5: Comparison with NBAC on easy Lustre examples. The vertical axis
shows the probability that the tool is still executing as a function of time.

55

1.01
0.9

0381 ﬁ

0.71

0.6
0.51
0.4
0.3
0.2

Cumulative incidence of completion

0.11

0 10 20 30 40 50 60 70 80 9 100

Time(s)

Figure 7.6: Comparison with Luke. The vertical axis shows the probability that
the tool is still executing as a function of time.

1.0

0.9
0.8
0.7
0.6
0.51
0.4
0.31
0.2]

Cumulative incidence of completion

0.11

Figure 7.7: Comparison with Luke on easy Lustre examples. The vertical axis
shows the probability that the tool is still executing as a function of time.

56

Comparison Quotient

Rantanplan/Luke 0.68 [0.42, 1.07]
Rantanplan/NBAC 0.64 [0.41, 1.02]
NBAC/Luke 1.05 [0.66, 1.66]

Table 7.6: Comparison of Rantanplan and NBAC/Luke. The table shows the
quotient of the geometric mean of execution times with a 95% confidence interval.

as in figure 7.7, we can see that Rantanplan seems slightly better on the
remaining examples, but the difference is not very large.

In table 7.6, the percieved differences in the earlier plots are shown to
be too small to indicate any statistically significant difference between the
tools. The data used are the test which takes less than 10 seconds to prove
in any tool.

7.9 Explanation of the differences

The examples where NBAC and Luke have trouble all have one thing in
common: They use the sum of two or more variables in expressions. All
other examples only add or subtract to variables by a constant, usually by
1.

NBAC also have trouble with conjunctions of several properties.

7.10 Other examples

The examples which can not be verified with all (three) tools are not part of
the test suite, and this may bias the tests. The original test suite consisted
of 137 tests. The reasons for exclusion are listed here.

7.10.1 Invalid properties

NBAC does not have built-in support for discovering that a property is
invalid. A tool NBAC2LUCKY will soon be publicly available to interface
to the symbolic simulator Lucky [34] to aid in finding counter-examples.

Induction is complete for invalid properties, so both Luke and Rantan-
plan can find the shortest possible counter-example for an invalid property.
Luke outperforms Rantanplan on invalid properties with longer counter-
examples, as can be seen in figure 7.8. The test in the figure has counter-
examples ranging from 2 to 7 steps.

There are 13 invalid tests in the test suite.

57

T T T
X
C «]
100 £ E
E X 3
5§ [;
g 10§- X —
c c]
& x]
i3 E
01) vl vl il |||-
0.1 1 10 100
Luke

Figure 7.8: Comparison of execution times between Luke and Rantanplan on
invalid properties with increasingly long counter-examples

7.10.2 Bounded integers

Some examples needed unbounded integers. These examples could be veri-
fied in NBAC and my tool, but in Luke, they produced a counter-example.

node Counter() returns (OK : bool);
var C : int;

let
C=0—preC+1,;
OK=C>0;

tel

This example is verifiable in Rantanplan, but since Luke uses bounded in-
tegers the step cases will always fail, and eventually a counter-example will
be found where the stream C overflows.

There are 10 examples which require unbounded integers in the test
suite.

7.10.3 Limitations with GLPK

The integer programming package GLPK uses branch-and-bound and the
Simplex algoithm, which is an incomplete procedure. Because of this, there
are some Lustre programs which can not be verified in my tool. Below is an
example which can not be verified in Rantanplan because of this limitation

node Problem(What : int) returns (R1 : bool);

var Last4 : int;
let

58

Last4 = (0 — pre Last4 mod 1000 % 10) + What;

R1 = 0 < What and What < 9 = Last4 mod 10 = What;
tel

The property can easily be verified in Luke.
There are 5 test in the test suite where the constraint problems can not
be verified in GLPK.

7.10.4 Non-linear expressions

Since Rantanplan uses integer linear programming, Lustre programs with
non-linear expression can not be handled. There are no such examples in
the test suite.

7.10.5 Incompleteness of induction

There are some examples where there is an infinite path of valid non-
reachable states which lead to an invalid states. These examples can not
be verified in my tool.

There are 14 such examples in the test suite.

7.10.6 modulo not supported in NBAC

The modulo operator is not supported in NBAC. There are 5 test in the test
suite which uses the modulo operator.

7.10.7 Other problems

There are a few other problems where possible bugs which for reasons un-
known can not be verified. There is for instance somewhere in the Haskell
part of my tool a function where I and GHC does not agree on whether
or not it is tail-recursive. On other examples NBAC seems to think that
the problem is too large. The tool hits an internal limit on the size of the
problems it can handle, but changing the limit does not seem to have any
effect.
There are 18 such examples in the test suite.

59

60

Chapter 8

Related work

8.1 Verification of Lustre programs

There are several systems for verification of safety properties for Lustre
programs. Some of these are described here.

LESAR

LESAR is based on model-checking, and capable of verifying safety proper-
ties involving boolean streams. There is some support for integers, but it is
very weak, as can be seen in [33].

NBAC

NBAC is a model-checking tool based on abstract interpretation [35]. The
tool supports both bounded and unbounded integers as well as booleans.
Lustre programs can not consist exclusively of booleans however, this is
possibly just an oversight.

Luke

Luke! is a tool for inductive verification of safety properties, where the
decision procedure used is a SAT solver. It supports bounded integers by
translating these to vectors of literals (bit vectors).

Gloups

Gloups [17] is an automatic generator of proof obligations from Lustre to
PVS. The tool is not currently available.

!Available at the time of writing on http://www.cs.chalmers.se/Cs/Grundutb/
Kurser/form/luke.html

61

http://www.cs.chalmers.se/Cs/Grundutb/Kurser/form/luke.html
http://www.cs.chalmers.se/Cs/Grundutb/Kurser/form/luke.html

SCADE

SCADE is a commercial development environment from Esterel Technolo-
gies. The verification engine[l] uses a combination of Stalmarcks method,
DPLL style SAT solving, BDDs, linear programming and constraint solv-
ing. Exactly how is not entirely clear from the paper, but presumably in a
way similar to the approach taken here. The tool seems to support rational
numbers and booleans. For bounded ratioals, a bit vector representation is
chosen to make it complete with non-linear arithmetic.

8.2 Combining SAT solving with arithmetic

Several attempts have been made to combine propositinal logic with arith-
metic. The relevant ones are descibed here.

MathSat

MathSat [7, 15, 42] combines propositional logic with arithmetic over the
reals. The DPLL style SAT solver MiniSat [24] is combined with a hierarchy
of several increasingly powerful solvers. The idea is to be able to detect
infeasibilities with a cheap procedure, and avoid having to run expensive
complete procedures unless absolutely necessary.

TSATH+

TSAT++ combines SAT solving with difference constraints. These are con-
straints on the difference between two variables x —y < c. In the constraint
problems generated in Rantanplan, constraints will often have more than
two variables, and the efficient decision procedure for difference constraints
can not be used. The system uses preprocessing where all infeasible pairs of
constraints are detected. This is reported as useful on random formulas, but
the constraint problems generated in Rantanplan have a lot of structure.

ICS

ICS[23, 22] is a system which supports propositional logic extended with
rationals, integers, bit vectors, uniterpreted functions, non-linear arithmetic,
et.c. Both induction and bounded model chacking has been implemented
on top of ICS, but it does not take advantage of an incremental SAT solver
to increase efficiency.

62

HySat

The tool HySat [27, 12] uses a “pseudo-boolean” SAT solver? in combina-
tion with linear programming using GLPK for bounded model checking of
discrete-continuous systems. The tool has uses three optimizations; Isomor-
phy inference and a custom tailored variable ordering in the SAT solver.
Isomorphy inference means to detect subsets of constraints that are iso-
mophic to the IISs that have already been discovered. Two sets of clauses
are isomorphic if there is a substitution which makes them equal. All subsets
of constraints which are isomorphic to an infeasible subset are also infeasible.
A conflict clause for those subsets can be added to the SAT problem.

DPLL(T)

DPLL(T) [47] is a framework for integrating decision procedures into a SAT
solver. The framework has been used to build a decision procedure for
propositional logic extended with linear constraints. The distinguishing fea-
ture of DPLL(T) is the ability to propagate information from assignements
of in-place variables. If a set of generated constraints implies one of more
other constraints, then this information is propagated to the SAT solver.

8.3 Complete SAT characterization

In [45], a method of creating a complete SAT characterization of satisfiability
of formulas with integer constraints is descibed. The method uses the Omega
test [41]. The method is compared to ICS on a number of test suites with
favorable results. Strichman notes that the time it takes to solve the SAT
problem is very small compared to the time it takes to generate the SAT
characterization.

20-1 programming

63

64

Chapter 9

Conclusions and future work

In this chapter some conclusion are drawn from the analysis, and a list of
possible future work is outlined.

9.1

Conclusions

The result of the evaluation is this

The method of combining SAT solving an integer programming is com-
plementary to both the methods used in Luke and NBAC, at least for
valid properties. This is despite the fact that the implementation of
Rantanplan is not optimized in any way.

There seems to be plenty of room for improvement on the tool as imple-
mented here. Many of the suggestions in future work seems worthwhile
to study.

The tool is slower than Luke on larger induction depths and longer
counter-examples. This difference may disappear if the procedure is
improved, for instance with isomorphy inference (see 9.2.6).

There is a class of Lustre examples where both Luke and NBAC is slow,
but Rantanplan gives acceptable performance. This is not surprising,
since by crafting the examples in just the right way, any given tool can
show good performance. The examples in this case uses sums of two or
more variables. As long as all expressions are addition or subtraction
by a constant, the performance is comparable between the tools. An
effort have been made here to not create “to many” of these examples.
They have also been eliminated in the analysis in chapter 7.

Implementing the procedure on top of MiniSat [24] is simple and
straightforward. The SAT solver has a clear and easy to use interface
for plugging in decision procedures, as well as good documentation.

65

9.2 Future work

There is a large number of possible extension or improvements to the pro-
cedure described in the thesis.

9.2.1 Use a complete ILP procedure

Integer programming packages based on branch-and-bound or branch-and-
cut are not complete. There are complete methods based on Fourier-Motzkin
elimination [41, 11]. They can either replace or complement a procedure
based on branch-and-bound.

9.2.2 Support for more Lustre constructs

The Lustre language supported by the current tool is a fragment of Lustre.
Some of the things that may be interesting to add support for are these:

Reals

Lustre supports real values in addition to booleans and integers. Adding
support for reals would be relatively simple, since most integer programming
packages (GLPK included) support mixed integer programming. A mixed
integer programming (MILP) is a constraint problem where only a subset
of the variables are required to be integer. Implementing this would become
difficult in Luke, since floating point arithmetic is much more complicated
to handle on the bit level.

Foreign functions

It is possible to call foreign functions in Lustre. Support for these may be
added by simply modeling the result of a function call as a free variable.

Syntactic sugar

The is quite a bit of syntactic sugar that is not supported by Rantanplan.
Some of the unsupported constructs are

Datatypes

Constants

Vectors

e Recursive node definitions

Adding these would not pose any new problems, because of what they are;
Syntactic sugar.

66

l In l Int1 l Intk

Sn—1 Sn Sn+1 Sn+k

l Rn l Rni1 l Ry

Figure 9.1: A sequence of transition functions

9.2.3 Incremental ILP

Placing an integer programming package online inside the SAT solver can be
very expensive, since it has to solve a large number of intermediary feasible
constraint problems. The only difference from one call of the package to
the next is that one constraint have been added. An incremental version
of such a package that takes advantage of having solved a nearly identical
constraint problem before may reduce execution time.

9.2.4 Backwards instantiation

In Rantanplan, the fact that MiniSat is an incremental SAT solver is used to
solve the increasingly larger SAT formulas required for the induction proofs.
Transition functions are added one at a time, one every time the induction
depth is increased. The transition functions that were used for the previous
base case are kept, and the new transition function is placed “after” the
last transition function. In figure 9.1 a new transition function would be
added with input I,,4 541 computing the output R, 4+r+1, and the new state
Sntk+1-

The idea is to add the new transition function “first”, and let the transi-
tion which now has outputs R,, ;1 be used to computed R, x11 and the state
instead S;,+x+1. When using an incremental SAT solver is it better to place
it before the first instance instead. It would be worthwhile to investigate if
that is true here as well.

9.2.5 Heuristics for faster IIS discovery

Many of the IISs that are discovered in offline integration are similar, or
related to each other. It should be possible to take advantage of that in a
heauristic which quickly identifies candidate members of an IIS in infeasible
constraint problems.

67

9.2.6 Isomorphy inference

When a new transition function is added, the new constraints will contain
subsets which are isomorphic to IISs which have already been identified.
These subsets are also infeasible, and locating these is called isomorphy
inference [27].

9.2.7 Complete SAT characterization

If during the preprocessing stage all IISs of the set of constraints can be
discovered, then the SAT problem becomes a complete characterization of
satisfiability for the original formula. This means that the propositional
formula would be satisfiable if and only if the original formula is satisfiable.

Now it would not be necessary to integrate the ILP package with the
SAT solver at all. Instead the SAT solver solves the propositional formula,
and if the formula is satisfiable, there exists a model for the original formula.
This can be found by solving the constraint problem generated from the SAT
model. If the propositional formula is unsatisfiable, the original formula is
also unsatisfiable.

Finding every IIS in the constraint set is an expensive operation. In
linear programming it is an NP-complete problem. In integer programming
it it worse. Integer programming itself is NP-complete, so there is no poly-
nomial algorithm for verifying a solution.

It is probably not necessary to find every IIS, however. The structure of
the formula will most likely prevent some IIS from being asserted in a SAT
model. Because of this, there may be a method of finding enough of the IIS
such that this search pays off in reduced execution time.

9.2.8 Improved incomplete procedure

In MathSAT, a hierarchy of increasingly powerful solvers are used [42]. In
Rantanplan, only two solvers are used (Pooh, the incomplete infeasibility
detector and the integer programming package GLPK). A similar idea can
of course be used here.

9.2.9 Automatic strengthening of properties

It would be possible to automatically strengthen properties by discovering
invariants in the Lustre code. This may reduce the induction dpeth required
to prove a property, or even strengthen some properties that are otherwise
impossible to verify with induction enough to make them provable.

68

Bibliography

1]

P. A. Abdulla, J. Deneux, G. Stalmark, H. Agren, and O. Akerlund.
Designing Safe, Reliable Systems using Scade. In Proc. ISoLA °04: 1st
International Symposium on Leveraging Applications of Formal Meth-
ods, 2004.

C. Aggarwal, R. K. Ahuja, J. Hao, and J. B. Orlin. Diagnosing infeasi-
bilities in network flow problems. Mathematical Programming, 81:263—
280, 1998.

E. Amaldi, M. E. Pfetsch, and L. E. Trotter Jr. On the maximum
feasible subsystem problem, IISs and IIS-hypergraphs. Mathematical
Programming, 95:533-554, 2003.

A. Armando, C. Castellini, and E. Giunchiglia. SAT-based Procedures
for Temporal Reasoning. In Proceedings of ECP-99, 1999.

A. Armando, C. Castellini, E. Giunchiglia, M. Idini, and M. Maratea.
TSAT++: An Open Reasoning Platform for Satisfiability Modulo The-
ories. In Proceedings of PDPAR, 2004.

A. Armando, C. Castellini, E. Giunchiglia, and M. Maratea. A SAT-
based Decision Procedure for the Boolean Combination of Difference
Constraints. In Accepted to SAT 2004, 2004.

G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, and R. Sebas-
tiani. A SAT Based Approach for Solving Formulas over Boolean and
Linear Mathematical Propositions. In Lecture Notes in Computer Sci-
ence, volume 2392, page 193. Springer Verlag, 2002.

G. Audemard, M. Bozzano, R. Sebastiani, and A. Cimatti. Verify-
ing Industrial Hybrid Systems with MathSAT. In FElectronic Notes in
Computer Science, volume 89, 2004.

Automatic Verification of Parameterized Cache Coherence Protocols.
Giorgio delzanno. In Proccedings of CAV 2000, 2000.

U. Banerjee. Loop Transformations for Restructuring Compilers: The
Foundations. Kluwer Academic Publishers, 1993.

69

[11]
[12]

U. Banerjee. Dependence Analysis. Kluwer Academic Publishers, 1996.

B. Becker, M. Behle, F. Eisenbrand, M. Franzle, M. Herbstritt,
C. Herde, J. Hoffmann, D. Kroning, B. Nebel, I. Polian, and R. Wim-
mer. Bounded Model Checking and Inductive Verification of Hybrid
Discrete-continuous Systems. In Proceedings GI/ITG/GMM-Workshop
Methoden und Beschreibungssprachen zur Modellierung und Verifika-
tion von Schaltungen und Systemen, pages 65—75, Kaiserslautern, Ger-
many, February 2004.

A. Bemporad and M. Morari. Verification of Hybrid Systems via Math-
ematical Programming. In Lecture Notes in Computer Science, 1569.

P. Bjesse and K. Claessen. SAT-based Verification without State Space
Traversal. In Proceedings of FMCAD 2000, 2000.

M. Bozzano, A. Cimatti, G. Colombini, V. Kirov, and R. Sebastiani.
The MathSAT Solver — a progress report. In Proceedings of PDPAR
2004, Cork, Ireland, July 2004.

M. D. Bévere. Sur la piste des Dalton. Dargaud Lucky Productions,
1960.

C. D. Canovas and P. Caspi. A PVS Proof Obligation Generator for
Lustre Programs. In Lecture Notes in Artificial Intelligence, volume
1955, 2000.

W. Chan, R. Anderson, P. Beame, and D. Notkin. Combining Con-
straint Solving and Symbolic Model Checking for a Class of Systems
with Non-linear Constraints. In Proceedings of CAV, 1997.

J. W. Chinneck. Finding a Useful Subset of Constraints for Analysis
in an Infeasible Linear Program. INFORMS Journal on Computing,
9(2):164-174, 1997.

J. W. Chinneck and E. W. Dravnieks. Locating Minimal Infeasible
Constraint Sets in Linear Programs. ORSA Journal on Computing,
3(2):157-168, 1991.

L. de Moura and H. Ruef}. Lemmas on Demand for Satisfability Solvers.
In Proceedings of SAT 2002, 2002.

L. de Moura, H. Ruef}, and M. Sorea. Lazy Theorem Proving for
Bounded Model Checking over Infinite Domains. In Lecture Notes in
Computer Science, volume 2392, pages 438-455, 2002.

L. de Moura, H. Ruef, and M. Sorea. Bounded Model Checking and In-
duction: From Refutation to Verification. In Proceedings of Computer-
Aided Verification, 2003.

70

[24]

[25]

N. Eén and N. Soérensson. An extensible SAT solver. In Proceedings of
the 6th International Conference on Theory and Applications of Satis-
fiability Testing, 2003.

N. Eén and N. Sorensson. Temporal Induction by Incremental SAT
Solving. In Proceedings of the First International Workshop on Bounded
Model Checking, 2003.

M. Ernst, T. Millstein, and D. S. Weld. Automatic SAT-Compilation
of Planning Problems. In Proceedings of IJCAI 1997.

M. Franzle and C. Herde. Efficient Proof Engines for Bounded Model
Checking of Hybrid Systems. In Proceedings of FMICS’04, 2004.

H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
DPLL(T): Fast Decision Procedures. In 16th International Conference
on Computer Aided Verification (CAV), Boston (USA), July 2004.

O. Guieu and J. W. Chinneck. Analyzing Infeasible Mixed-Integer and
Integer Linear Programs. INFORMS Journal on Computing, 11(1):63—
77, 1999.

S. Gulwani and G. C. Necula. A Randomized Satisfiability Procedure
for Arithmetic and Uninterpreted Function Symbols. In Proceedings of
CADE, 2003.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
dataflow programming language Lustre. Proceedings of the IEEE,
79(9):1305-1320, September 1991.

N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-
time systems using linear relation analysis. Formal Methods in System
Design, 11(2):157-185, August 1997.

N. Halbwachs and P. Raymond. A Tutorial of Lustre. 2002.

E. Jahier and P. Raymond. The Lucky language Reference Manual.
Technical Report TR-2004-6, Verimag.

B. Jeannet. Dynamic Partitioning in Linear Relation Analysis. Appli-
cation to the Verification of Synchronous Programs. Formal Methods
in System Design, 23(1):5-37, 2003.

M. Ljung. Formal modelling and automatic verification of lustre pro-

grams using NP-Tools. Master’s thesis, Royal Institute of Technology,
1999.

71

[37]

[41]

[42]

[44]

[45]

[46]

J. Mikac and P. Caspi. How many times should a program be un-
folded for proving invariant properties? Technical Report TR-2004-9,
Verimag, 2004.

A. A. Milne. Winnie the Pooh. Dutton and Company, 1926.

G. Nelson and D. C. Oppen. Simplification by Cooperating Decision
Procedures. ACM Transactions on Programming Languages and Sys-
tems, 1(2):245-257, 1979.

M. R. Parker. A Set Covering Approach to Infeasibility Analysis of Lin-
ear Programming Problems and Related Issues. PhD thesis, University
of Colorado at Denver, 1995.

W. Pugh. The Omega test: a fast and practical integer program-
ming algorithm for dependence analysis. Communications of the ACM,
35(8):102-114, August 1992.

R. Sebastiani. Integrating SAT Solvers with Math Reasoners: Foun-
dations and Basic Algorithms. Technical Report 0111-22, ITC-IRST,
November 2001.

S. A. Seshia, S. K. Lahiri, and R. E. Bryant. A Hybrid SAT-Based
Decision Procedure for Separation Logic with Uninterpreted Functions.
In 40th Design Automation Conference, pages 425-430, 2003.

M. Sheeran, S. Singh, and G. Stalmarck. Checking safety properties us-
ing induction and a SAT-solver. In Lecture Notes in Computer Science,
volume 1954. Springer Verlag, 2000.

O. Strichman. On Solving Presburger and Linear Arithmetic with SAT.
In Proceedings of Formal Methods in Computer-Aided Design, 2002.

O. Strichman, S. A. Seshia, and R. E. Bryant. Deciding Separation
Formulas with SAT. In Lecture Notes in Computer Science, volume
2404, pages 209-222. Springer Verlag, 2002.

C. Tinelli. A DPLL-based Calculus for Ground Satisfiability Modulo
Theories. In Lecture Notes in Artificial Intelligence, volume 2424, 2002.

S. A. Wolfman and D. S. Weld. The LPSAT Engine & Its Application
to Resource Planning. In IJCAI pages 310-317, 1999.

L. A. Wolsey. Integer Programming. Wiley, 1998.

L. Zhang and S. Malik. The Quest for Efficient Boolean Satisfiablility
Solvers. In Lecture Notes in Computer Science, volume 2404, pages
17-36. Springer Verlag, 2002.

72

	Introduction
	Formal verification
	Translation to the logic
	The decision procedure

	Outline of the thesis
	Aim of the thesis
	Acknowledgements

	Background
	Lustre
	Local streams
	Booleans and if-then-else
	Node instantiation

	Propositional logic
	Integer linear programming
	Temporal induction
	Completeness

	Turing-completeness of Lustre

	Formal language
	Language definition
	Semantics
	Restrictions
	Standard constraints
	Guarded constraints

	Translation from Lustre to L-formulas
	Per operator instantiation
	Formalities
	An example

	Maximal instantiation
	Formalities

	Guarded maximal instantiation
	Formalities
	An example

	The decision procedure for L-formulas
	Offline integration
	Standard constraints
	Guarded constraints
	Soundness and completeness

	Creating explanations of infeasible systems
	A small example
	Preprocessing constraints
	Online integration
	Basic algorithm
	Making inferences

	Combining online and offline integration

	Analysing infeasible integer programming problems
	Infeasible irreducible system
	Deletion filtering
	Additive filtering
	Elastic filtering
	Discussion
	Finding more than one IIS
	An incomplete infeasibility detector for ILP
	Preliminaries
	The algorithm
	An extension

	Preprocessing constraints
	Using the incomplete procedure

	Analysis
	Experimental setup
	Test suite description
	The tool Rantanplan
	Formalizations
	Offline integration
	Online integration
	IIS filtering
	Multiple IISs
	Preprocessing of constraints

	Test plan
	Analysis
	Dependence on parameters
	Interaction between parameters

	Identifying candidates
	Comparisons with NBAC
	Comparison with Luke
	Explanation of the differences
	Other examples
	Invalid properties
	Bounded integers
	Limitations with GLPK
	Non-linear expressions
	Incompleteness of induction
	modulo not supported in NBAC
	Other problems

	Related work
	Verification of Lustre programs
	Combining SAT solving with arithmetic
	Complete SAT characterization

	Conclusions and future work
	Conclusions
	Future work
	Use a complete ILP procedure
	Support for more Lustre constructs
	Incremental ILP
	Backwards instantiation
	Heuristics for faster IIS discovery
	Isomorphy inference
	Complete SAT characterization
	Improved incomplete procedure
	Automatic strengthening of properties

