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The Lustre programming language
Temporal induction
SAT

Lustre

node Counter ( X : bool ) returns ( C : int );
var PC : int;

let
PC = 0→ pre C;
C = if X then PC + 1 else PC;

tel

node Prop( X : bool ) returns ( OK : bool );
let

OK = Counter( X ) ≥ 0;
tel
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Verification by induction

Prove property valid in
initial time point
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Induction incomplete for unbounded integers

Lustre with unbounded integers Turing-complete
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Propositional logic

Example

{p, q}

Short introduction

A clause is a set of literals. At
least one literal must be true.

A formula is a set of clauses.
All clauses must be true.
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Example

{p, q}
{p,¬q, r}
{¬q,¬r}

Short introduction

A clause is a set of literals. At
least one literal must be true.

A formula is a set of clauses.
All clauses must be true.
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SAT solving

Example

{p, q}
{p,¬q, r}
{¬q,¬r}

Search for a satisfying variable
assignment

Choose a variable, and assign
at value to it

Infer consequences

Repeat until all variables
assigned, or a conflict found
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Search for a satisfying variable
assignment

Choose a variable, and assign
at value to it

Infer consequences

Repeat until all variables
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A small example

The formula in CNF A simple counter

node Counter() returns ( OK : bool );
var C : int;

let
C = 0→ pre C + 1;
OK = C ≥ 0;

tel

Translate to logic

Assume property invalid

Is there a variable assignment
satisfying the formula?
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The basic algorithm

The formula in CNF

{ C1 ≤ 0 }
{ C1 ≥ 0 }
{ ¬OK1, C1 ≥ 0 }
{ OK1, C1 ≤ −1 }
{ ¬OK1}

Step 1: Create in-place variables

Create a fresh propositional variable for
each constraint

p1 7→ C1 ≤ 0
p2 7→ C1 ≥ 0
p3 7→ C1 ≥ 0
p4 7→ C1 ≤ −1

And replace all constraints with their
in-place variable.
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p4 =>
OK1=⊥
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the in-place variables.
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{ p1 }
{ p2 }
{ ¬OK1, p3 }
{ OK1, p4 }
{ ¬OK1}

p1 7→ C1 ≤ 0
p2 7→ C1 ≥ 0
p3 7→ C1 ≥ 0
p4 7→ C1 ≤ −1

Step 3: Solve constraint problem

Run constraint problem trough ILP solver

(1) C1 ≤ 0
(2) C1 ≥ 0
(3) C1 < 0
(4) C1 ≤ −1

Constraint 2 and 4 contradict each other.
Add explanation to SAT problem. Goto
step 2.
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The algorithm

ϕ is a propositional + constraints formula

loop
Ip ← Psat(ϕ)
if Ip = ∅ then

return unsatisfiable
else

C ← generate(ϕ, Ip)
if Csat(C) then

return satisfiable
else

ϕ← ϕ ∪ explain(C)
end if

end if
end loop
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Other ideas

Check partial SAT models
Everytime the SAT solver assigns an in-place variable,
check the constraint problem generated by the set of
assigned in-place variables.

Several methods of creating explanations
Several algorithms exist. Finding multiple explanations.

Preprocessing
Find contradictions in the set of constraints before the
decision procedure starts.

Faster (incomplete) integer programming procedure
Use a cheap procedure that can find the most commonly
occuring contradictions in constraint problems.
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Rantanplan

Implements all ideas outlined here

Based on Luke

SAT solver changed to MiniSat

Integer programming package GLPK
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Test plan

Aim

What combinations of ideas work well?

How do these ideas compare to Luke and NBAC?

Find “good” combinations of ideas

Compare these to Luke & NBAC
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Test plan
Comparison with Luke

Test suite

Every test should be verifyable by every tool in the tests.

The test suite consists of 137 tests.

Some of these are invalid properties. Can not be verified in
NBAC.

Some have too weak properties. Can not be verified in
Rantanplan.

Some used unbounded integers. Can not be verified in
Luke.

Some uses modulo. Can not be verified in NBAC.

Some generates constraint problems where
branch-and-bound does not terminate. Can not be verified
in Rantanplan.

We are left with 72 tests.
Anders Franzén Combining SAT and ILP
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Comparisons

Tests of the 11 best variants against Luke and NBAC
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Comparison with Luke

Tests with execution time > 10s in Luke removed
(58 remaining)
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Summary

Rantanplan competitive on the test suite used here

The branch-and-bound algorithm is incomplete

For longer induction depth (e.g. invalid properties w. long
counter-examples), Luke outperforms Rantanplan

Outlook
Complete integer programming procedure
Improvements for larger induction depths
Invariant strengthening

Anders Franzén Combining SAT and ILP
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