Combining SAT solving with Integer Programming for Inductive Verification of Lustre Programs

3rd December 2004

Anders Franzén Combining SAT and ILP

イロン 不得 とくほ とくほ とう

Outline

Introduction

- The Lustre programming language
- Temporal induction
- Propositional logic
- Verification
 - The decision procedure (SAT + Integer Programming)
 - Variants of the basic algorithm
- 3 Analysis
 - Test plan
 - Comparison with Luke

ヘロト ヘ戸ト ヘヨト ヘヨト

Outline

Introduction

- The Lustre programming language
- Temporal induction
- Propositional logic
- 2

Verification

- The decision procedure (SAT + Integer Programming)
- Variants of the basic algorithm

3 Analysis

- Test plan
- Comparison with Luke

ヘロト ヘアト ヘビト ヘビト

Outline

Introduction

- The Lustre programming language
- Temporal induction
- Propositional logic
- 2

Verification

- The decision procedure (SAT + Integer Programming)
- Variants of the basic algorithm

3 Analysis

- Test plan
- Comparison with Luke

・ロト ・回 ト ・ ヨト ・ ヨトー

The Lustre programming language Temporal induction SAT

Lustre

```
node Counter (X : bool) returns (C : int);
    var PC : int;
let
    PC = 0 \rightarrow pre C;
    C = if X then PC + 1 else PC;
tel
node Prop(X : bool) returns (OK : bool);
let
    OK = Counter(X) > 0;
tel
```

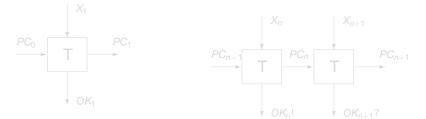
The Lustre programming language Temporal induction SAT

Verification by induction

• Prove property valid in initial time point

 Assume property valid at time n, prove property valid at time n+1

・ロン ・ 一 と ・ 日 と ・ 日 と



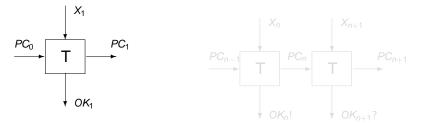
- Induction incomplete for unbounded integers
- Lustre with unbounded integers Turing-complete

The Lustre programming language Temporal induction SAT

Verification by induction

 Prove property valid in initial time point Assume property valid at time n, prove property valid at time n+1

イロト イポト イヨト イヨト



• Induction incomplete for unbounded integers

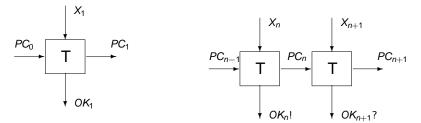
• Lustre with unbounded integers Turing-complete

The Lustre programming language Temporal induction SAT

Verification by induction

 Prove property valid in initial time point Assume property valid at time n, prove property valid at time n+1

< 🗇 🕨



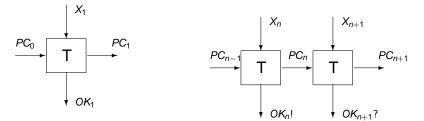
• Induction incomplete for unbounded integers

• Lustre with unbounded integers Turing-complete

The Lustre programming language Temporal induction SAT

Verification by induction

 Prove property valid in initial time point Assume property valid at time n, prove property valid at time n+1



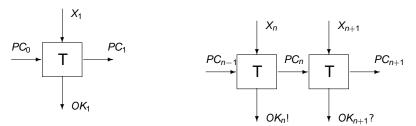
Induction incomplete for unbounded integers

• Lustre with unbounded integers Turing-complete

The Lustre programming language Temporal induction SAT

Verification by induction

 Prove property valid in initial time point Assume property valid at time n, prove property valid at time n+1



- Induction incomplete for unbounded integers
- Lustre with unbounded integers Turing-complete

Verification Analysis Summary The Lustre programming language Temporal induction SAT

Propositional logic

Short introduction

- A clause is a set of literals. At least one literal must be true.
- A formula is a set of clauses. All clauses must be true.

ヘロア ヘビア ヘビア・

Verification Analysis Summarv The Lustre programming language Temporal induction SAT

Propositional logic

Example

$$egin{aligned} \{m{p},m{q}\}\ \{m{p},
egned,m{r}\}\ \{m{p},
egned,m{r}\}\ \{
egned,
egned,m{r}\}\ \end{pmatrix}$$

Short introduction

- A clause is a set of literals. At least one literal must be true.
- A formula is a set of clauses. All clauses must be true.

ヘロア ヘビア ヘビア・

Verification Analysis Summarv The Lustre programming language Temporal induction SAT

SAT solving

Example

$$\{p, q\}$$
$$\{p, \neg q, r\}$$
$$\{\neg q, \neg r\}$$

Search for a satisfying variable assignment

- Choose a variable, and assign at value to it
- Infer consequences
- Repeat until all variables assigned, or a *conflict* found

ヘロン ヘアン ヘビン ヘビン

Verification Analysis Summarv The Lustre programming language Temporal induction SAT

SAT solving

Example

$$\{\mathbf{p}, q\}$$

 $\{\mathbf{p}, \neg q, r$
 $\{\neg q, \neg r\}$

$$p = \perp$$

Search for a satisfying variable assignment

- Choose a variable, and assign at value to it
- Infer consequences
- Repeat until all variables assigned, or a *conflict* found

ヘロア ヘビア ヘビア・

Verification Analysis Summarv The Lustre programming language Temporal induction SAT

SAT solving

Example

{**p**, *q*}
{**p**,
$$\neg q$$
, *r*
{ $\neg q$, $\neg r$ }

$$p = \perp$$

Search for a satisfying variable assignment

- Choose a variable, and assign at value to it
- Infer consequences
- Repeat until all variables assigned, or a *conflict* found

ヘロア ヘビア ヘビア・

Verification Analysis Summarv SAT

SAT solving

Example

{p,q}
{p,¬q,
$$r$$

{¬q, ¬ r }

Search for a satisfying variable assignment

- Choose a variable, and assign at value to it
- Infer consequences
- Repeat until all variables assigned, or a conflict found

・ロン ・ 一 と ・ 日 と ・ 日 と

Verification Analysis Summarv The Lustre programming language Temporal induction SAT

SAT solving

Example

$$p = \perp$$

$$=$$
 \top and \perp ??

Search for a satisfying variable assignment

- Choose a variable, and assign at value to it
- Infer consequences
- Repeat until all variables assigned, or a *conflict* found

ヘロア ヘビア ヘビア・

Verification Analysis Summary The Lustre programming language Temporal induction SAT

SAT solving

Example

$$\{p, q\} \\ \{p, \neg q, r\} \\ \{\neg q, \neg r\} \\ p = \bot \\ q = \top \\ r = \top \text{ and } \bot?$$

Search for a satisfying variable assignment

Analyze reason for conflict

イロン 不得 とくほ とくほう 一座

- Add conflict clause
- Backtrack and continue

Verification Analysis Summary The Lustre programming language Temporal induction SAT

SAT solving

Example

$$\{p, q\} \\ \{p, \neg q, r\} \\ \{\neg q, \neg r\} \\ p = \bot \\ q = \top \\ r = \top \text{ and } \bot?$$

Search for a satisfying variable assignment

Analyze reason for conflict

イロン 不得 とくほ とくほう 一座

- Add conflict clause
- Backtrack and continue

Verification Analysis Summary The Lustre programming language Temporal induction SAT

SAT solving

Example

$$\{p,q\} \\ \{p,\neg q,r\} \\ \{\neg q,\neg r\} \\ \{p\}$$

$$p = \perp$$

 $q = \top$
 $r = \top$ and \perp ??

Search for a satisfying variable assignment

Analyze reason for conflict

イロン 不得 とくほ とくほう 一座

- Add conflict clause
- Backtrack and continue

Verification Analysis Summary The Lustre programming language Temporal induction SAT

SAT solving

Example

$$\{p, q\}$$

 $\{p, \neg q, r\}$
 $\{\neg q, \neg r\}$
 $\{p\}$

Search for a satisfying variable assignment

Analyze reason for conflict

- Add conflict clause
- Backtrack and continue

Verification Analysis Summary The Lustre programming language Temporal induction SAT

SAT solving

Example

$${{\bf p}, q} {{\bf p}, \neg q, r} {{\bf n}, \neg q, r} {{\bf n}, \neg r} {{\bf n}, \neg r} {{\bf p}}$$

$$p = \top$$

Search for a satisfying variable assignment

Analyze reason for conflict

- Add conflict clause
- Backtrack and continue

Verification Analysis Summary The Lustre programming language Temporal induction SAT

SAT solving

Example

{p,q}
{p,
$$\neg$$
q, r
{ \neg q, \neg r}
{p}

Search for a satisfying variable assignment

Analyze reason for conflict

・ロト ・ 同ト ・ ヨト ・ ヨト - 三日

- Add conflict clause
- Backtrack and continue

Verification Analysis Summary The Lustre programming language Temporal induction SAT

SAT solving

Example

Search for a satisfying variable assignment

Analyze reason for conflict

- Add conflict clause
- Backtrack and continue

The decision procedure (SAT + Integer Programming) Variants of the basic algorithm

A small example

The formula in CNF

A simple counter

node Counter() returns (OK : bool); var C : int; let

```
\label{eq:constraint} \begin{array}{l} C=0 \rightarrow \mbox{pre } C+1;\\ OK=C\geq 0;\\ \mbox{tel} \end{array}
```

• Translate to logic

- Assume property invalid
- Is there a variable assignment satisfying the formula?

The decision procedure (SAT + Integer Programming) Variants of the basic algorithm

A small example

The formula in CNF

 $\left\{ \begin{array}{l} C_1 \leq 0 \end{array} \right\} \\ \left\{ \begin{array}{l} C_1 \geq 0 \end{array} \right\} \\ \left\{ \begin{array}{l} \neg OK_1, \ C_1 \geq 0 \end{array} \right\} \\ \left\{ \begin{array}{l} OK_1, \ C_1 \leq -1 \end{array} \right\} \end{array}$

A simple counter

node Counter() returns (OK : bool);
 var C : int;
let

$$\label{eq:constraint} \begin{array}{l} \mathsf{C} = \mathbf{0} \rightarrow \textbf{pre} \; \mathsf{C} + \mathbf{1}; \\ \mathsf{OK} = \mathsf{C} \geq \mathbf{0}; \end{array}$$

tel

Translate to logic

- Assume property invalid
- Is there a variable assignment satisfying the formula?

The decision procedure (SAT + Integer Programming) Variants of the basic algorithm

A small example

The formula in CNF

 $\left\{ \begin{array}{l} C_1 \leq 0 \end{array} \right\} \\ \left\{ \begin{array}{l} C_1 \geq 0 \end{array} \right\} \\ \left\{ \begin{array}{l} \neg OK_1, \ C_1 \geq 0 \end{array} \right\} \\ \left\{ \begin{array}{l} OK_1, \ C_1 \leq -1 \end{array} \right\} \\ \left\{ \begin{array}{l} \neg OK_1 \end{array} \right\} \end{array}$

A simple counter

node Counter() returns (OK : bool);
 var C : int;
let

let

```
C = 0 \rightarrow pre C + 1;
OK = C \geq 0;
```

tel

- Translate to logic
- Assume property invalid
- Is there a variable assignment satisfying the formula?

The decision procedure (SAT + Integer Programming) Variants of the basic algorithm

A small example

The formula in CNF

 $\left\{ \begin{array}{l} C_1 \leq 0 \end{array} \right\} \\ \left\{ \begin{array}{l} C_1 \geq 0 \end{array} \right\} \\ \left\{ \begin{array}{l} \neg OK_1, \ C_1 \geq 0 \end{array} \right\} \\ \left\{ \begin{array}{l} OK_1, \ C_1 \leq -1 \end{array} \right\} \\ \left\{ \begin{array}{l} \neg OK_1 \end{array} \right\} \end{array}$

A simple counter

node Counter() returns (OK : bool); var C : int;

let

```
C = 0 \rightarrow pre C + 1;
OK = C \geq 0;
```

tel

- Translate to logic
- Assume property invalid
- Is there a variable assignment satisfying the formula?

The decision procedure (SAT + Integer Programming) Variants of the basic algorithm

The basic algorithm

The formula in CNF

$$\left\{ \begin{array}{l} C_1 \leq 0 \\ \left\{ \begin{array}{l} C_1 \geq 0 \end{array} \right\} \\ \left\{ \begin{array}{l} \neg OK_1, \ C_1 \geq 0 \end{array} \right\} \\ \left\{ \begin{array}{l} OK_1, \ C_1 \leq -1 \end{array} \right\} \\ \left\{ \begin{array}{l} \neg OK_1 \end{array} \right\} \end{array}$$

Step 1: Create in-place variables

Create a fresh propositional variable for each constraint

 $p_1 \mapsto C_1 \leq 0$ $p_2 \mapsto C_1 \geq 0$ $p_3 \mapsto C_1 \geq 0$ $p_4 \mapsto C_1 \leq -1$

And replace all constraints with their in-place variable.

イロン 不良 とくほう 不良 とうほ

The decision procedure (SAT + Integer Programming) Variants of the basic algorithm

The basic algorithm

The formula in CNF

$$\left\{ \begin{array}{l} C_1 \leq 0 \end{array} \right\} \\ \left\{ \begin{array}{l} C_1 \geq 0 \end{array} \right\} \\ \left\{ \begin{array}{l} \neg OK_1, \ C_1 \geq 0 \end{array} \right\} \\ \left\{ \begin{array}{l} OK_1, \ C_1 \leq -1 \end{array} \right\} \\ \left\{ \begin{array}{l} \neg OK_1 \end{array} \right\} \end{array}$$

Step 1: Create in-place variables

Create a fresh propositional variable for each constraint

$$p_1 \mapsto C_1 \leq 0$$

 $p_2 \mapsto C_1 \geq 0$
 $p_3 \mapsto C_1 \geq 0$
 $p_4 \mapsto C_1 \leq -1$

And replace all constraints with their in-place variable.

ヘロト ヘアト ヘビト ヘビト

The decision procedure (SAT + Integer Programming) Variants of the basic algorithm

The basic algorithm

The formula in CNF

$$\left\{ \begin{array}{l} C_1 \leq 0 \end{array} \right\} \\ \left\{ \begin{array}{l} C_1 \geq 0 \end{array} \right\} \\ \left\{ \begin{array}{l} \neg OK_1, \ C_1 \geq 0 \end{array} \right\} \\ \left\{ \begin{array}{l} OK_1, \ C_1 \leq -1 \end{array} \right\} \\ \left\{ \begin{array}{l} \neg OK_1 \end{array} \right\} \end{array}$$

Step 1: Create in-place variables

Create a fresh propositional variable for each constraint

$$p_1 \mapsto C_1 \leq 0$$

 $p_2 \mapsto C_1 \geq 0$
 $p_3 \mapsto C_1 \geq 0$
 $p_4 \mapsto C_1 \leq -1$

ヘロト ヘアト ヘビト ヘビト

2

And replace all constraints with their in-place variable.

The decision procedure (SAT + Integer Programming) Variants of the basic algorithm

The basic algorithm

The formula in CNF

$p_1\mapsto C_1\leq 1\ p_2\mapsto C_1\geq 0\ p_3\mapsto C_1\geq 0\ p_4\mapsto C_1\leq -1$

Step 1: Create in-place variables

Create a fresh propositional variable for each constraint

$$egin{aligned} p_1 &\mapsto C_1 \leq 0 \ p_2 &\mapsto C_1 \geq 0 \ p_3 &\mapsto C_1 \geq 0 \ p_4 &\mapsto C_1 \leq -1 \end{aligned}$$

<ロ> (四) (四) (三) (三) (三)

And replace all constraints with their in-place variable.

The decision procedure (SAT + Integer Programming) Variants of the basic algorithm

The basic algorithm

The formula in CNF

 $p_1 \mapsto C_1 \leq 0$ $p_2 \mapsto C_1 \geq 0$ $p_3 \mapsto C_1 \geq 0$ $p_4 \mapsto C_1 \leq -1$ Step 2: Run through SAT solver

イロン 不得 とくほ とくほ とう

The decision procedure (SAT + Integer Programming) Variants of the basic algorithm

The basic algorithm

The formula in CNF

$$\left\{ \begin{array}{l} p_{1} \\ p_{2} \\ \left\{ \begin{array}{l} \rho_{OK_{1}}, \ \rho_{3} \end{array} \right\} \\ \left\{ \begin{array}{l} OK_{1}, \ \rho_{4} \end{array} \right\} \\ \left\{ \begin{array}{l} \neg OK_{1} \end{array} \right\}$$

 $\begin{array}{l} p_1 \mapsto C_1 \leq 0 \\ p_2 \mapsto C_1 \geq 0 \\ p_3 \mapsto C_1 \geq 0 \\ p_4 \mapsto C_1 \leq -1 \end{array}$

Step 2: Run through SAT solver A SAT model is returned

・ロト ・ 同ト ・ ヨト ・ ヨト - 三日

The decision procedure (SAT + Integer Programming) Variants of the basic algorithm

The basic algorithm

The formula in CNF

 $p_1 \mapsto C_1 \leq 0$ $p_2 \mapsto C_1 \geq 0$ $p_3 \mapsto C_1 \geq 0$ $p_4 \mapsto C_1 \leq -1$

Step 2: Run through SAT solver A SAT model is returned $=\top$ p_1 $p_2 = \top$ $p_3 = \perp$ $p_4 = \top$ $OK_1 = \perp$

<ロ> (四) (四) (三) (三) (三)

The decision procedure (SAT + Integer Programming) Variants of the basic algorithm

The basic algorithm

The formula in CNF

 $\begin{array}{l} p_1 \mapsto C_1 \leq 0 \\ p_2 \mapsto C_1 \geq 0 \\ p_3 \mapsto C_1 \geq 0 \\ p_4 \mapsto C_1 \leq -1 \end{array}$

Step 2: Run through SAT solver A SAT model is returned $p_1 = \top$ $p_2 = \top$ $p_3 = \bot$ $p_4 = \top$ $OK_1 = \bot$ Create a constraint problem based on

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

the in-place variables.

The decision procedure (SAT + Integer Programming) Variants of the basic algorithm

The basic algorithm

The formula in CNF

$$egin{aligned} p_1 &\mapsto C_1 \leq 0 \ p_2 &\mapsto C_1 \geq 0 \ p_3 &\mapsto C_1 \geq 0 \ p_4 &\mapsto C_1 \leq -1 \end{aligned}$$

Step 3: Solve constraint problem

Run constraint problem trough ILP solver

$$\begin{array}{ll} (1) & C_1 \leq 0 \\ (2) & C_1 \geq 0 \\ (3) & C_1 < 0 \\ (4) & C_1 \leq -1 \end{array}$$

Constraint 2 and 4 contradict each other. Add explanation to SAT problem. Goto step 2.

ヘロト 人間 ト くほ ト くほ トー

The decision procedure (SAT + Integer Programming) Variants of the basic algorithm

The basic algorithm

The formula in CNF

$$\left\{ \begin{array}{l} p_1 \\ p_2 \\ \end{array} \right\} \\ \left\{ \begin{array}{l} \neg \mathrm{OK}_1, \ p_3 \\ \end{array} \right\} \\ \left\{ \begin{array}{l} \mathrm{OK}_1, \ p_4 \\ \end{array} \right\} \\ \left\{ \begin{array}{l} \neg \mathrm{OK}_1 \end{array} \right\}$$

 $egin{aligned} p_1 &\mapsto C_1 \leq 0 \ p_2 &\mapsto C_1 \geq 0 \ p_3 &\mapsto C_1 \geq 0 \ p_4 &\mapsto C_1 \leq -1 \end{aligned}$

Step 3: Solve constraint problem

Run constraint problem trough ILP solver

 $\begin{array}{lll} (1) & C_1 \leq 0 \\ (2) & C_1 \geq 0 \\ (3) & C_1 < 0 \\ (4) & C_1 \leq -1 \end{array}$

Constraint 2 and 4 contradict each other. Add explanation to SAT problem. Goto step 2.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

The decision procedure (SAT + Integer Programming) Variants of the basic algorithm

The basic algorithm

The formula in CNF

$$egin{array}{lll} p_1\mapsto C_1\leq 0\ p_2\mapsto C_1\geq 0\ p_3\mapsto C_1< 0\ p_4\mapsto C_1\leq -1 \end{array}$$

Step 3: Solve constraint problem

Run constraint problem trough ILP solver

$$\begin{array}{lll} (1) & C_1 \leq 0 \\ (2) & C_1 \geq 0 \\ (3) & C_1 < 0 \\ (4) & C_1 \leq -1 \end{array}$$

Constraint 2 and 4 contradict each other. Add explanation to SAT problem. Goto step 2.

ヘロト 人間 ト くほ ト くほ トー

The decision procedure (SAT + Integer Programming) Variants of the basic algorithm

The basic algorithm

The formula in CNF

$$p_1 \mapsto C_1 \leq 0$$

 $p_2 \mapsto C_1 \geq 0$
 $p_3 \mapsto C_1 \geq 0$
 $p_4 \mapsto C_1 \leq -1$

Step 2: Run through SAT solver

The formula is unsatisfiable

The original formula is unsatisfiable.

The property is valid in first time point

イロト イポト イヨト イヨト

The decision procedure (SAT + Integer Programming) Variants of the basic algorithm

The basic algorithm

The formula in CNF

$$p_1 \mapsto C_1 \leq 0$$

 $p_2 \mapsto C_1 \geq 0$
 $p_3 \mapsto C_1 \geq 0$
 $p_4 \mapsto C_1 \leq -1$

Step 2: Run through SAT solver

The formula is unsatisfiable

The original formula is unsatisfiable.

The property is valid in first time point

イロト イポト イヨト イヨト

The decision procedure (SAT + Integer Programming) Variants of the basic algorithm

The basic algorithm

The formula in CNF

$$egin{aligned} p_1 &\mapsto C_1 \leq 0 \ p_2 &\mapsto C_1 \geq 0 \ p_3 &\mapsto C_1 \geq 0 \ p_4 &\mapsto C_1 \leq -1 \end{aligned}$$

Step 2: Run through SAT solver

The formula is unsatisfiable

The original formula is unsatisfiable.

The property is valid in first time point

イロト イポト イヨト イヨト

 \Rightarrow

The decision procedure (SAT + Integer Programming) Variants of the basic algorithm

The basic algorithm

The formula in CNF

$$egin{aligned} p_1 &\mapsto C_1 \leq 0 \ p_2 &\mapsto C_1 \geq 0 \ p_3 &\mapsto C_1 \geq 0 \ p_4 &\mapsto C_1 \leq -1 \end{aligned}$$

Step 2: Run through SAT solver

The formula is unsatisfiable

The original formula is unsatisfiable.

 \Rightarrow

The property is valid in first time point

ヘロト ヘ戸ト ヘヨト ヘヨト

The decision procedure (SAT + Integer Programming) Variants of the basic algorithm

The algorithm

φ is a propositional + constraints formula

```
loop
   \mathbb{I}_{\rho} \leftarrow \mathsf{Psat}(\varphi)
   if \mathbb{I}_{p} = \emptyset then
       return unsatisfiable
    else
        C \leftarrow \text{generate}(\varphi, \mathbb{I}_p)
       if Csat(C) then
           return satisfiable
       else
           \varphi \leftarrow \varphi \cup explain(C)
       end if
    end if
end loop
```

The decision procedure (SAT + Integer Programming) Variants of the basic algorithm

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Other ideas

Check partial SAT models Everytime the SAT solver assigns an in-place variable, check the constraint problem generated by the set of assigned in-place variables.

• Several methods of creating explanations Several algorithms exist. Finding multiple explanations.

Preprocessing Find contradictions in the set of constraints before the decision procedure starts.

• Faster (incomplete) integer programming procedure Use a cheap procedure that can find the most commonly occuring contradictions in constraint problems.

The decision procedure (SAT + Integer Programming) Variants of the basic algorithm

・ロン ・ 一 と ・ 日 と ・ 日 と

Other ideas

- Check *partial* SAT models Everytime the SAT solver assigns an in-place variable, check the constraint problem generated by the set of assigned in-place variables.
- Several methods of creating explanations
 Several algorithms exist. Finding multiple explanations.
- Preprocessing
 Find contradictions in the set of constraints before the decision procedure starts.
- Faster (incomplete) integer programming procedure Use a cheap procedure that can find the most commonly occuring contradictions in constraint problems.

The decision procedure (SAT + Integer Programming) Variants of the basic algorithm

・ロン ・ 一 と ・ 日 と ・ 日 と

Other ideas

- Check *partial* SAT models Everytime the SAT solver assigns an in-place variable, check the constraint problem generated by the set of assigned in-place variables.
- Several methods of creating explanations
 Several algorithms exist. Finding multiple explanations.
- Preprocessing
 Find contradictions in the set of constraints before the decision procedure starts.
- Faster (incomplete) integer programming procedure Use a cheap procedure that can find the most commonly occuring contradictions in constraint problems.

The decision procedure (SAT + Integer Programming) Variants of the basic algorithm

ヘロト 人間 ト くほ ト くほ トー

Other ideas

- Check *partial* SAT models Everytime the SAT solver assigns an in-place variable, check the constraint problem generated by the set of assigned in-place variables.
- Several methods of creating explanations
 Several algorithms exist. Finding multiple explanations.
- Preprocessing
 Find contradictions in the set of constraints before the decision procedure starts.
- Faster (incomplete) integer programming procedure Use a cheap procedure that can find the most commonly occuring contradictions in constraint problems.

The decision procedure (SAT + Integer Programming) Variants of the basic algorithm

ヘロト ヘ戸ト ヘヨト ヘヨト

2

Rantanplan

- Implements all ideas outlined here
- Based on Luke
- SAT solver changed to MiniSat
- Integer programming package GLPK

Test plan Comparison with Luke

Test plan

Aim

- What combinations of ideas work well?
- How do these ideas compare to Luke and NBAC?
- Find "good" combinations of ideas
- Compare these to Luke & NBAC

イロト イポト イヨト イヨト 一座

Test plan Comparison with Luke

Test plan

Aim

- What combinations of ideas work well?
- How do these ideas compare to Luke and NBAC?
- Find "good" combinations of ideas
- Compare these to Luke & NBAC

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Test plan Comparison with Luke

Test plan

Aim

- What combinations of ideas work well?
- How do these ideas compare to Luke and NBAC?
- Find "good" combinations of ideas
- Compare these to Luke & NBAC

ヘロト ヘアト ヘビト ヘビト

Test plan Comparison with Luke

Test suite

Every test should be verifyable by every tool in the tests.

- The test suite consists of 137 tests.
- Some of these are invalid properties. Can not be verified in NBAC.
- Some have too weak properties. Can not be verified in Rantanplan.
- Some used unbounded integers. Can not be verified in Luke.
- Some uses modulo. Can not be verified in NBAC.
- Some generates constraint problems where branch-and-bound does not terminate. Can not be verified in Rantanplan.

We are left with 72 tests.

ヘロア 人間 アメヨア 人口 ア

Test plan Comparison with Luke

Test suite

Every test should be verifyable by every tool in the tests.

- The test suite consists of 137 tests.
- Some of these are invalid properties. Can not be verified in NBAC.
- Some have too weak properties. Can not be verified in Rantanplan.
- Some used unbounded integers. Can not be verified in Luke.
- Some uses modulo. Can not be verified in NBAC.
- Some generates constraint problems where branch-and-bound does not terminate. Can not be verified in Rantanplan.

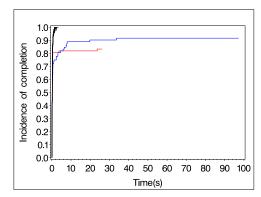
We are left with 72 tests.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Test plan Comparison with Luke

Comparisons

Tests of the 11 best variants against Luke and NBAC

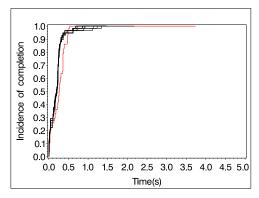


くロト (過) (目) (日)

Test plan Comparison with Luke

Comparison with Luke

Tests with execution time > 10s in Luke removed (58 remaining)

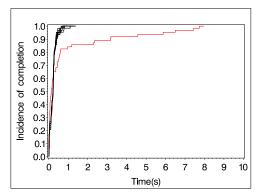


ヘロト ヘアト ヘビト ヘビト

Test plan Comparison with Luke

Comparison with NBAC

Tests with execution time > 10s in NBAC removed (63 remaining)



ヘロト 人間 ト くほ ト くほ トー

Summary

- Rantanplan competitive on the test suite used here
- The branch-and-bound algorithm is incomplete
- For longer induction depth (e.g. invalid properties w. long counter-examples), Luke outperforms Rantanplan

Outlook

- Complete integer programming procedure
- Improvements for larger induction depths
- Invariant strengthening

ヘロン ヘアン ヘビン ヘビン