
Formal Verification of Requirements usingSPIN:
A Case Study on Web Services∗

Raman Kazhamiakin Marco Pistore
DIT, University of Trento

Via Sommarive 14, I-38050, Trento, Italy
{raman,pistore}@dit.unitn.it

Marco Roveri
ITC-irst

Via Sommarive 18, I-38050, Trento, Italy
roveri@irst.itc.it

Abstract

In this paper we describe a novel approach for the for-
mal specification and verification of distributed processes
in a Web service framework. The formal specification is
provided at two different levels of abstraction. Thestrategic
leveldescribes the requirements of the Web service domain,
in terms of the different actors participating to it, with their
goals and needs and with their mutual dependencies and
expectations. Theprocess levelshows how these require-
ments are operationalized into communicating processes
running on the different Web servers. We model the strate-
gic level exploitingFormal Tropos(FT), a language for the
formal definition of the requirements of agent-oriented sys-
tems which is based on Linear Time Logic. We model the
process level usingPromela, a language designed to de-
scribe communicating concurrent processes and amenable
to formal verification. We exploit theSPIN model checker to
performV&V tasks. At the strategic level, requirements are
validated against queries formulated by the designer, while
at the process level the Promela specifications are verified
against the requirements. The implementation of these V&V
tasks requires the definition of a novel procedure to encode
the FT requirements in Promela. The experiments described
in the paper show that the approach is effective in reveal-
ing possible flaws both in the strategic and in the process
models.

1. Introduction

Requirements engineering is the very first step of a sys-
tem development process. It concerns the precise identifica-
tion of stakeholders’ needs about the system-to-be, and aims
to map them to specifications of the required software be-
haviors. Errors and ambiguities in requirements have been
widely recognized as one of the major sources of problems

∗This work has been supported in part by the FIRB-MIUR project
RBNE0195K5 “Astro”.

in software development. Despite its criticality, require-
ments are often described only in natural language and re-
quirements analysis techniques are rarely applied.

The Tropos project (http://www.troposproject.org/)
aims to develop a requirements driven software engineer-
ing methodology for agent-oriented, distributed systems.
Tropos provides graphical notations for requirements mod-
els, based on concepts like actors, goals, and dependencies
among actors. Moreover, it adopts a variety of tools and
techniques to support the analysis of the requirements mod-
els. In particular, Tropos provides a formal specification
language, calledFormal Tropos(hereafter FT). FT supple-
ments the graphical notations with a first-order Linear Tem-
poral Logic (LTL) suitable for automated verification. In
FT, the graphical notations allow for the description of the
“structural” aspects of the requirements model, for instance
in terms of the network of relationships and dependencies
among actors. The temporal logic permits to represent also
the “dynamic” aspects of the model, describing for instance
when an actor’s goal can be considered fulfilled, or how
the network of dependencies among actors evolves over
time. This logical specification consists of a set of LTL con-
straints “anchored” to the different structural components of
the model. In previous works [7] we have shown how to use
the model checking techniques provided byNUSMV [2] to
perform different kinds of formal analysis, such as consis-
tency checking, animation of the specification, and property
verification. In our experience, this formal analysis allows
for a more precise understanding of the requirements model,
and can reveal gaps and inconsistencies in the requirements
that are difficult to discover in an informal setting.

A problem left open by the previous investigations is
how to extend the formal analysis of a FT specification to
the later phases of the software engineering process, such
as architectural and detailed design and implementation.
In this paper we do a step in this direction by consider-
ing a specific application domain, namely Web services.
This domain is particularly interesting, since it allows for
some simplifying assumptions. First, the architectural de-

sign phase is simplified by the fact that Web services al-
ready assume a specific (service-oriented) software archi-
tecture. Second, in many cases the detailed design of the
Web services is limited to the definition of the processes im-
plementing them. This can be done using process descrip-
tion languages like BPEL4WS [3], an emerging standard
for specifying and executing distributed Web services.

In the paper we show how a FT requirements specifica-
tion of a Web service system can be stepwise refined into
a detailed design by extending it with process descriptions.
We also show how model checking techniques can be ex-
ploited to validate the requirements model, as well as to
verify the processes against these requirements. More pre-
cisely, we exploit the Promela [9] language for the defini-
tion of the Web service processes. Promela is a formal spec-
ification language for distributed systems which offers com-
munication and concurrency primitives inspired by process
algebras. Moreover, its specifications can be verified using
the SPIN [9] model checker. Promela allows for a descrip-
tion of Web service processes which is similar to the one
that can be written in languages like BPEL4WS.

In order to verify FT models enriched with Promela pro-
cesses, we have extended the verification tool for FT de-
scribed in [7] with a new back-end based onSPIN. While
translating FT into Promela, we model each FT component
as a separate process. Following the standard approach in
SPIN, the LTL constraints on the “dynamics” of the model
are translated into Promela code, which is then composed
with the other processes in order to carry out the verifica-
tion tasks. In the translation we need to face the problem of
the size of the LTL formulas that need to be translated. In-
deed, these formulas are generated as the conjunction of the
constraints associated to the different components of the FT
model. While each constraint is a small LTL formula, the
composed formula is huge and the standard approaches for
LTL verification provided bySPIN do not work on it. The
solution that we have adopted is to translate separately the
different constraints that appear in the FT specification and
to join the generated pieces into a special process aimed to
check constraint satisfaction at each system step.

In the paper we describe some experiments we have con-
ducted on a small case-study in the Web service domain.
The experiments test the effectiveness of the approach, and
compare the results with those obtained usingNUSMV.
The results show thatSPIN is able to carry out most of the
considered verification tasks, both at the requirements level
and at the process level.NUSMV has a better performance
and can handle larger verification tasks, but its applicability
is limited to the verification of the requirements model.

The paper is structured as follows. In the section 2 we
briefly discuss some aspects of Web service technology that
are relevant for understanding the approach proposed in the
paper. Section 3 introduces the Formal Tropos methodology
on a case study. Section 4 describes how we encode an

FT specification intoSPIN, while in Section 5 we report
the results of the experiments. Finally, Section 6 discusses
related work, draws conclusions and outlines future work.

2. Web Services

Web services are an emerging technology for building
complex distributed systems focusing on interoperability,
support for efficient integration of distributed processes,
and uniform applications representation. Different services,
provided by different organizations, perform basic activi-
ties that, combined in suitable ways, allow for the definition
of complex business processes. Using Web service tech-
nology, companies can describe and publish their services,
together with the information on how they can be invoked
and composed. Moreover, Web services support the interac-
tions among the different partners by providing a model of
synchronous or asynchronous exchange of messages. These
messages exchanges can be composed into longer interac-
tions by defining protocols constraining the behavior of all
partners.

The terms orchestration and choreography are often
used to refer to the two key aspects of process composi-
tion. In an orchestrationthe composed process is con-
sidered from the perspective of one of the business par-
ties, while thechoreographydescribes the interactions from
a global, neutral perspective, in terms of valid conver-
sations or protocols among the different parties. Web
services have developed different languages for orches-
tration and choreography (BPEL4WS, WSFL, WSCI. . .).
Among them, BPEL4WS [3] is quickly emerging as the
language of choice for the description of process interac-
tions. BPEL4WS provides core concepts for the definition
of business process in an implementation-independent way.
It allows both for the definition of internal business pro-
cesses and for describing and publishing the external busi-
ness protocol that defines the valid interactions. Therefore,
BPEL4WS permits to describe both the orchestration and
the choreography of a business domain with an uniform set
of concepts and notations.

While aiming to work together and to provide inter-
enterprise Web service-based applications, companies do
not want to disclose their internal processes and try to keep
the ability to reorganize their processes in order to adapt to
the strategy changes. In order to manage these changes the
requirements should be tightly integrated with the Web ser-
vice processes. Moreover, in order to provide reliable appli-
cations, the formal verification of conformance of the busi-
ness process with the corresponding requirements model is
of vital importance. The high level of abstraction intro-
duced by Web services and the related technologies for ser-
vice composition enable these integration and analysis in an
implementation- independent way.

In the following sections we will show how the require-

Citizen

Service
ProviderBank

Health-
care

Agency
Being

Assisted

Receive
Assistance

Payment

Private Fee

Balance

Provide
Service

Being Paid

Provide Fair
Assistance

Provide
ServicePublic Fee

Figure 1. Tropos model of the case-study

ments models may be represented in the Tropos framework,
how the process description may be integrated with the re-
quirements model, and how formal analysis of these models
is carried out.

3. Modeling Requirements and Processes

We consider a case-study in the field of public welfare,
extracted from a larger domain concerning the local govern-
ment of Trentino (Italy). In the case-study a senior citizen
aims at being assisted, e.g., receiving services like trans-
portation or meals at home. The assistance to citizens is
managed by the Health-care Agency, that is run by the Lo-
cal Government, and that aims at providing fair assistance to
citizens. The Health-care Agency delegates to external ser-
vice providers the actual delivery of the assistance services.
The financial aspects of the Local Government are handled
by a Bank that is in charge of paying the service providers
and of asking the citizen for the fee corresponding to the
used service. The interaction among the different parties is
required to happen via Web services and to be specified and
implemented using BPEL4WS.

3.1. Specifying Requirements in Formal Tropos

TheTropos modeling language provides graphical nota-
tions for modeling requirements [15]. It focuses on mod-
eling and understanding the strategic aspects underlying the
organizational framework within which the software system
will eventually function. Thus it allows to better identify the
motivations for the software system and the role that it will
play inside the organizational framework. Figure 1 is a Tro-
pos diagram that describe theactors(circles) participating
to the case-study, and their strategic high-levelgoals (the
ovals attached to the actors). For instance, in the diagram
we haveCitizen that aims at being assisted;HealthcareAgency

that aims at providing a fair assistance to the citizens;Ser-

viceProvider which goal is to provide a specific service; and
Bank which handles the government’s finances. Tropos al-
lows for the description of the interactions among the differ-
ent parties of the domain at the strategic level relying on an

intent/offer matching mechanism. This mechanism is repre-
sented in the diagram by means ofdependencies(the ovals
linked to two different actors). For instance, the Citizen
depends on the Health-care Agency for being assisted, and
this is formulated in the model with theReceiveAssistance

dependency.
Starting from this high-level view of the organizational

or business system, Tropos proceeds with an incremental
refinement. Goal analysis techniques are used to transforms
the high level goals of one of the actors into sub-goals and
eventually to operationalize them into tasks (see Fig. 2, left).
In our case-study, the goal analysis is simple: theCitizen

refines the goalBeingAssisted into the DoRequest and Pay

tasks (hexagons), the goalReceiveService, and the soft-goal
(cloud) QualityService. The tasks are supposed to be imple-
mented by software modules, while the goals that remain
in the model after the goal analysis represent activities that
are not carried out electronically (e.g., the assistance ser-
vices are delivered physically). Finally, soft-goals are used
to describe non-functional conditions, with no clear-cut cri-
teria as to when they are achieved (e.g., the citizen has some
constraints on the quality of the delivered services).

The goal analysis phase is followed by a task refinement
phase, where the high-level tasks are decomposed into sub-
tasks. In Fig. 2, taskDoRequest is further refined intoIni-

tialRequest, ProvideInformation, WaitAnswer. In this case, the
three sub-tasks are composed sequentially, but other forms
of task decomposition are also possible, e.g., parallel com-
position, choice, iteration. . . The task decomposition pro-
cedure ends once we have identified all basic tasks that de-
fine the process. As a last step in the definition of busi-
ness requirements, we associate to the basic tasks the mes-
sages that describe the basic interactions among actors. For
instance, taskInitialRequest requires to send a messageRe-

quest to HealthcareAgency. This message is received and pro-
cessed by the taskReceiveRequest of HealthcareAgency. The
taskAskAdditionalInfo is implemented by sending a message
InfoRequest to the Citizen which receives and processes it
within taskProvideInformation and responds with anInfo mes-
sage. Once sufficient information has been gathered, the
HealthcareAgency sends aResponse message to theCitizen.

These refinement steps are represented in Fig. 2 at three
levels: a strategic level, an activity level, and a message
level. All these levels are part of the requirements model,
in the sense that they define different aspects of the require-
ments a valid implementation is supposed to respect. We
remark that Fig. 2 represents the point of view of theCit-

izen. Only the interface of theHealthcareAgency is consid-
ered, and no description of the internal structuring of the
HealthcareAgency is represented in the diagram, since this in-
formation is not available to theCitizen.

Formal Tropos has been designed to supplement Tropos
models with a precise description of their dynamic aspects.
In FT the focus is on the circumstances in which goal, ex-

CitizenBeing
Assisted

Receive
Service

Do Request

Initial
Request

Provide
Information

Wait
Answer

Pay

Quality
Service

Health-
care

Agency

Receive
Assistance

Provide Fair
Assistance

Receive
Request

Ask
Additional

Info

Provide
Answer

Request

Info
Request

Info

Response

Strategic
Level

Message
Level

Activity
Level

Goal Dependency ReceiveAssistance Mode maintain
Depender Citizen Dependee HealthcareAgency
Fulfillment condition ∀ dr: DoRequest (

(dr.actor = depender ∧ Fulfilled (dr) ∧ dr.result) →
F ∃ rs: ReceiveService (rs.actor = depender ∧ Fulfilled (rs)))

Task DoRequest Mode achieve
Super BeingAssisted Actor Citizen
Attribute result : boolean
Fulfillment definition
∃ wa:WaitAnswer(wa.super = self ∧

Fulfilled (wa) ∧ (result ↔ wa.result))

Task InitialRequest Mode achieve
Super DoRequest Actor Citizen

Task ProvideInformation Mode achieve
Super DoRequest Actor Citizen
Fulfillment definition

G (∀ ir: InfoRequest(Received (ir) → ∃ i: Info(Sent (i)))

Task WaitAnswer Mode achieve
Super DoRequest Actor Citizen
Attribute result : boolean
Fulfillment definition
∃ r:Response(Received (r) ∧ (result ↔ r.result))

Figure 2. Formal Tropos specification

pectations, and dependencies arise, and on the conditions
that lead to their fulfillment. In this way, the dynamic as-
pects of a requirements specification are introduced at the
strategic level, without requiring an operationalization of
the specification. A precise definition of FT can be found
in [7]. Here we present the most relevant aspects of the
language based on the case-study. An excerpt of the FT an-
notations associated to theDoRequest task can be found in
Fig. 2 (right).

An FT specification describes the relevant objects of a
domain and the relationships among them. The description
of each object is structured in two layers. The outer layer
is similar to a class declaration and defines the structure of
the instances together with their attributes. The inner layer
expresses constraints on the lifetime of the objects, using
a typed first-order Linear Temporal logic (hereafter LTL).
It has to be noticed that several instances of each element
may exist during the evolution of the system. For instance,
differentDoRequest tasks may exists for differentCitizen in-
stances, or for different types of medical problems of the
sameCitizen.

Each object has an associated list of attributes. Each at-
tribute has asort (i.e., its type) which can be either primitive
(boolean, integer. . .) or an object. For instance, attributere-

sult of taskDoRequest determines whether the response from
the HealthcareAgency was successful or not. Attributes of
primitive sort usually define the relevant state of an instance.
Goals and tasks are associated to the corresponding actor
with the special attributeActor (e.g., taskDoRequest). Sim-

ilarly, DependerandDependeeattributes of dependencies
represent the two parties involved in a delegation relation-
ship. TheSuperattributes of goal/task elements represent a
decomposition of the primary elements into sub-elements.
In particular,InitialRequest, ProvideInformation andReceiveRe-

sponse are subtasks of theDoRequest task, which is reflected
in theirSuperattribute.

In FT the focus is on the conditions for thefulfillmentof
goals, tasks, and dependencies. These are characterized by
a Mode, which declares the modality of their fulfillment.
Examples of modalities areachieve(which means that the
actor expects to reach a state where e.g., the goal has been
fulfilled) and maintain (which means that the fulfillment
condition has to be continuously maintained). The inner
layer of an FT class declaration consists of constraints that
describe the dynamic aspects of the domain elements. In
FT we distinguish amongInvariant , Creation, andFul-
fillment constraints. Invariant constraints define condi-
tions that should hold throughout the lifetime of all class
instances.Creation andFulfillment constraints define con-
ditions on the two critical moments in the lifetime of class
instances, namely theircreationand fulfillment. Creation
constraints can be associated with any class. Such con-
straints should be satisfied whenever an instance of the class
is created. In the case of goals and tasks, the creation is in-
terpreted as the moment when the associated actor begins
to desire the goal or to perform the task.Fulfillment con-
straints can be associated only with goals, tasks, and depen-
dencies. These constraints should hold whenever a goal is

Possibility P1 /* It is possible to fulfill request */
∃ dr: DoRequest (Fulfilled (dr))

Assertion A1 /* Service is received only upon a positive response */
∀ c: Citizen (
∀ r: Response (Received (r) ∧ r.receiver = c → ¬ r.result) →
∀ rs: ReceiveService (rs.actor = c → ¬ Fulfilled (rs)))

Assertion A2 /* If some agency provides assistance and the citizen
requests a service then the request should be fulfilled */

∀ dr: DoRequest (∃ ra: ReceiveAssistance (ra.depender =
dr.actor ∧ Fulfilled (ra) ∧ ∀ r: Request (r.sender =

dr.actor → r.receiver = ra.dependee)) → F Fulfilled (dr))

Figure 3. Formal Tropos Properties

achieved, or a task is completed.
Constraints in FT are described with formulas in LTL.

Besides the standard boolean and relational operators, the
logic provides the quantifiers∀ and∃, which range over all
the instances of a given class, and a set oftemporal oper-
ators. In the examples in this paper we use operatorsF,
which defines a condition that has to hold eventually in the
future, andG, which defines a condition that has to hold in
all future states. Moreover, special predicates can appear
in the FT temporal logic formulas (i.e.,JustCreated(t),
Fulfilled(t), or JustFulfilled(t)). Additionally, for message
classesReceived(t) andSent(t) predicates may be used.

In an FT model, we can also specify properties that are
desired to hold in the domain, so that they can be verified
with respect to the model. We distinguish betweenAsser-
tion properties which are desired to hold for all valid evo-
lutions of the FT specification, andPossibility properties
which should hold for at least one valid scenario. In Fig. 3
some properties for the case-study are reported.

For lack of space we refer to [6] for a complete descrip-
tion of the semantics of FT. Here we recall only that the
valid behaviors of a model are those sequences of states
that respect a setCi with i ∈ I of temporal constraints.
These constraints are obtained directly from theInvariant ,
Creation, andFulfillment declarations that appear in the
FT model. Checking if assertionA is valid corresponds to
checking whether the implication

∧
i∈I Ci ⇒ A holds in

the model, i.e., if all valid scenarios also satisfy the asser-
tion A. Checking if possibilityP holds amount to check
whether

∧
i∈I Ci∧P is satisfiable, i.e., if there is some sce-

nario that satisfies the constraints and the property. In both
cases, the verification of an FT specification is translated to
the verification of an LTL formula. In [7] we have shown
how to exploitNUSMV for this verification.

3.2. Process Representation in Formal Tropos

Once the requirements of a Web service domain have
been specified and analyzed, we need to extend these re-
quirements with the definition of the processes implement-
ing them. Here we show how the FT requirements can
be furthermore refined into executable code by means of

bool waitResponse;
atomic{

CREATE ri: InitialRequest;
ri.super = self;
waitResponse = true};

atomic{
CREATEMESSAGE vRequest: Request;
Request_channel ! vRequest};

atomic{
FULFILL ir: InitialRequest [ir.super == self];
CREATE pi: ProvideInformation; pi.super = self};

do::atomic{ waitResponse ->
if::InfoRequest_channel ? vInfoRequest;

CREATEMESSAGE vInfo : Info;
vInfo.reference = vInfoRequest;
Info_channel ! vInfo;

::Response_channel ? vResponse;
FULFILL pi: ProvideInformation [pi.super==self];
CREATE wa: WaitAnswer; wa.super = self;
waitResponse = false;
self.result = vResponse.result;

fi};
::else break;

od;
atomic{

FULFILL wait: WaitAnswer [wait.super == self];
FULFILL self};

Figure 4. DoRequest process specification

the Promela [9] language. In particular, Promela processes
are used to describe the behavior of the services that will
constitute the distributed application. We remark that in
the Web service framework these processes would have
been written in languages like BPEL4WS. Promela pro-
vides communication and control constructs for defining
these processes that are very similar to the ones provided by
BPEL4WS, therefore it is a very natural candidate for map-
ping BPEL4WS into a language suitable for formal verifica-
tion. At the time of writing we are developing an automated
translator from BPEL4WS specifications into Promela.

In order to link the operational model with the require-
ments model we have extended Promela with a set of macro
commands. In particular, theCREATE andCREATEMESSAGE

macros specify an instance creation event of a subtask or a
message respectively. TheFULFILL macro specifies a suc-
cessful task completion event with optional guarding ex-
pression in square brackets.

Figure 4 represents the process specification of the task
DoRequest. The process behaves as follows. First, initial-
ization steps are performed. Within these steps the variable
waitResponse is set to true, an instance of theInitialRequest

task is created, the messageRequest is prepared and sent, the
InitialRequest is completed and theProvideInformation task is
started. Hereafter, a loop is entered and its body is repeated
until variablewaitResponse becomes false. The body of the
loop consists of aif instruction which suspends the execu-
tion of the process until aInfoRequest or aResponse message
is received. If aInfoRequest message is received, a corre-
spondingInfo message is prepared and sent. If aResponse

message is received, then theresult variable of the process is
set to reflect theresult field of the received message. More-
over, thewaitResponse variable is set to false, so that we can

Task DoRequest typedefDoRequestType{
Actor Citizen byte actor;
SuperBeingAssisted byte super;
Attribute result : Boolean bool result;

bool justcreated, exists;
bool justfulfilled, fulfilled;

}
DoRequestType DoRequest[2];

Figure 5. DoRequest task representation in
FT and Promela

exit from the loop. Immediately after the loop, two fulfill-
ment events are generated specifying that theWaitAnswer is
completed as well as theDoRequest task itself. A process
model specified in this way is automatically translated into
pure Promela code. In particular, all the macro commands
are replaced with the corresponding Promela code, where
the necessary data modification is performed.

4. Encoding Formal Tropos into Promela

In this section we show how an FT specification can be
translated into Promela. The translation manages separately
the outer layer and the inner layer of the FT specification.
The outer layer, consisting of FT classes and attributes, is
mapped into Promela processes and data structures. The in-
ner layer, consisting of the temporal constraints, assertions,
and possibilities, could in theory be represented as a unique
LTL specification and mapped into a “never claim”. How-
ever, this approach does not work due to the huge size of the
composed LTL specification. Therefore, we propose an al-
ternative encoding that is compositional on the constraints.

4.1. Formal Tropos Class Representation

Figure 5 contains the FT definition of taskDoRequest and
the corresponding Promela encoding. We associate to each
FT class a Promela data type (DoRequestType in our case)
and an array of elements on this data type (DoRequest in our
case). The size of the array defines the maximum number
of instances for the class. This bound is necessary to ob-
tain a finite-state model and to apply model-checking tech-
niques. In the example we allow for at most 2 instances of
classDoRequest. Attributes of basic sorts (i.e.,boolean) are
translated into the corresponding Promela type. Attributes
referring to FT classes (e.g., attributeactor) are declared as
fields of type byte. This field is used as index in the ar-
ray of the referenced class (e.g., arrayCitizen in the case of
attributeactor).

Additional fields are introduced in the user-defined data
types to model the life-cycle of the FT class instances. At-
tributeexists models class creation. Initially it is false and is
set to true when the class is created. Attributesjustcreated,

proctype DoRequestProc(byte id) {
Exists:

do :: atomic /* if the child subtask is not started yet,
assign relevant attributes and start it */

{(!InitialRequest[0].exists)→ systemstep();
InitialRequest[0].super = id;
InitialRequest[0].actor = DoRequest[id].actor;
InitialRequest[0].exists =true;
InitialRequest[0].justcreated =true;
run InitialRequestProc(0);};

. . . /* other child subtask may be started here */

:: atomic /* Modify non-constant attributes */
{systemstep();
if :: DoRequest[id].result =true;

:: DoRequest[id].result =false;
fi; /* The instance is fulfilled nondeterministically */
if :: DoRequest[id].fulfilled =false;

:: DoRequest[id].fulfilled =true;
DoRequest[id].justfulfilled =true; goto Fulfilled;

fi;}
od;

Fulfilled:
do :: atomic /* Modify non-constant attributes */

{systemstep();
if :: DoRequest[id].result =true;

:: DoRequest[id].result =false;
fi;}

od;
}

Figure 6. DoRequest task process definition

fulfilled and justfulfilled are used to encode theJustCreated,
Fulfilled andJustFulfilled predicates respectively.

The life-cycle of the class instances is encoded using
Promela processes. Figure 6 depicts the process corre-
sponding to theDoRequest task. Different instances of the
process are used to model the behavior of the different class
instances. The byte argument passed to the process defines
the index of the specific class instance in arrayDoRequest.

Depending on the type of the FT class, the life-cycle of
the instances consists of different phases, which is reflected
in the corresponding process. In particular,Actor class in-
stances initially are in a “NotExists” state. A possibility for
an instance is to be never created thus terminating the cor-
responding process. Another possibility is that the instance
eventually enters the “Exists” phase. The “NotExists” to
“Exists” transition is only enabled if suitable instances exist
for the attributes referring to other classes. In this case, the
class attributes are initialized, in particularjustcreated andex-

ists are set to true. In the “Exists” phase the process nonde-
terministically modifies values of its non-constant attributes
(if any). Additionally, Actor classes may nondeterminis-
tically create child goals, tasks and dependencies (e.g., in-
stances of goalBeingAssisted in the case ofCitizen). The child
class attributes are initialized and the corresponding process
is started.

Processes modeling the behavior of goals, tasks, and de-

proctype constraintverifier(){
byte label[n] = 0; bool accepted[n] = false; byte next = 0;
do :: constraintsdone→ break;

:: else atomic
{all accepted =true; valid step =false;
... /* All constraints automata go here */
valid step =true; constraintsdone =true;
if :: accepted[next]→ /* Look for acceptance again */

next accepted =true; next = (next+1) %n;
:: else

fi;}
od;

Figure 7. The constraint verifier process

pendencies are quite different. They start already in state
“Exists” since they are created “on demand” by their par-
ent actors or goals. Similarly to actors, they also may cre-
ate child instances when they are in the “Exists” phase (see
e.g., the creation of subtaskInitialRequest in Fig. 6). These
instances may nondeterministically move to the “Fulfilled”
phase, assigning true to attributesjustfulfilled andfulfilled. The
values of non-constant attributes can change also in the
“Fulfilled” phase. If there are no such attributes the pro-
cess terminates its execution. We remark that all operations
done during a phase transition are performed in an atomic
section, in order to respect the FT semantics.

A special routinesystem step() is called whenever a pro-
cess performs a step. This routine performs a set of tasks
that need to be done whenever the system evolves. It is
responsible to reset the attributesjustcreated and justfulfilled

of each FT class, so that these flags may be true only in the
state that immediately follows the creation or the fulfillment
of an instance. As we will see in the following, this routine
is also used in the verification of the Promela specification.

4.2. Representation of Logic Specifications

The logic specifications in FT are exploited to verify as-
sertions and possibilities on the conditions defined by the
constraints. The standard solution offered bySPIN for ver-
ifying assertions and possibilities consists of generating a
“never claim” describing the automaton for the formula to
verify (e.g., formula

∧
i∈I Ci ⇒ A for assertionA) and of

askingSPIN to verify it. However, this solution turns out to
be infeasible. Indeed, the large size of the global formula
prevents the possibility of verifying the never claim. Also
for rather simple specifications (for instance, a reduced FT
specifications with only 5 classes and 3 simple constraints),
the C file which is generated bySPIN and that contains the
model checking code is so complex thatgcc fails to com-
pile it (a memory out is obtained even with 1GB available).

To overcome these problems we propose an alternative
solution. We encode each LTL formula defining a constraint
in a separate automaton, and generate a new processcon-

straint verifier where all these automata are executed in par-

if
:: label[n]==0→ gotoCn acceptinit
:: label[n]==1→ gotoCn T0 S2
fi;

/* G(p → Fq) */ /* G(p → Fq) */
accept init: C n accept init:

if if
:: (¬p)||q → :: (¬p)||q → label[n] = 0;

gotoacceptinit accepted[n] = true;
:: (1) → :: (1) → label[n] = 1;

gotoT0 S2 accepted[n] = false; all accepted =false;
fi; fi; gotoCn checked;

T0 S2: Cn T0 S2:
if if
:: q → :: q → label[n] = 0;

gotoacceptinit accepted[n] = true;
:: (1) → :: (1) → label[n] = 1;

gotoT0 S2 accepted[n] = false; all accepted =false;
fi; fi; gotoCn checked;

Cn checked:

Figure 8. Automaton generated by LTL 2BA

and its post-processed representation

allel. This process is then added to the final specification.
We enforce execution of all automata corresponding to con-
straints after each system step, and restrict the verification
to the execution sequences where all the constraints holds.

The translation of each constraint into an automaton is
done using either the built-inLTL 2SPIN converter or exter-
nal tools likeLTL 2BA [8]. These tools generate a Promela
“never claim” whose body represents the automaton for the
corresponding constraint. All these automata are joined
in the body of the special process namedconstraint verifier,
which guarantees that all of them are executed in turn (see
Fig. 7). Some modifications on the bodies are necessary
before they can be joined. For instance, Fig. 8 shows the
automaton generated byLTL 2BA (on the left) and the mod-
ified automaton for constraint G(p → F q), with n being the
index of the constraint. Theaccept labels of the automa-
ton represent the accepting states of the automaton. Usually
these labels are managed automatically bySPIN, in order to
guarantee that acceptance states are visited infinitely often.
In our case, acceptance states need to be managed explic-
itly. Therefore, allacceptlabels are renamed, and a special
arrayaccepted is used to store the information whether the
automaton is visiting an accepting state. Moreover, a global
variableall accepted stores the information whetherall au-
tomata are visiting an acceptance state. Finally, in order to
preserve the position reached by every automaton after each
step, this position is stored in a special array namedlabel. A
switch at the beginning of the modified body is used to re-
store the state of the automaton.

Due to the ad-hoc management of acceptance states,
some effort is needed in order to restrict the verification to
the valid executions. This is achieved if the following con-
ditions are satisfied:(i) Whenever any process performs a

inline systemstep(){
if :: constraintsdone→ constraintsdone =false;

:: elsevalid step =false;
fi;
next accepted =false;
... /* Reset justcreated and justfulfilled flags */
DoRequest[0].justcreated =false; DoRequest[0].justfulfilled =false;

}

Figure 9. The system step routine

step, every constraint automaton has to be executed. If some
constraint automaton is blocked, the execution path should
be excluded from the verification.(ii) On every infinite ex-
ecution path all the constraints automata should visit their
acceptance states infinitely often.(iii) If the execution path
is finite and all the processes have finished execution, all
the constraint automata should be in theiracceptancestates
thus satisfying fairness conditions.

In order to encode these aspects we introduce several
global variables. We use thevalid step variable to verify that
the execution is correct and not blocked, and to check that
system steps and steps of the constraint automata are inter-
leaved. Thenext accepted variable is used to check that all
the constraints automata eventually visit acceptance states.
The all accepted variable is set to true if all the constraints
automata visit acceptance states simultaneously.

The requirements on the valid execution paths are cap-
tured by the following formula, stating that constraints au-
tomata are not blocked, that they visit acceptance states in-
finitely often, and that if the value of variablenext accepted

remains true forever (which happens only if the execution
path is finite) then variableall accepted will stay true forever:

G(valid step ∧ F next accepted∧
(G next accepted → G all accepted)).

The values of boolean variablesvalid step, next accepted

andall accepted are defined in part in processconstraint verifier

(see Fig. 7) and in part in functionsystem step (see Fig. 9),
which is executed during each visible step of every process
in the system (see, e.g., Fig. 6). Variablevalid step is initially
true and keeps this value if every system step is followed by
exactly one step of process constraint verifier. This behavior
is obtained through auxiliary variableconstraints done which
is set to true every time process constraint verifier evolves,
and is set to false every time the system evolves. If a system
step is done whenconstraints done is already false, then two
consecutive system steps are detected, andvalid step is set
to false (see Fig. 9). Analogously, if a constraint verifica-
tion step is done whenconstraints done is already true, then
two consecutive constraint verifier steps are detected, and
theconstraint verifier process is finished (see Fig. 7). Variable
next accepted is set to true if variableaccepted[next] associ-
ated to the next constraint to be executed is true. In this
casenext is updated so that all the constraints are considered

in turn. In thesystem step routine its value is again reset to
false so this variable can remain true forever only on finite
paths. Analogously, if all the constraint automata have vis-
ited their acceptance states simultaneously, the value of the
variableall accepted is true.

In order to check assertions and possibilities in Promela,
the formula to verify has to be adapted to take into account
valid executions. The formula is then model-checked by
transforming it into a never claim. For instance, formula

G(valid step ∧ F next accepted∧
(G next accepted → G all accepted)) ⇒ A.

is generated for assertionA. Indeed, this formula checks
whether all valid executions satisfy the assertion. A pos-
sibility propertyP can be verified by model-checking the
formula:

G(valid step ∧ F next accepted∧
(G next accepted → G all accepted)) ⇒ ¬P.

If a counter-example is found for this property, it is indeed
a witness execution that show that possibilityP holds.

5. Experimental Analysis

To experiment with the proposed approach, we have im-
plemented the FT to Promela translation described in the
previous section (the tools used in the experiments can be
found athttp://dit.unitn.it/ ft/ws/). The verification of an FT
specification can now be done choosing between two back-
ends, the old one which exploitsNUSMV and the new one
usingSPIN.

We conducted three kinds of experiments. First, we eval-
uated the effectiveness of the compositional encoding of the
logical specification w.r.t. the direct encoding based on one
global LTL formula. Second, we tested the performance
of SPIN on requirements verification tasks and compared it
with NUSMV. Third, we tested the verification of require-
ments models against the processes implementing them.
The experiments were executed on a bi-processor Pentium
Xeon 2.4GHz, 2Gb of RAM, running Linux. All the tests
have been executed within a time limit of 1 hour and mem-
ory limit of 2Gb. We mark the tests that failed to complete
in the time limit as “TO”, and the test that exceed the mem-
ory limits as “MO”. In some cases, the never claim genera-
tion phase produced a segmentation fault. These cases are
marked with “SF” in the tables.

Results of Logical Specification Translation. To com-
pare the performance of the compositional logic specifica-
tion translation we propose with the direct translation pro-
vided by SPIN, we considered a set of specifications of
growing size. More precisely, the comparison has been
performed on specifications with different numbers of con-
straints, and by allowing either up to 1 instance for each

Table 1. Logic specification translation
Direct Translation Compositional Translation

1 instance 1..2 instances 1 instance 1..2 instances
1 constraint 0,01sec 0,01sec 0,01sec 0,01sec
3 constraints 0,03sec 3,01sec 0,03sec 0,09sec
5 constraints 0,11sec MO 0,04sec 0,14sec
10 constraints 10,65sec SF 0,04sec 0,16sec
30 constraints MO SF 0,07sec 0,20sec
45 constraints SF SF 0,15sec 0,41sec

class (15 instances in total) or up to 2 instances for several
classes (23 instances)1. Table 1 summarizes the results of
the experiments withSPIN. It reports the time required for
the translation of the FT specification into Promela. The re-
sults show that the compositional method outperforms the
direct translation of the logic specification.

Results of Property Verification. To test the perfor-
mance ofSPIN and to compare it withNUSMV, we per-
formed some verification experiments based on the as-
sertions and possibilities of Fig. 3. To stress scalability,
we have considered models of different sizes by allowing
for different upper bounds to the number of instances for
each FT class. We considered the case of 1 instance for
each class and a intermediate “1..2” case, where we al-
low 2 instances for some classes. We compared differ-
ent options of theSPIN model checker on the same prob-
lem. We also compared the results obtained withSPIN

with those obtained usingNUSMV. The Promela model
for the FT specification contains 15 processes for the 1 in-
stance case and 23 processes for the 1..2 instances case.
With SPIN we experimented different verification options
[9], namely hash-compact verification (HC4), superstate ver-
ification (BITSTATE), and with theSPIN extension, namely
“Triple SPIN” [4]. With NUSMV we experimented with
the two model checking techniques provided by the tool,
namely SAT-based bounded model checking [1] (“BMC” in
the tables), BDD-based model checking (“BDD”). We used
a maximum length of 10 for the bounded model checking
experiments2. The results of the verification are summa-
rized in Table 2.

The verification provided the following results. Asser-
tion 1 is true and assertion 2 is false. Possibility 1 is true
and a corresponding witness trace is generated. Indeed, the
dependencyReceiveAssistance is fulfilled whenever every as-
sistance request accepted by the Health-care Agency is fol-
lowed by receiving service. The dependency fulfilled also if
there are no accepted requests. A counterexample demon-
strates the fact that if the agency accepted the response and

1We recall that these upper bounds for the number of class instances
are necessary to guarantee that the generated model is finite-state.

2It worth noticing that the results provided by the BMC verification
do not guarantee the validity of the formula, since counter-examples of
length greater than the chosen maximum length (10 in our case) would not
be detected. However, our experiments have shown that, in the model at
hand, counter-examples usually have a length of 3 to 5. For this reason,
a maximum length of 10 guarantees a high confidence in the result of the
verification.

Table 2. Property verification results
SPIN results

1 instance 1..2 instances
A1 HC4 TO - 1284steps - 1382Mb TO - 2857steps - 362Mb

BITSTATE Valid(a) - 21sec - 61Mb TO - 3244steps - 1028Mb
3SPIN Valid(b) - 23sec - 69Mb TO - 3207steps - 1178Mb

A2 HC4 TO - 1393steps - 1382Mb TO - 2857steps - 362Mb
BITSTATE Invalid - 21sec - 52Mb TO - 3244steps - 1058Mb
3SPIN Invalid - 24sec - 64Mb TO - 3417steps - 1173Mb

P1 HC4 Valid - 27sec - 68Mb TO - 2857steps - 362Mb
BITSTATE Valid - 14sec - 41Mb TO - 3099steps - 956Mb
3SPIN Valid - 19sec - 56Mb TO - 3312steps - 1143Mb

Hash factors:(a) 1.97 –(b) 3.35

NUSMV results
1 instance 1..2 instances

A1 BDD Valid - 9sec - 6,0Mb TO - 235Mb
BMC Undec.(∗) - 7sec - 20,4Mb Undec.(∗) - 106sec - 61,2Mb

A2 BDD Invalid - 11sec - 6,9Mb TO - 235Mb
BMC Invalid - 0,6sec - 3,8Mb Invalid - 2sec - 11,3Mb

P1 BDD Valid - 10sec - 5,8Mb TO - 235Mb
BMC Valid(∗∗) - 0,7sec - 5,3Mb Valid(∗∗) - 2sec - 16,0Mb

(∗) No counter-example found up to bound length 10
(∗∗) Found example of length 4 satisfying P1

sent a message to the citizen the assertion is violated if the
message was not received by the citizen and theDoRequest

task will never be fulfilled.

Comparing the results produced bySPIN andNUSMV,
one can see that the BMC algorithms provided byNUSMV
give overall the best results. In particular, this is the only
technique that provides results for the 1..2 instances case.
We remark that the translation of FT to theNUSMV lan-
guage is highly engineered and optimized. Moreover, the
NUSMV model checker has been extended to better han-
dle models resulting from FT specifications. We expect to
improve the performance of theSPIN back-end with similar
optimization tasks.

Results of Implementation Verification. The definition
of business processes, together with the bindings that link
them to the corresponding tasks and messages in the formal
requirements model, allow for different forms of verifica-
tion. A first possibility consists of re-checking the formal
queries that appear in Fig. 3 on the more detailed model
(first three rows in Table 3). Another possibility is checking
that the refined model satisfies the requirements described
by theCreation, Invariant , andFulfillment constraints en-
forced in the requirements model for taskDoRequest and
its sub-tasks. The last row in Table 3 describes the results
of the verification of theDoRequest task fulfillment defini-
tion. This constraint is violated for the following reasons.
The fulfillment definition requires that the value of theresult

variable in this task should be equivalent to the value of the
corresponding variable in theWaitAnswer task. In the process
implementation code (see Fig. 4) the value of this variable is
copied directly from theResponse message received. Thus,
the corresponding variable of theWaitResponse task remains
unchanged.

Table 3. Implementation verification results
1 instance 1..2 instances

A1 HC4 TO - 516steps - 1442Mb TO - 341steps - 1282Mb
BITSTATE Valid(a) - 32sec - 83Mb Valid(b) - 169sec - 316Mb
3SPIN Valid(c) - 14sec - 35Mb Valid(d) - 74sec - 171Mb

A2 HC4 Invalid - 125sec - 206Mb TO - 341steps - 1162Mb
BITSTATE Invalid - 32sec - 71Mb Invalid - 1285sec - 2003Mb
3SPIN Invalid - 15sec - 32Mb MO - 673steps - 1141sec

P1 HC4 Valid - 2sec - 9,1Mb TO - 341steps - 1282Mb
BITSTATE Valid - 3sec - 10,1Mb Valid - 167sec - 306Mb
3SPIN Valid - 3sec - 12,0Mb Valid - 59sec - 148Mb

C HC4 Invalid - 2sec - 9,1Mb TO - 341steps - 1282Mb
BITSTATE Invalid - 3sec - 11,4Mb Invalid - 166sec - 306Mb
3SPIN Invalid - 3sec - 12,0Mb Invalid - 62sec - 151Mb

Hash factors:(a) 2.44 –(b) 1.66 –(c) 6.06 –(d) 1.61

6. Related Work and Conclusions

In earlier work [7] we have proposed a framework for the
specification and verification of early requirements based
on symbolic model checking andNUSMV. In this paper
we propose an alternative verification approach, based on
explicit state model checking andSPIN. Moreover, we have
extend the scope of the verification to include the design of
distributed processes defined in Promela. The approach is
based on a novel, compositional encoding of the LTL con-
straints that define the valid behaviors of the requirements
model in the verification tasks. The experiments show that
the approach is viable, even if the performance is currently
a rather serious limit for its applicability.

In the paper, we have used a case study in the field of
Web services for illustrating the framework and for exper-
imenting the verification techniques. We refer to [14, 11]
for a broader discussion on the relationships between the
proposed framework and Web service technologies.

Formal analysis is often used to verify correctness of
specifications, but, it is usually applied in later phases. The
works that are most relevant to ours in the sense that they
also focus on the verification of requirements models are
Alcoa/Alloy [10], KAOS [12], and the work on “Topoi Dia-
grams” [13]. However, as far as we know, these formalisms
have not been applied for Web Services. For a complete
analysis of these works w.r.t. FT we refer the reader to [7].

There are several works on the verification of Web ser-
vices. The closest to our approach is [5] that provides a
framework for the verification of LTL properties on the
protocols specified in BPEL4WS by translating them into
Promela. Differently to our approach this work concentrates
on the translation and verification of communications spec-
ified by the protocol, while in our approach we address also
the problem of verifying models where protocols are inter-
leaved with requirements.

There are several directions for further research. We are
investigating optimization of the model generator by inte-
grating advanced abstraction techniques that exploit, for in-
stance, possible symmetries in the specification. This could
lead to a better exploitation of the partial order reduction

capabilities provided bySPIN. We are also interested in a
deeper investigation of the compositional approach for the
verification of complex LTL properties that we have out-
lined in this paper. Finally, we are interested in linking our
approach to the Web service technologies, allowing for in-
stance to specify the processes using industrial standards
like the BPEL4WS language instead ofSPIN.

References

[1] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic
Model Checking without BDDs. InProcs. of the5th Int.
Conference on Tools and Algorithms for the Construction
and Analysis of Systems, 1999.

[2] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia,
M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella.
NUSMV 2: An OpenSource Tool for Symbolic Model
Checking. InProcs. of Computer Aided Verification Con-
ference, 2002.

[3] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller,
S. Thatte, and S. Weerawarana.Business Process Execu-
tion Language For Web Services. BEA Systems & IBM
Copora-tion & Microsoft Corporation, 2002.

[4] P. Dillinger and P. Manolios. Fast and Accurate Bitstate Ver-
ification for SPIN. InProcs. of the11th Int. SPIN Workshop
on Model Checking of Software, 2004.

[5] X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL
Web Services. InProc. of the Thirteenth International World
Wide Web Conference (WWW’04), 2004. To appear.

[6] A. Fuxman, R. Kazhamiakin, M. Pistore, and M. Roveri.
The Formal Tropos Language, 2003. Available from
http://dit.unitn.it/˜ft/doc/ .

[7] A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, M. Roveri,
and P. Traverso. Specifying and Analyzing Early Require-
ments in Tropos.Requirements Engineering, 9(2):132–150,
2004.

[8] P. Gastin and D. Oddoux. Fast LTL to Büchi Automata
Translation. InProcs. of Computer Aided Verification, 2001.

[9] G. J. Holzmann.The Spin Model Checker, Primer and Ref-
erence Manual. Addison-Wesley, 2003.

[10] D. Jackson. Alloy: a Lightweight Object Modeling Nota-
tion. ACM Transaction on Software Engineering Methodol-
ogy, 11(2):256–290, 2002.

[11] R. Kazhamiakin, M. Pistore, and M. Roveri. A Framework
for Integrating Business Processes and Business Require-
ments. InProc. 8th Int. IEEE Enterprise Distributed Object
Computing Conference (EDOC’04), 2004. To appear.

[12] E. Leiter.Reasoning about Agents in Goal-oriented Require-
ments Engineering. PhD thesis, Universite Catholique de
Louvain, 2001.

[13] T. Menzies, J. Powell, and M. E. Houle. Fast Formal Analy-
sis of Requirements via “Topoi Diagrams”. InProcs. of the
23rd Int. Conference on Software Engineering, 2001.

[14] M. Pistore, M. Roveri, and P. Busetta. Requirements-Driven
Verification of Web Services. InProcs. of 1st Int. Workshop
on Web Services and Formal Methods (WSFM’04), 2004.

[15] E. Yu. Towards Modeling and Reasoning Support for Early
Requirements Engineering. InProcs. of the IEEE Int. Sym-
posium on Requirement Engineering, 1997.

