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Abstract. We present a framework that supports the formal
verification of early requirements specifications. The frame-
work is based on Formal Tropos, a specification language that
adopts primitive concepts for modeling early requirements
(such as actor, goal, and strategic dependency), along with a
rich temporal specification language. We show how existing
formal analysis techniques, and in particular model checking,
can be adapted for the automatic verification of Formal Tro-
pos specifications. These techniques have been implemented
in a tool, called the T-Tool, that maps Formal Tropos specifi-
cations into a language that can be handled by the NUSMV
model checker. Finally, we evaluate our methodology on a
course-exam management case study. Our experiments show
that formal analysis reveals gaps and inconsistencies in early
requirements specifications that are by no means trivial to dis-
cover without the help of formal analysis tools.

Keywords: Early Requirements Specifications, Formal
Methods, Model Checking

1 Introduction

Early requirements engineering is the phase of the software
development process that models and analyzes the opera-
tional environment where a software system will eventually
function [23]. In order to analyze such environment, it is nec-
essary to understand the objectives, business processes and
interdependencies of different stakeholders. Although errors
and misunderstandings at this stage are both frequent and
costly, early requirements engineering is usually done infor-
mally (if at all). In this work, we present a formal framework
that adapts results from the Requirements Engineering and
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Formal Methods communities to facilitate the precise model-
ing and analysis of early requirements.

Formal methods have been successfully applied to the
verification and certification of software systems. In several
industrial fields, formal methods are becoming integral com-
ponents of standards [5]. However, the application of formal
methods to early requirements is by no means trivial. Most
formal techniques have been designed to work (and have been
mainly applied) in later phases of software development, e.g.,
at the architectural and design level. As a result, there is a
mismatch between the concepts used for early requirements
specifications (such as goal and actor) and the constructs of
formal specification languages such as Z [22], SCR [13],
TRIO [12,20].

Our framework supports the automatic verification of
early requirements specified in a formal modeling language.
This framework is part of a wider on-going project called Tro-
pos, whose aim is to develop an agent-oriented software engi-
neering methodology, starting from early requirements. The
methodology is to be supported by a variety of analysis tools
based on formal methods. In this paper, we focus on the ap-
plication of model checking techniques to early requirements
specifications.

To allow for formal analysis, we introduce a formal spec-
ification language called Formal Tropos (hereafter FT). The
language offers all the primitive concepts of i* [23] (such as
actors, goals, and dependencies among actors), but supple-
ments them with a rich temporal specification language in-
spired by KAOS [17].

We have extended an existing formal verification tech-
nique, model checking [9], to support the automated analy-
sis of FT specifications. We have also implemented this ex-
tension in a tool, called the T-Tool, which is based on the
state-of-the-art symbolic model checker NUSMV [8]. The T-
Tool translates automatically an FT specification into an In-
termediate Language (hereafter IL) specification that could
potentially link FT with different verification engines. The IL
representation is then automatically translated into NUSMV,
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Fig. 1. High-level i* model of the course-exam management case study.

which can then perform different kinds of formal analysis,
such as consistency checking, animation of the specification,
and property verification.

On the methodological side, we define some heuristic
techniques for rewriting an i* diagram into a correspond-
ing FT specification. We also offer guidelines on how to use
the T-Tool effectively for formal analysis, e.g., by suggest-
ing what model checking technique to use when a particular
formal property is to be validated. Finally, we report the re-
sults of a series of experiments that we conducted in order to
evaluate the scope and scalability of the approach.

The paper is structured as follows. Section 2 introduces a
case study and shows how to build an FT specification from
an i* model. Section 3 uses the case study to illustrate how FT
can be used for the incremental refinement of a specification.
Section 4 describes the T-Tool, focusing on its functionalities,
architecture, and usage guidelines. Section 5 presents the ex-
periments we carried out. Section 6 discusses related work,
draws conclusions, and outlines future work.

2 From i* to Formal Tropos – A case study

In this section we use a course-exam management case study
to describe how an FT specification can be obtained from an
i* model.

2.1 Strategic modeling with i*

The i* modeling language [23] has been designed for the de-
scription of early requirements. It is founded on the premise
that during this phase it is important to understand and model
the social setting within which the system-to-be will even-
tually function. We use the notation of i* as a starting point

for our methodology, since it provides an informal graphi-
cal description of the organizational setting, which is later
described in a formal language that is more suitable for auto-
matic analysis.

The i* framework offers three categories of concepts,
drawn from goal- and agent-oriented languages: actors, in-
tentional elements, and intentional links. An actor is an ac-
tive entity that carries out actions to achieve its goals. Fig-
ure 1 depicts a high-level i* diagram for the course exam
management case study, with its three main actors: Student,
Teacher, and teaching assistant (T.A.).

Intentional elements in i* include goals, softgoals, tasks,
and resources, and can either be internal to an actor, or define
dependency relationships between actors. A goal (rounded
rectangle) is a condition or state of affairs in the world that
the actor would like to achieve. For example, a student’s ob-
jective to pass a course is modeled as goal Pass[Course] in
Figure 1. A softgoal (irregular curvilinear shape) is typically a
non-functional condition, with no clear-cut criteria as to when
it is achieved. For instance, the fact that a teacher expects the
students to be honest is modeled with the softgoal Honesty.
A task (hexagon) specifies a particular course of action that
produces a desired effect. In our example, the element Eval-
uate[Exam] is represented as a task. A resource (rectangle)
is a physical or information entity. For instance, the student
waits for the lectures of the course (Lectures[Course]) and
for a mark for an exam (Mark[Exam]), while the teacher
waits for an answer to an exam (Answer[Exam]). In Fig-
ure 1 a boundary delimits intentional elements that are inter-
nal to each actor. Intentional elements outside the boundaries
correspond to goals, softgoals, tasks, and resources whose re-
sponsibility is delegated from one actor to another. For in-
stance, the student depends on the teacher for the marking
of the exams, so the resource Mark[Exam] is modeled as a
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Fig. 2. High-level i* model focusing on the Student.

dependency from the student to the teacher. In the diagrams,
dependency links ( ) are used to represent these inter-actor
relationships.

Figure 2 zooms into one of the actors of this organiza-
tional setting, the student. The figure shows how the high-
level intentional elements of the student are refined and oper-
ationalized. In i*, these refinements and relationships among
intentional elements are represented with intentional links,
which include means-ends, decomposition, and contribution
links. Each element connected to a goal by a means-ends link
( ) is an alternative way to achieve the goal. For instance,
in order to pass a course (Pass[Course]), a student can pass
all the exams of the course (Pass[Exam]), or can do a re-
search project for the course (DoResearchProject[Course]).
Decomposition links ( ) define a refinement for a task. For
instance, if a student wants to pass an exam (Pass[Exam]),
she needs to attend the exams (Take[Exam]), and get a pass-
ing mark (GetPassingMark[Exam]). A contribution link
( ) describes the impact that an element has on another.
This can be negative (-) or positive (+) (e.g., FairMark-
ing[Exam] has a positive impact on Pass[Exam]).

In Figure 2 we also use some elements that are not present
in the original i* definition, but turn out to be useful in sub-
sequent phases of our methodology. These extensions have
been described in [11]. Prior-to links ( ) describe the tem-
poral order of intentional elements. For example, a student
can only write a report after studying for the course, and can
only get a passing mark after she actually takes the exam.
We also use cardinality constraints (the numbers labeling
the links) to define the number of instances of a certain el-
ement that can exist in the system. For instance, for each
Pass[Course] goal there must be at least one Pass[Exam]
subgoal. Links without a number suggest one-to-one connec-
tions.

Figure 3 extends Figure 2 with the inner description of the
teacher and of the dependencies existing between the teacher
and the student. In the paper, we will concentrate on the sub-
set of the course-exam management case study that is de-

scribed in the i* diagram in Figure 3 and we will not consider
the teaching assistant.

2.2 Formal Tropos specifications

FT has been designed to supplement i* models with a pre-
cise description of their dynamic aspects. In FT, we focus
not only on the intentional elements themselves, but also on
the circumstances in which they arise, and on the conditions
that lead to their fulfillment. In this way, the dynamic aspects
of a requirements specification are introduced at the strategic
level, without requiring an operationalization of the specifi-
cation. With an FT specification, one can ask questions such
as: Can we construct valid operational scenarios based on the
model? Is it possible to fulfill the goals of the actors? Do
the decomposition links and the prior-to constraints induce a
meaningful temporal order? Do the dependencies represent a
valid synergy or synchronization between actors?

The grammar of the FT language is given in Figure 4.
An FT specification describes the relevant objects of a do-
main and the relationships among them. The description of
each object is structured in two layers. The outer layer is sim-
ilar to a class declaration and it defines the structure of the
instances together with their attributes. The inner layer ex-
presses constraints on the lifetime of the objects, given in a
typed first-order linear-time temporal logic. An FT specifica-
tion is completed by a set of global properties that express
properties on the domain as a whole.

2.2.1 The outer layer

Figure 5 is an excerpt of the outer layer of the FT speci-
fication of the course-exam management case study. In the
transformation of an i* diagram into an FT specification, ac-
tors and intentional elements are mapped into corresponding
“classes” in the outer layer of FT. Moreover, “entities” (e.g.,
Course and Exam) are added to represent the non-intentional
elements of the domain.

Many instances of a class may exist during the evolution
of the system. For example, different Pass[Course] depen-
dencies may exist for different Student instances, or for dif-
ferent courses taken by the same student. Each class has an
associated list of attributes. Each attribute has a sort (i.e., its
type) and one or more optional facets. Sorts can be either
primitive (Boolean, integer. . . ) or classes. Attributes of prim-
itive sorts usually define the relevant state of an instance. For
example, Boolean attribute passed of resource dependency
Mark determines whether the mark is passing or not. At-
tributes of non-primitive sorts define references to other in-
stances in the domain. For example, attribute exam of goal
Pass[Exam] is a reference to the specific exam to be passed,
and attribute pass course is a reference to a Pass[Course] in-
stance that motivates the student to pass the exam. Similarly,
dependency Mark refers to the exam that has to be marked
(attribute exam) and to GetPassingMark[Exam] goal of the
student that motivates the expectation of having a mark (at-
tribute gpm).
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Fig. 3. Annotated i* model of the course-exam management case study.

/* The outer layer */

specification := (entity � actor � int-element � dependency � global-properties) �
entity := Entity name [attributes] [creation-properties] [invar-properties]

actor := Actor name [attributes] [creation-properties] [invar-properties]

int-element := type name mode Actor name [attributes] [creation-properties] [invar-properties] [fulfill-properties]

dependency := type Dependency name mode Depender name Dependee name [attributes] [creation-properties] [invar-properties]
[fulfill-properties]

type := (Goal � Softgoal � Task � Resource)

mode := Mode (achieve � maintain � achieve&maintain � avoid)

/* Attributes */

attributes := Attribute attribute �
attribute := facets name : sort

facets := [constant ] [optional ] . . .

sort := name � integer � boolean � . . .

/* The inner layer */

creation-properties := Creation creation-property �
creation-property := property-category event-category temporal-formula

invar-properties := Invariant invar-property �
invar-property := property-category temporal-formula

fulfill-properties := Fulfillment fulfill-property �
fulfill-property := property-category event-category temporal-formula

property-category := [constraint � assertion � possibility ]

event-category := trigger � condition � definition

/* Global properties */

global-properties := Global global-property �
global-property := property-category temporal-formula

Fig. 4. The Formal Tropos grammar.
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Entity Course

Entity Exam
Attribute

constant course : Course

Actor Student

Actor Teacher

Goal PassCourse
Actor Student
Mode achieve
Attribute

constant course : Course

Goal PassExam
Actor Student
Mode achieve
Attribute

constant exam : Exam
constant pass course : PassCourse

Goal GetPassingMark
Actor Student
Mode achieve
Attribute

constant exam : Exam
constant pass exam : PassExam

Softgoal Integrity
Actor Student
Mode maintain

Task GiveExam
Actor Teacher
Mode achieve
Attribute

constant exam : Exam

Resource Dependency Mark
Depender Student
Dependee Teacher
Mode achieve
Attribute

constant exam : Exam
constant gpm : GetPassingMark
passed : boolean

Fig. 5. Excerpt of outer layer of an FT class declaration.

Facets represent basic properties of attributes. The facet
optional means that the attribute may be undefined. The facet
constant means that the value of the attribute does not change
after its initialization. In most cases attributes that refer to
other classes are constant, i.e., their values do not change
over time, while the values of user-defined attributes usually
change during the lifetime of class instances. In the case of at-
tribute passed of dependency Mark, for instance, a change of
value is used to model a change of mark due to a re-evaluation
of the exam.

Special attributes are present in the declarations of the in-
tentional elements. Internal intentional elements are associ-
ated to the corresponding actor with the special attribute Actor

(for instance, Pass[Exam] has a Student instance as Actor

attribute). Similarly, Depender and Dependee attributes of de-
pendencies represent the two parties involved in a delegation
relationship.

Resource Dependency Mark
Depender Student
Dependee Teacher
Mode achieve
Attribute

constant exam : Exam
constant gpm : GetPassingMark
passed : boolean

Invariant
gpm.exam � exam

�
gpm.actor � depender

Invariant
��� m : Mark ((m �� self)

�
(m.gpm � gpm))

Creation condition
� Fulfilled (gpm)

Fulfillment condition
� im : InitialMarking (im.exam � exam

�
im.actor � dependee

�
Fulfilled (im))

Fulfillment trigger
G (Changed (passed) �� r : ReEvaluation ((r.mark � self)

�
JustFulfilled (self)))

Fig. 6. Example of FT constraints.

An important aspect of FT is its focus on the condi-
tions for the fulfillment of goals and dependencies. An inten-
tional element is characterized by a mode, which declares the
modality of its fulfillment. For example, the modality of goal
Pass[Exam] is achieve, which means that the student expects
to reach a state where the exam has been passed. Softgoal In-
tegrity has a maintain mode, since the condition of no cheating
is to be continuously maintained. There are other modalities,
such as achieve&maintain, which is a combination of the pre-
vious two modes and requires the fulfillment condition to be
achieved and then to be continuously maintained; and avoid,
which means that the fulfillment conditions should be pre-
vented.

2.2.2 The inner layer

The inner layer of an FT class declaration consists of con-
straints that describe the dynamic aspects of entities, actors,
goals, and dependencies. Figure 6 presents an excerpt of con-
straints on the lifetime of dependency Mark of the course-
exam management case study.

Invariant constraints of a class define conditions that
should hold throughout the lifetime of all class instances.
Typically, invariants define relations on the possible values
of attributes, or cardinality constraints on the instances of a
given class. For instance, the first invariant of Figure 6 states
a relationship between attributes of the instances of the Mark
class. The second invariant imposes a cardinality constraint
for Mark objects, namely, there can be at most one Mark for
a given GetPassingMark goal.

Creation and Fulfillment constraints define conditions on the
two critical moments in the lifetime of intentional elements
and dependencies, namely their creation and fulfillment. The
creation of a goal is interpreted as the moment when an actor
(the one associated to an intentional element, or the depen-
der of a dependency) begins to desire a goal. The fulfillment



6 Ariel Fuxman et al.

of a goal occurs when the goal is actually achieved. Creation
and fulfillment constraints can be used to define conditions on
those two time instants. Creation constraints can be associated
with any class. Such constraints should be satisfied whenever
an instance of the class is created. Fulfillment constraints can be
associated only with intentional elements and with dependen-
cies. These constraints should hold whenever a goal or soft-
goal is achieved, a task is completed, or a resource is made
available. Creation and fulfillment constraints are further dis-
tinguished as sufficient conditions (keyword trigger), neces-
sary conditions (keyword condition), and necessary and suf-
ficient conditions (keyword definition). The actual constraints
are described with formulas given in a typed first-order linear-
time temporal logic (see Section 2.2.3).

In an FT specification, primary intentional elements (e.g.,
Pass[Course] and Integrity) typically have fulfillment con-
straints, but no creation constraints. We are not interested in
modeling the reasons why a student wants to pass a course, or
maintain her integrity, since these are taken for granted. Sub-
ordinate intentional elements (e.g., Pass[Exam], GetPass-
ingMark[Exam]) typically have constraints that relate their
creation with the state of their parent elements. For instance,
according to Figure 6, a creation condition for an instance of
dependency Mark is that the parent goal GetPassingMark
has not been fulfilled so far. In other words, if the student
has received a passing mark, there is no need to ask for an-
other mark. We note that the creation condition of depen-
dency Mark together with the fulfillment condition of task
GetPassingMark[Exam] elaborate the delegation relation-
ship between Student and Teacher in the corresponding i*
diagram. Goal decomposition relationships can be specified
in a similar fashion.

2.2.3 The FT temporal logic

In FT, constraints are described with formulas in the typed
first-order linear-time temporal logic described by the follow-
ing syntax:

�����������	��
����	��
����
��
(boolean op.)
�������
�������
������

(relational op.)
�� ���
sort ! ��
�"#���

sort ! � (quantifier)

X
��


F
��


G
��
��

U
�

(future op.)

Y
��


O
��


H
�$
��

S
�

(past op.)

�������&%'
���
�� ! ( (const. and var.)

self



actor



depender



dependee (special term)


JustCreated ) �+*,
 Changed ) �+*

Fulfilled ) �+*�
 JustFulfilled ) �+* (special pred.)

Besides the standard Boolean and relational operators, the
logic provides the quantifiers

�
and

"
, which range over all

the instances of a given class, and a set of future and past
temporal operators. These allow for expressing properties
that are not limited to the current state, but may refer also
to its past and future history. For instance, formula X

�
(next�

) expresses the fact that formula
�

should hold in the next
state reached by the model, while formula Y

�
(previous

�
)

requires condition
�

to hold in the previous state. Formula F
�

(eventually
�

) requires that formula
�

is either true now or
that it becomes eventually true in some future state; formula
O
�

(once
�

) expresses the same requirement, but on the past
states. Formula G

�
(always in the future

�
) expresses the fact

that formula
�

should hold in the current state and in all fu-
ture states of the evolution of the model, while formula H

�
(always in the past - ) holds if

�
is true in the current state

and in all past state of the model. Formula
� � U

� � (
� � until

� � )
holds if there is some future state where

� � holds and formula� � holds until that state; finally, formula
� � S � � (

� � since
� � )

holds if there is some past state where
� � holds and formula� � holds since that state.

The terms
�

on which the formulas are defined may be in-
teger and Boolean constants (

%
), variables (

�
), or may refer to

the attribute’s values of the class instances (
� ! ( , where ( can

either be a standard attribute, or a special attribute like ac-

tor or depender). Also, instances may express properties about
themselves using the keyword self (see the second invariant
of dependency Mark in Figure 6). Special predicates can
appear in temporal logic formulas. Predicate JustCreated ) t *
holds if element t exists in this state but not in the previ-
ous one. Predicate Changed ) t * holds in a state if the value of
term

�
has changed with respect to the previous state. Pred-

icate Fulfilled ) t * holds if t has been fulfilled, while predicate
JustFulfilled ) t * holds if Fulfilled ) t * holds in this state, but not in
the previous one. The two latter predicates are defined only
for goals and dependencies.

The temporal logic incorporated in FT is quite expressive.
However, only simple formulas are typically used in a spec-
ification. The possibility of anchoring temporal formulas to
critical events in the lifetime of an object, together with the
possibility of expressing modalities for goals and dependen-
cies, provide implicitly an easy-to-understand subset of the
language of temporal logics. Only when the lifetime events
and the modalities are not sufficient for capturing all the tem-
poral aspects of a condition, temporal operators need to ap-
pear explicitly in the formulas. This is the case, for instance,
with dependency Mark (see Figure 6). The only temporal op-
erator that appears explicitly in the specification is the one
in the Fulfillment trigger. This operator is needed since we
want to bind the fulfillment of the dependency with a con-
dition that should hold from that moment on (namely, the
fact that attribute passed should change only because of a
re-evaluation).

2.2.4 Assertions and possibilities

The constraints represented in Figure 6 express conditions
that are required to hold for all possible scenarios. In an FT
specification, we can also specify properties that are desired
to hold in the domain, so that they can be verified with respect
to the model. Figure 7 presents such properties for the course-
exam management case study. We distinguish between asser-

tion properties (A1-4) which are desired to hold for all valid
evolutions of the FT specification, and possibility properties
(P1-4) which should hold for at least one valid scenario. Prop-
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Goal PassExam
Creation assertion condition /* A1: A student can only pass an exam once. */

�
p : PassExam (p.actor � actor

�
p.exam � exam

�
p.pass course � pass course � p � self)

Resource dependency Mark
Fulfillment assertion condition /* A2: For each mark there was an answer corresponding to it. */
� a : Answer (a.dependee � depender

�
a.depender � dependee

�
a.exam � exam

�
Fulfilled (a))

Resource dependency Mark
Fulfillment assertion condition /* A3: A mark can only be changed if there is a petition. */� passed

�
F passed � F � ped : PostExamDiscussion (ped.mark � self)

Global Assertion /* A4: If the student wants to maintain her integrity, she cannot pass an exam without studying. */
�

h : Honesty (Fulfilled (h) � �
k : KnowCorrectAnswer ((k.actor � h.dependee)

�
(k.exam � h.give exam.exam

�
Fulfilled (k) � � s : Study ((s.actor � k.actor)

�
(s.course � k.exam.course)

�
Fulfilled (study)))))

Global Possibility /* P1: It is possible for a student to pass a course. */
� pc : PassCourse (Fulfilled (pc))

Global Possibility /* P2: It is possible that a student passed a course without passing the exam. */
� pc : PassCourse (Fulfilled (pc)

� ��� pe : PassExam ((pe.pass course � p)
�

Fulfilled (pe))

Goal PassExam
Fulfillment possibility condition /* P3: It is possible that a student passed an exam, but still thinks that the marking is not fair. */
� f : FairMarking (f.pass exam � self

�
Fulfilled (f)

� � f.satisfied)

Global Possibility /* P4: It is possible that a teacher expects an exam answer from a student who is never committed to the exam. */
� a : Answer (G ��� p : PassExam (p.exam � a.exam

�
p.actor � a.dependee))

Fig. 7. Example of Formal Tropos properties.

erties A1, A2, A3, and P3 are “anchored” to some important
event in the lifetime of a class instance. For example, asser-
tion A2 requires that, whenever an instance of Pass[Exam] is
created, no other instance of Pass[Exam] exists correspond-
ing to the same exam and the same student. Properties A4,
P1, P2, and P4 are examples of “global properties”, i.e., they
express conditions on the entire model, and are not attached
to any particular event.

2.2.5 From i* to FT: Translation guidelines

Developing a satisfactory formal software system specifica-
tion can be hard, even when one starts from a good infor-
mal model. According to our experience, the difficulties in
developing an FT specification can be substantially reduced
if one extracts as much information as possible from the i*
model in order to produce a “reasonable” initial FT model.
In fact, most of the constraints of an FT specification already
appear implicitly in the i* model. For instance, for the de-
pendency Mark (see Figure 6), the invariants, the creation
and the fulfillment conditions express constraints that are re-
lated to goal delegation and cardinality constraints in the i*
model. These constraints can be systematically derived from
the i* model by applying specific translation rules. In order
to capture the nature of the application domain, additional
non-standard constraints need to be manually added to the
FT specification. For instance, the last constraint for depen-
dency Mark in Figure 6 expresses that a sufficient condition
for considering the dependency fulfilled is that we are com-
mitted to change the passing status of a mark only if a re-
evaluation has occurred.

The following are some of the heuristic rules we have
identified for generating an FT specification from the i*
model:

– The default creation condition of a sub-goal is that the
parent goal exists, but has not been fulfilled yet. The de-
fault creation condition for a dependency is that the de-
pender goal exists but has not been fulfilled yet.

– The fulfillment condition of a parent goal (or task) usually
depends on the fulfillment of the sub-goals (tasks). If the
sub-goals are connected to the parent goal with means-
ends links, then the fulfillment of at least one of the sub-
goals is necessary for the fulfillment of the parent goal.
If they are connected with decomposition links then the
fulfillment of all the subgoals is necessary.

– Parent goals and sub-goals typically share the same entity
and owner. So, an invariant condition should be added to
the sub-goal in order to force the binding between the at-
tributes of the two goals. For instance, Pass[Exam] and
Take[Exam] refer to the same exam.

– When there is a prior-to constraint between two sub-goals
with a common parent, an extra creation condition needs
to be added to the goal that comes later. Such constraints
state that a necessary condition for the creation of the later
goal is that the previous goal has already been fulfilled.

These rules are not meant to be definitive and exhaustive,
but their systematic application leads to a quick generation
of a reasonable FT model, that can then be corrected and im-
proved using the techniques described in the next sections.
We are currently developing a tool to support the designer in
the semi-automatic extraction of an initial FT specification
starting from an i* diagram.
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Entity Course

Entity Exam
Attribute constant course : Course

Actor Student

Goal PassCourse
Mode achieve
Actor Student
Attribute constant course : Course

Actor Teacher

Task GiveExam
Mode achieve
Actor Teacher
Attribute constant exam : Exam

Resource Dependency Answer
Mode achieve
Depender Teacher
Dependee Student
Attribute constant exam : Exam

Resource Dependency Mark
Mode achieve
Depender Student
Dependee Teacher
Attribute constant exam : Exam

passed : boolean

Fig. 8. The initial FT specification for the analysis of the case study.

3 Formal Analysis of the Case Study

We now illustrate the usage of FT in refining an early re-
quirements specification. In the next section we describe the
T-Tool, a tool that supports the analysis performed in this sec-
tion. For explanatory purposes we focus on a subset of the
FT specification. This initial model, shown in Figure 8, is
strongly under-specified. We will interactively improve and
refine it, guided by results provided by the analysis.

In this section, scenarios are represented by diagrams like
the one in Figure 9, and can be automatically generated by the
T-Tool. With

����� � � � !�!�! we denote different time instants of
the scenario. Symbol indicates the instant of creation of an
object. For simplicity, the diagrams report only the relevant
objects of the scenario.

As a first refinement step we consider the achievement
of goal PassCourse. In our case study, a student passes a
course if she takes all the exams for the course and if there is a
passing mark for each exam. To capture this requirement, we
modify the FT model by adding task PassExam as a means
for the achievement of goal PassCourse. To fulfill goal Pass-
Course we require that for each exam of the course there
exists at least one instance of PassExam that is fulfilled. We
also require that an instance of object PassExam can be cre-
ated only if the corresponding PassCourse has not been ful-
filled yet: if the goal PassCourse has already been fulfilled,
there is no need to pass any further exam for that course. We
allow for several instances of the class Mark for each Pas-
sExam. A sufficient condition for passing the exam is that at
least one corresponding mark is passing.

Fulfilled
Created

Fulfilled
Created

True
False

Mark(m1).passed

Mark(m1)

PassExam(pe1)

Exam(e1) Created

t0 t1 t2 t3 t4 t5

Fig. 9. A scenario where attribute passed oscillates.

Goal PassCourse
Fulfillment definition

�
e : Exam (e.course � course �
� p : PassExam (p.exam � e

�
p.pc � self

�
Fulfilled (p)))

Task PassExam
Mode achieve
Actor Student
Attribute constant pc : PassCourse

constant exam : Exam
Creation condition� Fulfilled (pc)
Invariant

pc.actor � actor
�

pc.course � exam.course
Fulfillment condition
� m : Mark (m.depender � actor

�
m.exam � exam

�
Fulfilled (m)

�
m.passed)

The analysis of the extended specification reveals some prob-
lems. The specification allows for unrealistic scenarios such
as the one depicted in Figure 9. This scenario shows, cor-
rectly, that an instance of PassExam is created at time

� � , and
that it is fulfilled at time

� � , when a passing Mark for that
exam has been fulfilled. However, the scenario shows also
that the value of attribute passed of the dependency Mark
may oscillate once the dependency has been fulfilled. Con-
sider the following assertion, that requires a passing mark to
be present if a PassExam goal is fulfilled.

Global assertion
�

pe : PassExam (Fulfilled (pe) �� m : Mark (m.exam � pe.exam
�

Fulfilled (m)
�

m.passed))

It does not hold between time
���

and time
���

of the scenario
depicted in Figure 9. To enforce the requirement that a mark
– once produced 1 – does not change its value, we add the
following invariant constraint to the dependency Mark.

Resource Dependency Mark
Invariant

Fulfilled (self) � (passed � X passed)

In the FT specification, one would like to specify that the
teacher is not going to give an exam if there is no student in-
terested in passing it. Once the task of giving the exam has
been created, it can be fulfilled only once all the answers
given by the students have been marked. These requirements
can be modeled by the following additional constraints for
task GiveExam.

1 Notice that the value of attribute passed is only relevant once the de-
pendency has been fulfilled, therefore we do not care if it changes before its
fulfillment.
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True
False

Fulfilled
Created

Fulfilled
Created

Fulfilled
Created

Exam(e1)

PassExam(pe1)

Answer(a1)

Mark(m1)

Mark(m1).passed

t0 t1 t2 t3 t4 t5

Created

Fig. 10. A student receives a mark for an exam without providing an answer.

Task GiveExam
Creation condition
� pe : PassExam (pe.exam � exam)

Fulfillment condition
�

a : Answer ((a.exam � exam
�

a.depender � actor) �� m : Mark (m.exam � exam
�

m.dependee � actor
�

m.depender � a.dependee
�

Fulfilled (m)))

A first, trivial, problem of this specification is that it allows
for scenarios where a mark is given to a student even if there
is no answer from that student. For example, according to the
scenario of Figure 10, instances of objects PassExam and
Mark are created at time

� � and fulfilled at time
� � , while

no instance of object Answer is ever created. These behav-
iors can be easily disallowed by adding the following creation
constraint to dependency Mark.

Resource Dependency Mark
Creation

condition for domain� a : Answer (a.depender � dependee
�

a.dependee � depender
�

a.exam � exam
�

Fulfilled (a))

The specification also suffers of a more subtle problem. We
expect that, thanks to the creation condition of GiveExam,
the teacher never waits for answers from students that are not
committed to pass the exam. This expectation is captured by
the following assertion.

Global assertion
�

a : Answer (F � pe : PassExam (pe.exam � a.exam
�

pe.actor � a.dependee))

Unfortunately, the scenario depicted in Figure 11 shows a
case where this assertion is not valid. In this scenario the
teacher gives the exam at time

� � for student � � . This stu-
dent is committed to pass the exam, as proven by the instance
of the class PassExam that is created at time

� � . However, the
teacher is waiting for an answer also from student � � even if
this student is not interested in giving the exam. The subtlety
of this problem relies in the fact that more than one instance
of class Student is necessary in order to reveal it. This be-
havior suggests that we need to refine the specification by
introducing a registration mechanism to the exams. We also
constrain the creation of resource Answer for an exam to the
existence of a student aiming to pass that exam.

Resource Dependency Answer
Creation condition
� p : Passexam (p.actor � dependee

�
p.exam � exam )

Fulfilled
Created

Fulfilled
Created

Fulfilled
Created

Fulfilled
Created

Fulfilled
CreatedGiveExam(ge1,t1)

PassExam(pe1,s1)

PassExam(pe2,s2)

Answer(a1,s1)

Answer(a2,s2)

t5t4t3t2t1t0

Fig. 11. The teacher waits for an answer that will never arrive.

As the specification grows, it is important to detect over-
constrained situations that rule out desired behaviors. For in-
stance, we want to make it sure that the specification allows a
student to pass a course. This requirement is formulated with
the following possibility.

Global possibility
� p : PassCourse (Fulfilled (p))

An existence proof for this possibility is shown in Figure 12.
The class instance PassCourse(pc1) is created at time

� �
jointly with the class instances PassExam(pc1), Mark(m1)
and Exam(e1). The class instance Mark(m1) is fulfilled at
time

� � , and since Mark(m1).passed is true then also Pas-
sExam(pe1) is fulfilled. At time

� � object PassCourse(pc1)
is fulfilled.

A more interesting scenario that we do not want to rule
out is that, if a student fails to pass an exam, she should still be
able to pass the course. This requirement can be formulated
by the following possibility.

Global possibility
� s : Student ( � m : Mark ( � p : PassCourse : (

m.depender � s
�

Fulfilled (m)
� � m.passed

�
p.course � m.exam.course

�
p.actor � s

�
F Fulfilled (p))))

This possibility is false when there is one instance per class.
This is the case because there is no possibility to obtain a
second mark for the exam. We have to consider multiple in-
stances for various classes to satisfy this possibility.

t0 t1 t2 t3 t4 t5

Fulfilled
Created

Fulfilled
CreatedMark(m1)

True
False

 
CreatedExam(e1)

Mark(m1).passed

PassExam(pc1)

PassCourse(pc1) Created
Fulfilled

Fig. 12. A student passes a course.
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4 The T-Tool

The T-Tool is based on finite-state model checking [9]. Its in-
put is an FT specification along with parameters that specify
which parts of the specification to consider. These parameters
define an upper bound to the number of class instances to be
created during model checking. On the basis of this input, the
T-Tool builds a finite model that represents all possible be-
haviors of the domain that satisfy the constraints of the speci-
fication. The T-Tool then verifies whether this model exhibits
the desired behaviors. The T-Tool provides different verifi-
cation functionalities, including interactive animation of the
specification, automated consistency checks, and validation
of the specification against possibility and assertion proper-
ties. The verification phase usually generates feedback on er-
rors in the FT specification and hints on how to fix them. The
verification phase iterates on each fixed version of the model,
possibly with different upper bounds of the number of class
instances, until a reasonable confidence on the quality of the
specification has been achieved.

4.1 T-Tool functionalities

4.1.1 Animation

An advantage of formal specifications is the possibility to an-
imate them. Through animation, the user can obtain imme-
diate feedback on the effects of constraints. An animation
session consists of an interactive generation of a valid sce-
nario for the specification. Stepwise, the T-Tool proposes to
the user next possible valid evolutions of the animation and,
once the user has selected one, the system evolves the state of
the animation. Animation allows for a better understanding
of the specified domain, as well as for the early identification
of trivial bugs and missing requirements that are often taken
for granted, and are therefore difficult to detect in an infor-
mal setting. Animation also facilitates communication with
stakeholders by generating concrete scenarios for discussing
specific behaviors.

4.1.2 Consistency checks

Consistency checks are standard checks to guarantee that the
FT specification is not self-contradictory. Inconsistent speci-
fications occur quite often due to complex interactions among
constraints in the specification, and they are very difficult to
detect without the support of automated analysis tools. Con-
sistency checks are performed automatically by the T-Tool
and are independent of the application domain. The simplest
consistency check checks whether there is any valid scenario
that respects all the constraints of the FT specification. An-
other consistency check verifies whether there exists a valid
scenario where all the class instances specified by input pa-
rameters will be eventually created. This check aims at ver-
ifying whether these parameters violate any cardinality con-
straint in the specification. The T-Tool also checks whether

there exists a valid scenario where all the instances of a par-
ticular goal or dependency will be eventually created and ful-
filled, i.e., the fulfillment conditions for that goal or depen-
dency are “compatible” with other constraints in the specifi-
cation.

4.1.3 Possibility checks

Possibility checks verify whether the specification is over-
constrained, that is, whether we have ruled out scenarios ex-
pected by the stakeholders. When a possibility property of the
FT specification is checked, the T-Tool verifies that there are
valid traces of the specification that satisfy the condition ex-
pressed in the possibility. The expected outcome of a possibil-
ity check is an example trace that confirms that the possibility
is valid. In a sense, possibility checks are similar to consis-
tency checks, since they both verify that the FT specification
allows for certain desired scenarios. Their difference is that
consistency is a generic formal property independent of the
application domain, while possibility properties are domain-
specific.

4.1.4 Assertion checks

The goal of assertion properties is dual to that of possibili-
ties. The aim is to verify whether the requirements are under-
specified and allow for scenarios violating desired properties.
Unsurprisingly, the behavior of the T-Tool in the case of as-
sertion checks is dual to the behavior for possibility checks,
namely, the tool explores all the valid traces and checks
whether they satisfy the assertion property. If this is not the
case, an error message is reported and a counter-example
trace is generated. Such counter-examples facilitate the detec-
tion of problems in the FT specification that caused the asser-
tion violation. For instance, in the course-exam management
case study, a sample assertion is “a student can never pass a
course without taking all the exams of the course and without
doing a research project”. If this (quite reasonable) assertion
is false, the T-Tool will produce a trace that shows under what
circumstances the student can pass the course without pass-
ing exams and doing a research project. Discussions with the
stakeholder may then clarify whether the trace produced cor-
responds to a valid scenario (and hence the assertion has to be
changed) or whether the FT specification has to be strength-
ened in order to prohibit the counter-example.

4.2 The T-Tool architecture

The T-Tool performs the verification of an FT specification in
two steps (see Figure 13). In the first step, the FT specification
is translated into an Intermediate Language (IL) specification.
In the second step, the IL specification is given as input to
the verification engine, which is built on top of the NUSMV
model checker [8].
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Fig. 13. The T-Tool framework.

4.2.1 From FT to IL

The FT2IL module takes care of the translation of an FT
specification to a corresponding IL specification. Moreover,
it translates back in FT the counter-examples scenarios pro-
duced by the verification engine. Thus, the internals of the
verification engine are hidden to the user.

IL can be seen as a simplified version of FT, where the
syntactic sugar of the FT language is removed. The focus of
IL is on the dynamic aspects of the application domain. In
Figure 14, we give an excerpt of the IL translation for our
running example. An IL model consists of three parts: class
declarations, constraints, and assertion & possibility proper-
ties.

The class declarations (keyword CLASS) define the data
types of the specification. Their instances represent entities,
actors, and dependencies (i.e., the outer layer) of the FT spec-
ification. We note that some attributes, not explicitly declared
as such in the FT specification, are added to class definitions
during the translation. This is the case, for instance, for the
attribute actor of type Student for classes PassExam and In-
tegrity, as well as for the attributes depender and dependee,
respectively of type Student and Teacher, for dependency
Mark. A Boolean attribute fulfilled is added to classes corre-
sponding to goals, task, resources, and softgoals. Notice that,
fulfillment is a primitive concept in FT (Fulfilled predicate),
while in IL it is encoded as a state variable (attribute ful-
filled). This is an example of the change of focus that occurs
when translating an FT specification into IL. However, the IL
still allows for the dynamic creation of class instances. For in-
stance, in Figure 14, predicate JustCreated is used in the fifth
constraint to check whether a given instance of a class has
been created in the current time instant of a scenario.

Constraint formulas (keyword CONSTRAINT) restrict the
valid temporal behaviors of the system. Some of these formu-
las model the semantics of an FT specification. For instance,
the first two constraint formulas in Figure 14 express respec-
tively the fact that attribute course of all instances of Exam
and attribute actor of all instances of Pass[Exam] are con-
stant. Other formulas correspond to the temporal constraints
that constitute the inner layer of the FT specification. For in-
stance, the third and fifth constraint formulas in Figure 14
correspond to the creation condition of classes Mark and In-

/* Class declarations */

CLASS Exam
course : Course

CLASS Course

CLASS Teacher

CLASS Student

CLASS PassExam
actor : Student
fulfilled : boolean
exam : Exam
pass course : PassCourse

CLASS Integrity
actor : Student
fulfilled : boolean

CLASS GetPassingMark
actor : Student
fulfilled : boolean
exam : Exam
pass exam : PassExam

CLASS Mark
dependee : Teacher
depender : Student
fulfilled : boolean
exam : Exam
gpm : GetPassingMark
passed : boolean

/* Constraint formulas */

CONSTRAINT /* Attribute course of entity Exam is constant */
�

e : Exam (
�

c : Course (e.course � c � X e.course � c))

CONSTRAINT /* Actor of goal PassExam is constant */
�

pe : PassExam (
�

s : Student (pe.actor � s � X pe.actor � s))

CONSTRAINT /* Creation condition of dependency Mark */
�

m1 : Mark ( � m2 : Mark ((m2 � m1
� � Y m2 � m2)) �

� m1.gpm.fulfilled)

CONSTRAINT /* Invariant of dependency Mark */
�

m1 : Mark ( � � m2 : Mark (m2 �� m1
�

m2.gpm � m1.gpm))

CONSTRAINT /* Creation definition of Softgoal Integrity */
�

i : Integrity (JustCreated (i) � JustCreated (i.actor))

CONSTRAINT /* Fulfillment condition of dependency Mark */
�

m : Mark ((m.fulfilled
� � Y m.fulfilled) �� im : InitialMarking (im.exam � m.exam

�
im.actor � m.dependee

�
im.fulfilled))

/* Assertions & Possibilities */

POSSIBILITY /* Possibility P2 */� pc : PassCourse (pc.fulfilled
�

� � pe : PassExam (pe.pass course � pc
�

pe.fulfilled))

ASSERTION /* Assertion A2 */
�

m : Mark (m.fulfilled �� a : Answer (a.dependee � m.depender
�

a.depender � m.dependee
�

a.exam � m.exam
�

a.fulfilled))

Fig. 14. Excerpt of the IL translation for our running example.

tegrity respectively. The fourth constraint corresponds to the
cardinality constraint for class Mark.
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In IL constraints on the fulfillment and creation of classes
are no longer syntactically anchored to the corresponding
class. There is thus the need to give them a “context” to pre-
cisely define their meaning. This context is provided by the
translation rules that map an FT specification into a corre-
sponding IL one. For instance, the fulfillment condition

�
of

a dependency D with an achieve modality is mapped into a
constraint of the form

�
d : D ((d.fulfilled

� � Y d.fulfilled) ��� )

stating that “when an achieve dependency becomes fulfilled,
its fulfillment condition should hold”. This is the rule that
has been applied to the fulfillment condition of dependency
Mark in Figure 6 which results in the sixth constraint of Fig-
ure 14. In the translation from FT to IL, auxiliary temporal
operators are added to the IL specification. Not only these
operators depend on the kind of formula being translated, but
also on the mode of the dependency. For instance, in the case
of a maintain dependency, the translation of the fulfillment
condition

�
is given by the rule

�
d: D (d.fulfilled � (G � � H � ))

stating that “if a maintain dependency is fulfilled, then its
conditions should hold during the full lifetime of the depen-
dency”. Similar rules apply also to goals, softgoals, task and
resources.

The possibility and assertion formulas (keywords POSSI-

BILITY and ASSERTION respectively) state expected properties
of the behavior of the system. They correspond to the asser-
tion and possibility properties of the FT specification. No-
tice that, also in the translation of assertions and possibilities,
there is the need to add a context (see the assertion in Fig-
ure 14).

The semantics of an IL specification is given in terms of
sets of scenarios, where each scenario is an infinite sequence
of states. Each state consists of a set of instances of the classes
of the IL specification and of a definition of the values of
the attributes of these instances. Valid states must conform to
the attribute sorts declared in the specification. A valid sce-
nario is a sequence of valid states that satisfy all the temporal
conditions expressed in the CONSTRAINT declarations of the
specification. We refer to [10] for a precise definition of the
semantics of the IL.

The IL plays a fundamental role in bridging the gap be-
tween FT and formal methods. First of all, it is much more
compact than FT, and therefore allows for a much simpler
formal semantics, as discussed above. Second, it is rather
independent of the particular constructs of FT. By moving
to different domains, it will probably become necessary to
“tune” FT, for instance by adding new modalities for the de-
pendencies. The formal approach described in this paper can
be also applied to these dialects of FT, at the cost of defin-
ing a new translation. Furthermore, the IL can be applied to
requirements languages that are based on a different set of
concepts than those of FT, such as KAOS [17]. Finally, the
IL, while more suitable to formal analysis, is still indepen-
dent from the particular analysis techniques that we employ.

For the moment, we have applied only model checking tech-
niques; however, we plan to also apply techniques based on
satisfiability or theorem proving.

4.2.2 The model checking verification engine

The actual verification is performed by NUSMV [8].
NUSMV is a state-of-the art model checker based on sym-
bolic model checking techniques. Symbolic techniques have
been developed to reduce the effects of the state-explosion
problem, thereby enabling the verification of large designs [9,
18]. NUSMV adopts symbolic model checking algorithms
based on Binary Decision Diagrams (BDD) [6] and on propo-
sitional satisfiability (SAT) [4]. BDD-based model checking
performs an exhaustive traversal of the model by consider-
ing all possible behaviors in a compact way. Such exhaustive
exploration allows BDD-based model checking algorithms
to conclude whether a given property is satisfied (or falsi-
fied) by the model. On the other hand, this exhaustive explo-
ration makes BDD-based model checking very expensive for
large models. SAT-based model checking algorithms look for
a trace of a given length that satisfies (or falsifies) a property.
SAT-based algorithms are usually more efficient than BDD-
based algorithms for traces of reasonable length, but, if no
trace is found for a given length, then it may still be the case
that the property is satisfied by a longer trace. That is, SAT-
based model checking verifies the satisfiability of a property
only up to a given length, and is hence called Bounded Model
Checking (BMC) [4]. The T-Tool exploits both BDD-based
and SAT-based model checking.

Several extensions have been applied to the NUSMV
model checker to allow for the verification of IL specifica-
tions. An IL2SMV module has been added. It takes an IL
specification and builds a finite state machine in the NUSMV
format. Given the IL specification and the upper bounds of the
number of class instances (# in Figure 13), IL2SMV synthe-
sizes a model for the specification. The states of the model
respect the CLASS part of the IL specification, while its transi-
tions are those that respect the temporal specification defined
by the CONSTRAINT formulas. Since the NUSMV formalism
does not allow for the creation of new objects at run-time,
during the translation a special flag is added to each class to
deal with instance creation. Quantifiers in IL are interpreted
over the number of class instances that exist in the current
state. To construct the model, IL2SMV adopts the synthesis
algorithm for LTL specification provided by NUSMV. An
immediate outcome of the synthesis process is consistency
checking. In fact, if a specification is inconsistent with re-
spect to the declared number of instances, the synthesis pro-
cess fails and no automaton is built.

A new more flexible interactive animator has also been
added to NUSMV. It allows both for an interactive explo-
ration of the automaton, and for a random execution of a cer-
tain number of steps. Finally, the BMC engine has been ex-
tended with past operators [2] to allow for the verification of
ASSERTION and POSSIBILITY formulas against the executions
of the automaton.
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4.3 Heuristics for model construction and property
verification

The T-Tool builds a finite state model from an infinite state
specification. Thus, an upper bound of the number of class in-
stances has to be specified in the FT specification. The choice
of the upper bound plays a critical role in the verification
step. There can be bugs that only appear when a certain num-
ber of class instances are allowed, as well as valid scenarios
that require a given number of class instances. Therefore, the
checks performed by the T-Tool only guarantee the correct-
ness of the specification with the considered number of class
instances. In practice, it is convenient to generate and check
various models with different number of class instances, so
that a larger set of possible cases is covered in the verifica-
tion. As we set the upper bound of class instances, three basic
approaches are used. First, a uniform upper bound can be set
for all classes, e.g., a 1-instance or a 2-instance case. Second,
according to the cardinality constraints in the i* model, dif-
ferent upper bounds can be set for different groups of classes,
e.g., there is 1 teacher vs. 2 students, 1 course vs. 2 exams,
etc. Third, a subset of the classes can be selected for instan-
tiation, based on the property to be verified. No instance is
allowed for the classes that are not selected. This approach is
referred to as the reduced case.

For complex FT specifications, verification of properties
against a given model can take a very long time and can
require considerable effort. For this situation, we provide
some guidelines for an effective application of the verifica-
tion methods supported by the T-Tool.

For possibility (and consistency) checks, SAT-based
bounded model checking techniques are preferable, as they
are very effective in finding scenarios of bounded length that
satisfy a given property. Since most scenarios are actually
short, if no scenario is found within reasonable length (typi-
cally 5 to 10 steps), then it is likely the case that the possibil-
ity cannot be satisfied. In this case, direct inspections of the
specification and interactive animations have shown to be ef-
fective means for finding the problem in the FT specification.

For assertion checks, SAT-based bounded model check-
ing techniques can only be used to give preliminary results.
In fact, these techniques are able to find counter-examples if
the given assertion is false, but are able to prove the truth of
the assertion only up to a given length of the possible counter-
examples. To guarantee that an FT specification satisfies a
given assertion, BDD-based techniques are a must, since they
allow for an exhaustive analysis of the model. A strategy that
can help when checking assertions using BDD-based tech-
niques is to consider only a subset of the constraints in the FT
specification. The rationale behind this is that whenever we
check an assertion � on a specification composed of a finite
set � of constraints ��� with ����� , we are looking for solutions
to the following problem: 	 ��
� � ��� � . If we can derive a
positive answer using a subset ����� of constraints, the job
is done. Indeed, the more constraints we add, the more re-
stricted is the behavior of the system. Since we are interested
in verifying that all possible scenarios compatible with the

specification satisfy � , if we prove that � holds in an under-
constrained system, � must hold in the more constrained sys-
tem. If we fail in checking the property we need to consider
a new set of constraints � , such that ��������� , and iterate.
The counter-example produced for subset � can guide the se-
lection of new constraints to be added to � , since it exhibits
a possible behavior that violates relevant constraints not yet
considered. This iterative process will eventually terminate
since the set of constraints � is finite. While in theory the ini-
tial set of constraints can be chosen arbitrarily (e.g., it can be
the empty set), in practice starting with a good guess for �
is very important to reduce the number of iterations. In most
practical cases, the user has in mind the reason why a given
assertion needs to hold and how to exploit such knowledge
to choose a suitable set � . We remark that the “abstraction”
techniques described here are common practice in the model
checking community [3].

5 Experimental results

Following the guidelines described in the previous sections,
we have conducted several iterations of experiments. Dur-
ing each iteration, an FT specification was validated by hu-
man inspection, animation, consistency checking, and pos-
sibility/assertion verification. Whenever a bug was detected,
the FT specification (and, in some cases, the i* model) was
revised, and a new iteration was performed. This iterative re-
finement of the specification ended when all checks on the FT
specification were successful.

5.1 Setup of the experiments

In order to illustrate the performance of the tool, and
the verification process, we present the experiments re-
sults of an intermediate version of the FT specification
that still contains some bugs. Moreover, we report the
results only for some of the assertions and possibilities
that are present in the model, namely for assertions A1-
4 and for possibilities P1-4 in Figure 7. More results can
be found at the URL http://sra.itc.it/tools/
t-tool/experiments/cm.

To stress the scalability of the proposed verification tech-
niques, we have performed the tests considering models of
different size. More precisely, we have considered different
upper bounds to the number of instances for each class. We
report here the case of 1 and 2 instances for each class,
and one intermediate 1..2 case where we allow 2 instances
for some classes (in particular, the student and its goals and
tasks), but only 1 instance for other classes (the teacher and
its tasks, and the course). Moreover, we experimented with
the different model checking techniques, namely SAT-based
bounded model checking (“BMC” in the tables), BDD-based
model checking (“BDD”), and, in the case of assertions,
BDD-based model checking on reduced models, as described
in Section 4.3 (“BDD-reduced”). The case study is composed
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Possibility Checks
1 instance 1..2 instances 2 instances

BMC BDD BMC BDD BMC BDD
P1 Valid[3] Valid[3] Valid[3] Undecided Valid[3] Undecided

9.4sec / 29Mb 1786sec / 64Mb 55.7sec / 77Mb T.O. 860sec / 295Mb M.O.
P2 Valid[3] Valid[3] Valid[3] Undecided Valid[3] Undecided

9.3sec / 29Mb 1719sec / 63Mb 55.6sec / 77Mb T.O. 842sec / 295Mb M.O.
P3 Valid[4] Valid[5] Valid[4] Undecided Valid[4] Undecided

14.2sec / 38Mb 1979sec / 64Mb 94.9sec / 96Mb T.O. 1629sec / 375Mb M.O.
P4 Undecided[10] Invalid Undecided[10] Undecided Undecided[4] Undecided

105sec / 84Mb 1626sec / 64Mb 2143sec / 237Mb T.O. T.O M.O.

Table 1. Results for possibility checks.

Assertion Checks
1 instance 1..2 instances

BMC BDD BDD-reduced BMC BDD BDD-reduced
A1 NoBug[10] Valid Valid NoBug[10] Undecided Valid

100sec / 83Mb 1298sec / 64Mb 0.3sec / 2Mb 1086sec / 237Mb T.O. 30.8sec / 4.2Mb
A2 NoBug[10] Valid Valid Invalid[3] Undecided Invalid[7]

111sec / 84Mb 1295sec / 64Mb 44sec / 17Mb 57.6sec / 77Mb T.O. 757sec / 100Mb
A3 NoBug[10] Valid Valid NoBug[10] Undecided Undecided

107sec / 83Mb 2110sec / 64Mb 2.5sec / 4Mb 2837sec / 234Mb T.O. T.O.
A4 NoBug[10] Valid Valid NoBug[9] Undecided Undecided

114sec / 83Mb 1297sec / 63Mb 0.1sec / 2Mb T.O. T.O. T.O.

Table 2. Results for assertion checks.

of 33 classes and 229 constraints. The model with 1 instance
per class requires 477 Boolean state variables, while the 2 in-
stance requires 1077 Boolean state variables. Thus, the state
space grows from �

�����
to � �

�����
states while moving from the

1 instance to the 2 instance per class.

5.2 Results

The results of the experiments carried out are reported in Ta-
ble 1 and Table 2. The experiments were executed on a PC
Pentium III, 700 MHz, 6GB of RAM, running Linux. All the
verification tests have been executed with a time limit of 3600
seconds (1 hour) and memory limit of 1GB. For each problem
we report the CPU time in seconds and the amount of mem-
ory in MB. With “T.O.” we mark the experiments that did not
complete within the time limit, while with “M.O.” we mark
those experiments that exced memory limits. The maximum
length considered for bounded model checking experiments
is 10.2 The experiments show that:

1. Possibilities P1-3 are valid, and witness scenarios of
length 3, 3 and 4 are produced by the T-Tool.

2. Possibility P4 is invalid. No witness scenario is found up
to length 10 for the 1 and 1..2 instances and up to length 4
for 2 instances. An analysis of the specification shows that
possibility P4 (“A teacher expects an exam answer from
a student that does not intend to pass the exam”) cannot
occur, because we have assumed that the teacher knows
which students want to pass the exam (e.g., by requiring
them to register). This possibility has been removed in the
final version of the FT specification.

2 The experiments confirm that this is a reasonable bound: all generated
witness scenarios and counter-examples are of length 5 or shorter.

3. Assertions A1, A3, and A4 are correct. No counter-
example scenarios are found in the performed checks.

4. Assertion A2 is false. A counter-example of length 3 is
found in the 1..2 instances case. This is due to a missing
creation condition for dependency Mark that allows the
teacher to assign marks to students that have not provided
exam answers. This bug has been fixed in the final version
of the FT specification. We remark that in the case of 1
instance no counter-example is found. This is right since,
according to the FT specification, the teacher only starts
marking if at least one student takes the exam.

5.3 Discussion

5.3.1 Effectiveness

For our case study, the proposed approach was effective in
producing an FT specification of good quality. It also led to an
improved understanding of the domain by revealing several
tricky aspects of the case study. The validation techniques
provided by the T-Tool have been useful in detecting bugs,
while animation was useful during early validation steps by
identifying trivial bugs. For instance, due to a missing cre-
ation condition for the student goal TakeExam, a student was
allowed to try to take an exam even if no teacher was giving
it. Likewise, the consistency checks have been able to de-
tect a trivial error in the creation condition of student’s goal
Study, which did not allow two students to study the same
course. The validation of assertions and possibilities has re-
vealed subtle bugs due to the interaction of different goals,
dependencies and constraints. For instance, due to an error in
the fulfillment condition of ReceiveAnswers, a student could
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prevent the teacher from fulfilling the task GiveExam by
declaring her intention to take the exam and by never taking
it. In another case, a student could not decide on the fairness
of marking (softgoal FairMarking) even after she received a
Mark, since she was expecting a marking scheme from the
wrong teacher. This was due to a missing creation condition
in the dependency FairMarkingScheme. In both cases, the
T-Tool’s ability to generate counter-examples helped in pin-
pointing the problem.

A limiting factor of the current framework consists in the
fact that correctness of the specification can be asserted up to
the considered upper bounds of the number of class instances.
We are currently investigating heuristics and techniques for
choosing upper bounds that guarantee the correctness of the
FT specifications regardless of the upper bounds.

5.3.2 Performance

The performance results on the T-Tool are very encourag-
ing, even though further work is needed in order to allow for
a black box usage of these techniques. The fact that the T-
Tool allows for the usage of different verification techniques
is a very important factor for its effectiveness. In particular,
BDD-based and BMC-based model checking complement
each other. BMC-based verification is efficient in checking
possibility properties. On average, a valid scenario for a pos-
sibility property can be produced in a few seconds. BMC-
based verification is also good for a preliminary verification
of assertion properties. On the other hand, BDD-based model
checking does not work in practice for large models with big
state spaces.

The experiments show that the usage of the abstraction
techniques described in Section 4.3 for checking assertions
on a reduced model is very promising. For most properties,
the use of these techniques has resulted in speed-ups of one
to two orders of magnitude with respect to the case of the
whole model. This allows us to check the correctness of as-
sertions for the 1..2 instances case, but is not enough for the
2-instances case.

The animation of the specification was useful, but it
should be improved by reducing the setup time and by im-
proving its usability, e.g., allowing the automated generation
of a scenario given a set of target states.

6 Related work and conclusions

In this work, we have proposed a framework for the speci-
fication and verification of early requirements. This frame-
work includes FT, a formal specification language for early
requirements, and the T-Tool, a tool that supports the verifi-
cation of FT specifications. The T-Tool is based on NUSMV,
an open architecture for model checking. In our experience,
the possibility of extending NUSMV with new functionality
(e.g., a new input language, past operators, enhanced anima-
tor) has been crucial for its effective application to the anal-

ysis of FT specification. Finally, we tested the scalability of
the approach through a number of experiments.

An important contribution of this work is to demonstrate
that formal analysis techniques are useful during early de-
velopment phases. The novelty of the approach lies in ex-
tending model checking techniques — which rely mostly on
design-inspired specification languages — so that they can
be used for early requirements modeling and analysis. Our
results suggest that the approach is successful in identifying
subtle bugs that are difficult to detect in an informal setting.
Moreover, such bugs can be detected even when we consider
examples with a small number of instances.

Formal analysis is often used to verify correctness of
specifications, but it is usually applied in later phases. For
instance, in [1,14] formal verification techniques were used
for the analysis of specifications expressed in the SCR for-
malism. In [7] NUSMV is used for the verification of RSML
specifications. The works that are the most relevant to our
work are Alcoa/Alloy [16,15], KAOS [17], and the work
on “Topoi Diagrams” [19]. Alcoa [16] is a tool for analyz-
ing object models that describe the architectural or struc-
tural properties of system design. It has been used to ver-
ify various architectural frameworks, protocols, and schemes.
The input language – Alloy [15] – is a notation based on Z,
but has been tailored to fit object models and is amenable
to automatic analysis. Similarly to the T-Tool, Alcoa uses
SAT-based bounded model checking for assertion analy-
sis (under-specify checking) and possibility analysis (over-
specify checking). The main differences between Alcoa and
the T-Tool is their focus on different applications (object
vs requirements models). Moreover, the T-Tool supports a
broader set of verification techniques, including BDD-based
model checking and heuristics for reducing the model size
for proving assertion properties. KAOS [17] is a framework
that supports (early) requirements analysis. It shares with
FT the goal- and agent-oriented flavor. Also the design of
the temporal logic component in FT has been inspired by
KAOS. The main difference between the two frameworks is
in the analysis techniques used. The T-Tool supports auto-
matic model checking verification techniques, while KAOS is
based on interactive theorem proving techniques. Topoi dia-
grams [19] represent statements of gradual influence between
variables (e.g., the more X, the more Y) and can be used in
system requirements to describe how designers believe influ-
ence should propagate through a system. Topoi diagrams are
related to i* diagrams, where intentional links describe influ-
ences between the intentional elements of a domain. On top
of the topoi diagrams, temporal logic formulas describing a
property of the model can be checked. The focus of this ap-
proach is limited to formulas of a specific form that check
whether a given input results in an expected output. More-
over, the framework in [19] is based on explicit state model
checking techniques [9], rather than on symbolic techniques.

There are several directions for further research. First, we
are investigating the use of techniques that guarantee that an
FT specification is correct with no qualifications. We are also
working on the refinement and the automation of the veri-
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fication process. For example, we are developing heuristics
for choosing the set of constraints considered while proving
a property, and also heuristics for automatically alternating
phases where the tool tries to prove the validity of a model,
and phases where it tries to find bugs. We are also investigat-
ing optimizations of the model generator and advanced ab-
straction techniques that exploit, for instance, possible sym-
metries in the specification. Finally, we are planning to de-
velop a graphical front end to the T-Tool, that will allow the
user to write the FT specifications as annotations of an i*
model, and to see the scenarios produced by the T-Tool as
animations of the i* diagrams [21].
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