
Verifying the SET Purchase Protocols

Giampaolo Bella (giamp@dmi.unict.it)
Dipartimento di Matematica e Informatica, Università di Catania
Viale A. Doria 6, I-95125 Catania, Italy

Fabio Massacci (fabio.massacci@unitn.it)
Dipartimento di Informatica e Telecomunicazioni, Università di Trento
Via Sommarive 14, I-38050 Povo (Trento), Italy

Lawrence C Paulson (lcp@cl.cam.ac.uk)
Computer Laboratory, University of Cambridge
J J Thomson Avenue, Cambridge CB3 0FD, UK

Abstract. SET (Secure Electronic Transaction) is a suite of protocols proposed
by a consortium of credit card companies and software corporations to secure e-
commerce transactions. The Purchase part of the suite is intended to guarantee the
integrity and authenticity of the payment transaction while keeping the Cardholder’s
account details secret from the Merchant and his choice of goods secret from the
Bank.

This paper details the first verification results for the complete Purchase proto-
cols of SET. Using Isabelle and the inductive method, we show that their primary
goal is indeed met. However, a lack of explicitness in the dual signature makes some
agreement properties fail: it is impossible to prove that the Cardholder meant to
send his credit card details to the very payment gateway that receives them.

A major effort in the verification went into digesting the SET documentation
to produce a realistic model. The protocol’s complexity and size makes verification
difficult, compared with other protocols. However, our effort has yielded significant
insights.

Keywords: Electronic Commerce, Security Protocols, Inductive Definitions, De-
ductive Verification, Isabelle

1. Introduction

Recent years have seen substantial progress in the formal verification of
security protocols. Detailed analysis of cryptographic primitives, verifi-
cation of Internet standards, and substantial progress in the automation
of model-checking and new automatic verification tools have boosted
a field which outsiders believe populated by “Yet-Another-Look-at-
Needham-Schroeder” papers. The Internet Key Exchange protocol [23],
the Cybercash protocol [18] and TLS (the latest version of SSL) [31]
have all yielded to automatic or semi-automatic tools. The full analysis
of SET — the Secure Electronic Transaction protocol, developed by
Visa and Mastercard — has proved to be the toughest challenge.

c© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.1

2 G. Bella, F. Massacci and L. C. Paulson

1.1. The Challenges of SET

Why is SET such a challenge for formal verification? The first hurdle is
the sheer size of the documentation [19, 20, 21, 22], which amounts to
over 1000 pages. The second, more substantial obstacle is the protocol’s
complexity. Academic protocols are typically short, almost straight-line
programs; they seldom go beyond two levels of encryption and generate
few secrets. Internet protocols such as IKE and TLS use cryptography
rather sparingly compared to SET. SET has many features that make
its verification hard:

− Multiple nested encryptions and duplicate message fields require
abbreviations. Most proof tools must expand abbreviations in or-
der to reason about them, but for SET this yields huge expressions.

− Ubiquitous generation of random numbers and keys can cause a
state-space explosion in finite state methods. The standard model
checking technique of allowing only a handful of nonces and keys
would not even allow a single execution to complete, let alone two
or more parallel ones.

− Many alternative protocol paths make it hard to single out the few
key roles used either by manual analysis (as in the strand space
model) or by model-checkers to restrict the search space.

SET’s use of alternative protocol paths is not bad design but is
driven by real requirements. For example, security-aware Cardholders
may have pre-registered with a financial institution and thus secured
their credit cards against the Merchant’s eyes. Other Cardholders may
decide to trust the Merchant and thus be content with a transac-
tion secured against the outside world. From a Merchant’s perspective,
all Cardholders should be able to conclude a purchase, whether they
bothered to pre-register or not.

The complex structure of SET makes it a benchmark for security
protocol design and verification, whether or not it is a commercial suc-
cess. For example, digital envelopes [33] are used in all practical public
key protocols such as PGP, and understanding what formal guarantees
they offer is vital. If verification techniques are ever to have industrial
applicability, then they must be evaluated on major protocols such as
SET.

Our Contribution

We have devoted approximately 6 man-years to a research project on
verifying the SET protocol using the inductive method and the Isabelle

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.2

Verifying the SET Purchase Protocols 3

proof assistant. In previous papers, we have published an overview of
our project [7], brief [8] and detailed [6] analyses of SET’s Registration
protocols, and a brief analysis of SET’s Purchase protocols [5]. The
present paper completes the presentation of the project with a full,
detailed analysis of SET’s Purchase protocols.

We have followed the guidelines set out in the previous papers for
a careful simplification of SET to make its analysis tractable (the full
protocol has hundreds of fields) while retaining the most important
mechanisms. Our simplified version is still one of the most complex
protocols ever to be analysed formally. Particular attention is devoted
to the protocol’s key construct: the dual signature. This mechanism lets
the Cardholder agree the order details with the Merchant while hiding
those details from the bank. At the same time, it lets the Cardholder
share his credit card details with the bank while hiding them from
the Merchant. The purpose is simply privacy: there is no reason for
the bank to know what sort of goods the Cardholder buys any more
than there is a need for the Merchant to know the Cardholder’s bank
details. The dual-signature mechanism can be used in other multi-party
protocols, as it does not require complicated group-cryptography.

We found that, on the whole, dual signatures work. Credit card de-
tails do remain confidential; all parties can be sure that they are dealing
with the same transaction, even if they have only partial information.
However, SET omits an important field from the dual signature, violat-
ing Abadi and Needham’s [2] explicitness principle. So, some guarantees
are weaker than they should be — particularly for the Payment Gate-
way, who is supposed to authorize transactions. It is impossible to prove
that the Cardholder intended to share his credit card details with the
Payment Gateway who is participating in the protocol to authorize the
payment. A Merchant, in co-operation with a Payment Gateway, could
cause payment to take place through a different Payment Gateway
without the Cardholder’s knowledge or consent. Although this scenario
is not an attack on SET’s main objectives of integrity, authenticity, and
privacy, it violates the Cardholder’s expectations. A simple change to
the protocol can fix this problem.

From a verification perspective, our result shows that the inductive
method (supported by a powerful prover like Isabelle) can scale up
to protocols as complex as SET. However, we are near the limit of
tractability for our approach. Better automation or user interfaces are
needed for more complex protocols or more detailed models of SET.

In the next sections we present an overview of SET (§2) and of its
Purchase protocols (§3). We discuss the formal model, presenting the
protocol rules in Isabelle syntax (§4). Then we discuss successful and
failed proofs (§5 and §6). Changing perspective, we consider the diffi-

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.3

4 G. Bella, F. Massacci and L. C. Paulson

culty of the proofs purely as automated reasoning problems (§7). The
paper continues with a discussion of related work (§8) and concludes
(§9).

2. SET Overview

Most Internet Merchants use the SSL protocol to prevent eavesdroppers
from learning Cardholders’ account details, adopting the classical idea
that bad persons are always outsiders. This arrangement has two major
limitations:

− Cardholders must trust Merchants to keep these details secure,
when Merchants may be dishonest or incompetent [27].

− Merchants must trust Cardholders, when Cardholders can repudi-
ate their purchases or submit stolen credit card numbers.

Visa and Mastercard designed the SET protocol to solve these prob-
lems by keeping sensitive information confidential and by authenticat-
ing Cardholders and Merchants to financial institutions and to one
another [20, page 6]. To achieve these goals, SET comprises five main
sub-protocols:

− Cardholder Registration allows a Cardholder to register a credit
card with a Certification Authority. The request includes the Card-
holder’s public signature key and a secret nonce. The outcome of
registration is a public-key certificate that includes the hash of the
credit card number (called the primary account number or PAN),
and of a secret nonce (PANSecret), with the same role of the PIN
for physical cards. It is expected that this phase is only run once
during the enrolment of the Cardholder.

− Merchant Registration allows a Merchant to register both a signa-
ture key and an encryption key. Once again this phase should be
run only once for each credit card brand.

− Purchase Request allows Cardholders to place orders with Mer-
chants. Normally, this should take place after both Cardholder and
Merchant have registered. The specification leaves this option open
for Cardholders who wish to Purchase without having registered
a public key.

− Payment Authorization follows or is combined with Purchase Re-
quest. It allows a Merchant to verify the Cardholder’s details with
a Payment Gateway, which authorizes the transactions.

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.4

Verifying the SET Purchase Protocols 5

− Payment Capture is used by Merchants for the actual funds trans-
fer at the end of the protocol suite.

Here is the protocol in brief. Cardholders and Merchants should
register with Certificate Authorities before making purchases. Known
fraudsters may be blocked at this stage. Registered principals can then
engage in business. During the Purchase protocols, a combination of
digital signatures and hashes allows the Cardholder to make purchases
without sharing account details with the Merchant, and without shar-
ing order information with the Payment Gateway.

3. The SET Purchase Protocols

Before going into details, let us point out some distinctive features in
the design of the Purchase protocols.

The first idea is to use Digital Envelopes. Asymmetric encryption is
too slow to be used for anything other than key distribution. Symmetric
encryption is fast and can handle bulk data, but it is bi-directional and
offers no proof of origin. So, if Alice wants to send a long message
M to Bob, she generates a symmetric key K, encrypts K using Bob’s
public key and encrypts the message M using K. Some types of digital
envelope bundle K with an additional short message m and with the
hash of M , or the hash of both m and M , and so on. The intuition is
that a digital signature binding the symmetric key encrypting M with
the hash of M yields a proof of origin also for M . The SET Books
[22] and the PKCS Standard [33] discuss the implementation and the
cryptographic security of digital envelopes.

The second idea is the Dual Signature. This combination of hashes
and digital signatures lets several parties agree on a transaction with-
out giving each of them a complete view of the transaction. It avoids
resorting to general cryptographic access structures.

Suppose that Alice wants to sign two documents O (for Order) and
P (for Payment) but wants to show to Bob only the O part of the
transaction and to Charlie only the P part. Then she sends to Bob
O, the hash of P and the dual signature, namely the signature of the
concatenation of the hash of P with the hash of O. Clearly Bob can
verify the signature because he has the hash of P and can generate the
hash of O. Then, she sends to Charlie P and the hash of O, together
with the same signature which he can verify. Although Charlie does
not know what is in O and Bob does not know what is in P , they can
agree that Alice signed O and P .

Using a further level of encryption, we can use Bob to forward
the message to Charlie: Bob receives O, the hash of P , and the dual

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.5

6 G. Bella, F. Massacci and L. C. Paulson

signature, plus P encrypted with Charlie’s public key (so that Bob
cannot read it). Then Bob checks the signature as before and forwards
to Charlie the hash of O, the dual signature and the encrypted part P .
Charlie can remove the encryption layer and verify the signature. Still
Bob does not know P and Charlie does not know O. In summary, the
protocol runs as follows:

1. A→B: O,Hash(P),SignpriSK A(Hash(O),Hash(P)), CryptpubEK C(P)

2. B→C: Hash(O),SignpriSK A(Hash(O),Hash(P)),CryptpubEK C(P)

This protocol does not protect Alice from Bob or Charlie’s mis-
behaving. She must trust Bob and Charlie not to exchange O and P
covertly. SET observes the trust assumptions of the credit card domain.
In particular, it assumes that merchants and banks will obey privacy
regulations, if only because it is in their commercial interest. Because
SET authenticates the parties, anybody who does break the law can
be positively identified.

Remark 1. In the real world, digital envelopes and dual signatures
speed up the underlying cryptography. In the formal model, they com-
plicate symbolic analysis by introducing duplications.

Since the symbolic hash of M is not shorter than M (formally M is
a subterm of Hash(M)), sending the symmetric encryption of M with
the asymmetric encryption of the hash of M duplicates the symbolic
term describing the message M .

To make the presentation readable — both below and in the formal
specifications — we introduce many abbreviations. The messages blow
up dramatically when abbreviations are unfolded. Yet, without abbre-
viations the protocol would be unreadable. As we have noted already,
this implies that automated support for handling abbreviations and
automatically folding or unfolding them on demand is a must for formal
analysis of such large scale protocols.

The Purchase protocols are considerably more complicated than the
description given above. It involves interaction among three parties and
several alternative protocol paths. Purchase Requests may be signed
or unsigned, depending upon whether the Cardholder has run the
Registration protocol. Payment Authorization may be invoked during
Purchase Request, or authorizations may be batched for processing
later. Other complications include split shipments and payment by
instalments.

Here, we combine Purchase Request with Payment Authorization,
yielding in effect a six-step protocol.

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.6

Verifying the SET Purchase Protocols 7

Remark 2. For sake of readability, the version presented in this sec-
tion is simpler even than the one that we modelled and verified in
Isabelle: certificates are omitted and the PKCS digital envelopes [33]
are replaced by simple public-key encryption. Readers interested in a
realistic model of digital envelopes should consider using the Isabelle
model detailed in §4.

Reducing the SET Purchase protocols to our formal model has not
been trivial. A number of tricky issues in the modelling are discussed
elsewhere [8]. Our model provides both signed and unsigned versions
of Purchase Request and of the main round of Payment Authorization:
Authorization Request and Authorization Response.

3.1. Initial Shopping Agreement

The Cardholder and Merchant agree on the order description (Order-
Desc) and the purchase amount (PurchAmt). This agreement step,
called the SET Initiation Process in the Programmer’s Guide [22, page 45],
is not part of SET and occurs just before it. There are suggestions in
the SET External Interface Guide [19], but they are not part of the
official protocol: the SET Initiation Process is not defined in the Formal
Protocol Definition, and the Programmer’s Guide [22, page 45] expects
that “standards will be developed to address how this information is
exchanged and how the SET protocol is initiated.”

SET’s system of transaction identifiers is elaborate. The Program-
mer’s Guide states that the Merchant originally identifies the transac-
tion from the identifier LID M (if the Cardholder sends it) or out of
band otherwise [22, page 310]. After that, the parties use a different
transaction identifier, XID: “XID is a transaction ID that is usually
generated by the Merchant system, unless there is no [Purchase Initial-
ization Response, §3.3], in which case it is generated by the Cardholder
system.” [22, page 267]. In the latter case, the Merchant identifies
the order by scanning the order description according to out of band
agreements.

We decided to resolve SET’s complicated system of transaction iden-
tifiers by

− requiring presence of the initial message where the Cardholder
sends LID M, so that

− the Merchant is responsible for generating XID, which is used to
identify the current transaction.

Should the Merchant fail to choose a globally unique XID, a dis-
honest Cardholder could collude with a dishonest Merchant and have

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.7

8 G. Bella, F. Massacci and L. C. Paulson

a transaction authorised by a Payment Gateway. The dishonest Card-
holder could purchase the same goods from an honest Merchant by re-
playing the Gateway’s authorisation from the other session. The honest
Merchant would commit to sending the goods but receive no payment.

3.2. Purchase Initialization Request

The Cardholder sends the Merchant a freshness challenge (Chall C)
and a local transaction identifier (LID M).

1. C → M : LID M,Chall C

3.3. Purchase Initialization Response

The Merchant replies with a signed message that includes a freshness
challenge (Chall M) and generates a nonce that serves as the globally
unique transaction identifier1 XID. Also returned (but omitted below)
is the public-key certificate of a Payment Gateway, which is determined
by the Merchant’s bank and the card brand. In our formalization, a
certificate is merely a message containing an agent’s name and public
key, signed by the Root Certification Authority.

2. M → C : SignpriSK M (LID M,XID,Chall C,Chall M)

3.4. Purchase Request

This is the most interesting message in SET. The Merchant and Pay-
ment Gateway must agree on the Cardholder’s purchase, although each
of them gets only partial information: the Merchant should not know
the card details, and the Payment Gateway should not know what
is being bought. To meet this objective, SET uses a dual signature:
the Cardholder signs the concatenation of the hashes of the Payment
Instructions PIData and the Order Information OIData. He combines
this with the card details PANData, including the PAN and other
secret numbers, CardSecret and PANSecret, which help to authenticate
him. Then he encrypts everything using the Payment Gateway’s public
key, pubEK P . He sends this to the Merchant, along with the Order
Information and the hash of the Payment Instructions.

3. C → M : PIDualSign,OIDualSign

1 “a randomly generated 20 byte variable that is globally unique (statisti-
cally)” [22, p.267].

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.8

Verifying the SET Purchase Protocols 9

Here, C has computed

HOD = Hash(OrderDesc,PurchAmt)
PIHead = LID M,XID,HOD,PurchAmt,M,

Hash(XID,CardSecret)
OIData = LID M,XID,Chall C,HOD,Chall M

PANData = PAN,PANSecret
PIData = PIHead,PANData

PIDualSign = SignpriSK C(Hash(PIData),Hash(OIData)),

CryptpubEK P (PIHead,Hash(OIData),PANData)

OIDualSign = OIData,Hash(PIData)

An unsigned Purchase Request — formally modeled but not shown
here — obviously lacks this combination of digital signatures and hash-
ing. It authenticates the Cardholder using the hash of the PANSecret.
Though it does not offer the guarantees of a digital signature in terms
of proof of origin, it is still better than sending the credit card details
to the Merchant.

3.5. Authorization Request

After receiving the Purchase Request, the Merchant seeks authorization
from a Payment Gateway. First, he verifies the dual signature, using
the hash from the Payment Instructions. He also verifies the Order
Information. He takes the Payment Instructions (which he cannot read)
and combines them with transaction identifiers and the hash of the
Order Information. This combination is signed by the Merchant and
then encrypted using the Payment Gateway’s public key.

4. M → P : CryptpubEK P (SignpriSK M

(LID M,XID,Hash(OIData),HOD,PIDualSign))

3.6. Authorization Response

The Payment Gateway verifies the dual signature using the hash from
the Order Information. Then, he checks that the Cardholder and Mer-
chant agree on the Order Description and Purchase Amount by com-
paring certain hash values.2 Finally, he verifies the Cardholder’s secret
account information, using the Cardholder’s certificate. If satisfied, he

2 He compares the HOD he receives by message 4 signed by the Merchant with
the one he receives in the dual signature PIDualSign.

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.9

10 G. Bella, F. Massacci and L. C. Paulson

confirms authorization to the Merchant by signing a brief message
containing the transaction identifier and purchase amount.

5. P → M : CryptpubEK M (SignpriSK P

(LID M,XID,PurchAmt, authCode))

What if authorization is denied? In SET, the Payment Gateway always
responds to the enquiries of the Merchant, even when authorization is
denied. Thus, the actual authCode field may be a “yes”, a “no”, a
“contact-human-at-800-SET-HELP” etc. For simplicity, our model as-
sumes that principals only return “yes” answers and otherwise abandon
the session. Other researchers might analyse the security of the protocol
when both “yes” and “no” answers may be returned.

3.7. Purchase Response

The Merchant now sends a similar signed message to the Cardholder.
It contains the hash of the Purchase Amount, which the Cardholder
can verify. Disputes are resolved “out of band.”

6. M → C : SignpriSK M (LID M,XID,Chall C,Hash(PurchAmt))

4. The Formal Model

We use the Isabelle proof assistant [26] with the inductive method
of protocol verification introduced by Paulson [29] and extended by
Bella [9]. The operational semantics assumes an infinite population of
agents obeying the protocol and a dishonest agent (the Spy) who can
steal messages intended for other agents, decrypt them using any keys
at his disposal and send new messages as he pleases. Some agents are
compromised, meaning the Spy has full access to their secrets.

Each agent has two asymmetric key pairs, one for signature and one
for encryption. Apart from the Spy, agents are of four kinds:

− Certificate Authorities, which sign certificates for other agents, are
written CA i (for i ≥ 0).

− Cardholders are written Cardholder i.

− Merchants are written Merchant i.

− Payment Gateways are written PG i.

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.10

Verifying the SET Purchase Protocols 11

The Root Certificate Authority is CA 0. It is abbreviated as RCA, and
the model assumes it to be uncompromised. Any other agents may be
under the Spy’s control. Protocol properties can usually be expected
to hold only if the agents involved are uncompromised, though many
compromised agents may be present.

A protocol is modelled by the set of all possible traces of events that
it can generate. Events are of three forms:

− Says A B X means A sends message X to B.

− Gets A X means A receives3 message X.

− Notes A X means A stores X in its internal state.

Each protocol step consists of many preconditions (typically referring
to previous messages being received or fresh keys being generated) and
a postcondition (some new messages are sent or stored).

The Purchase protocols are specified in about 230 lines of Isabelle
text, including some comments but excluding the general SET public-
key model (which totals nearly 1700 lines). Unsigned purchases add sev-
eral rules to the specification, namely the unsigned Purchase Request
itself and its handling by the Merchant and Payment Gateway.

4.1. Protocol Rules for Initiating a Purchase

We devoted much thought to modelling the SET Initiation Process (see
also §3.1). This was essential because to prove that all parties agree on
the details of a transaction at the end of a run, we must be precise
about what transaction is being made at the start of the run. Two
issues were particularly delicate.

The first issue is modelling the transaction identifier. Once the iden-
tifier is fixed, one can state claims such as “if the Cardholder signed a
transaction identified by X, then the Merchant record of the transaction
identified by X matches with the record of the Cardholder”.

Remark 3. The problem of identifying a transaction in e-commerce
protocols is similar to that of of identifying a run in authentication
protocols. Identifying a run has been considered tricky in the literature,
and a number of papers in the mid 1990s have set out contrasting
opinions: for example, Lowe [17] and Gollmann [13]. After over a decade
of discussion, it is now accepted that nonces or keys created in an
authentication protocol are the run identifiers. Our efforts confirm that
the most appropriate identifier for a transaction of SET’s Purchase
protocols is the Merchant’s choice of XID.

3 Since all messages can be intercepted and redirected by the intruder which
manipulate the network we ignore the sender field in the received message.

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.11

12 G. Bella, F. Massacci and L. C. Paulson

The second issue is the choice of the agent responsible for labelling
the transaction with the identifier. This choice has major implications
for the underlying trust assumptions. If Alice is responsible for assign-
ing transaction identifiers, then all proofs about the authenticity of
the transactions must assume that Alice is honest, since otherwise she
could simply assign the same identifier to two different transactions.

As remarked above (§3.1), we had to

− find a way to bootstrap the SET Initiation Phase by out-of-band
means,

− find an identifier for the transaction,

− find the agent responsible for identifying the transaction.

The first step is less trivial than it seems. If we assume that initiation
takes place over the network, it becomes impossible to prove anything:
the intruder could have changed the details of the transaction from the
outset. In practice, the initiation phase might be protected by a weaker
protocol, such as SSL.

We have modelled the bootstrapping step with two simultaneous
events that are not sent over the network: one from the Cardholder
and one from the Merchant. Each stores LID M together with the
transaction details; the Merchant also stores the Payment Gateway’s
name. We have chosen XID for the identifier and mandated the first
two messages (optional in the specification), making the Merchant is
responsible for generating XID appropriately [22, page 267]. Recall the
discussion in §3.1 and §3.3.

Figure 1 presents three rules of the inductive definition, as they are
given to Isabelle, showing how we model the SET Initiation Process
and the SET system of transaction identifiers.

The first rule, Start shows how we formally model the out-of-band
agreement that we have informally described above. The Cardholder C

and Merchant M somehow agree on a Transaction specified by OrderDesc

and PurchAmt. No messages are sent, but both parties simultaneously
record the transaction using a Notes event each. The rule refers to
a given trace, here called evsStart. The trace evsStart is a possible
sequence of events that happened so far. The constant set_pur denotes
the set of traces belonging to the SET purchase. So, by evsStart ∈
set pur we simply denote the fact that this trace must belong to the
set of traces of the protocol. Assumptions of the form LID M /∈ range

... help Isabelle’s simplifier, and are acceptable because a transaction
identifier can be discerned by its length from the credentials, CardSecret
and PANSecret, that the Cardholder obtained from the Registration

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.12

Verifying the SET Purchase Protocols 13

Start:

" [[evsStart ∈ set pur;

Number LID M /∈ used evsStart;

C = Cardholder k; M = Merchant i; P = PG j;

Transaction = {|Agent M, Agent C, Number OrderDesc,

Number PurchAmt |};
LID M /∈ range CardSecret; LID M /∈ range PANSecret]]
=⇒ Notes C {|Number LID M, Transaction |}
Notes M {|Number LID M, Agent P, Transaction |}
evsStart ∈ set pur"

PInitReq:

" [[evsPIReq ∈ set pur;

Transaction = {|Agent M, Agent C, Number OrderDesc,

Number PurchAmt |};
Nonce Chall C /∈ used evsPIReq;

Chall C /∈ range CardSecret; Chall C /∈ range PANSecret;

Notes C {|Number LID M, Transaction |} ∈ set evsPIReq]]
=⇒ Says C M {|Number LID M, Nonce Chall C |} # evsPIReq ∈ set pur"

PInitRes:

" [[evsPIRes ∈ set pur;

Gets M {|Number LID M, Nonce Chall C |} ∈ set evsPIRes;

Transaction = {|Agent M, Agent C, Number OrderDesc,

Number PurchAmt |};
Notes M {|Number LID M, Agent P, Transaction |} ∈ set evsPIRes;

Nonce Chall M /∈ used evsPIRes;

Chall M /∈ range CardSecret; Chall M /∈ range PANSecret;

Number XID /∈ used evsPIRes;

XID /∈ range CardSecret; XID /∈ range PANSecret]]
=⇒ Says M C (sign (priSK M)

{|Number LID M, Number XID,

Nonce Chall C, Nonce Chall M,

cert P (pubEK P) onlyEnc (priSK RCA) |})
evsPIRes ∈ set pur"

Figure 1. Start, Initialisation Request/Response in Isabelle Syntax

protocol [6]. Similar assumptions are made about Chall_C and XID in
the next two rules. The second rule, PInitReq, formalises the actual
beginning of the protocol. It sees the Cardholder simply send LID M

paired with a nonce challenge. The third rule, PInitRes, formalises the
Merchant’s response, where he chooses and sends XID. The signature
primitive has the obvious definition:

sign K X == {|X, Crypt K (Hash X) |}

We tried various ways of formalizing the initial bootstrapping phase,
and other researchers may make different choices. For example, in a pre-

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.13

14 G. Bella, F. Massacci and L. C. Paulson

vious version of our model, XID was generated using an uninterpreted
injective function from the transaction details. This model simplified
many proofs, essentially because it was not possible for a bad agent
to use the same identifier for different transaction. Loosely speaking,
the same Order and the same Purchase Amount always yielded the
same identifier and the unique identification of the transaction was
guaranteed by construction. Yet, even in this simplified model, we could
not eliminate from many theorems the assumption that the Merchant
was honest.

This disturbing fact led us to a more sophisticated model where
responsibility for choices of identifiers and transactions details were
made explicit. In the refined model, the reason behind the trust as-
sumption is clearer. For example, the need for trusting the Merchant
in theorems about agreement between the Cardholder and Payment
Gateway appears in step Start : the Merchant is responsible for choos-
ing the Payment Gateway for future protocol steps. This admits the
possibility of undesirable collusion with the Payment Gateway — see
later discussion in §6 — though opinions differ on whether it is an error
on the part of SET’s designers.

4.2. The Signed Purchase Request

Figure 2 presents part of the rule modelling the signed purchase request.
Let us go through it in some detail. The rule refers to a given trace,
here called evsPReqS. Condition C = Cardholder k defines a local ab-
breviation: C stands for the k-th Cardholder. He is the active principal
in this rule. Recall that we have no limit to the number of Cardholders.
The condition CardSecret k 6= 0 checks that this k-th Cardholder is
registered: the CardSecret field belongs to the certificates exchanged
by the Merchant and the Cardholder. It is fixed to 0 if the Cardholder
did not bother to register his public key with a certification authority.
The conditions Key KC2 /∈ used evsPReqS and KC2 ∈ symKeys say that
KC2 is a fresh symmetric key.

The next line, Transaction = ... refers to the transaction details
agreed by the Cardholder and the Merchant in the Start rule. The next
several lines, starting with HOD and ending with OIDualSigned, express
the construction of the dual signature. To this purpose, the general
SET model defines the EXcrypt construct as follows:

EXcrypt K EK M m == {|Crypt K {|M, Hash m |}, Crypt EK {|Key K, m |}|}

Here EK is a public encryption key, K is a symmetric key, and M and m are
fields — note that m appears twice. Next come the rule’s preconditions:
the Cardholder agreed on the transaction details with the Merchant

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.14

Verifying the SET Purchase Protocols 15

PReqS:

" [[evsPReqS ∈ set pur;

C = Cardholder k;

CardSecret k 6= 0; Key KC2 /∈ used evsPReqS; KC2 ∈ symKeys;

Transaction = {|Agent M, Agent C, Number OrderDesc,

Number PurchAmt |};
HOD = Hash{|Number OrderDesc, Number PurchAmt |};
OIData = {|Number LID M, Number XID, Nonce Chall C, HOD,

Nonce Chall M |};
PIHead = {|Number LID M, Number XID, HOD, Number PurchAmt, Agent M,

Hash{|Number XID, Nonce (CardSecret k) |}|};
PANData = {|Pan (pan C), Nonce (PANSecret k) |};
PIData = {|PIHead, PANData |};
PIDualSigned = {|sign (priSK C) {|Hash PIData, Hash OIData |},

t KC2 EKj {|PIHead, Hash OIData |} PANData |};
OIDualSigned = {|OIData, Hash PIData |};
Gets C (sign (priSK M)

{|Number LID M, Number XID,

Nonce Chall C, Nonce Chall M,

cert P EKj onlyEnc (priSK RCA) |})
∈ set evsPReqS;

Says C M {|Number LID M, Nonce Chall C |} ∈ set evsPReqS;

Notes C {|Number LID M, Transaction |} ∈ set evsPReqS]]
=⇒ Says C M {|PIDualSigned, OIDualSigned |}

Notes C {|Key KC2, Agent M |}
evsPReqS ∈ set pur"

Figure 2. Signed Purchase Request in Isabelle Syntax

(the Notes C event), he sent the Purchase Initialization Request to the
Merchant (the Says C M event) and finally he received the Purchase
Initialization Response (the Gets C event). These steps are those de-
scribed in the actual SET protocol (see Section 3). Skipping to the
conclusion, we find the current trace being extended with a Says C M

event whereby C sends the dual signature, and a Notes C event whereby
he notes down the fresh symmetric key and its recipient.

4.3. Protocol Rules for Completing a Purchase

Figure 3 presents the Isabelle formalisation of the next two messages,
which belong to the separate Authorisation Request protocol. Let us
briefly examine AuthReq, in which the Merchant contacts the Payment
Gateway. By Key KM /∈ used evsPReqS and KM ∈ symKeys we pick a
fresh symmetric key. Next, through Transaction = ..., we refer to the
stored transaction details; then we calculate HOD to be the hash of
the Order Description and Purchase Amount and calculate the Order
Information OIData from various known quantities. The Gets M event

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.15

16 G. Bella, F. Massacci and L. C. Paulson

refers to the Merchant’s reception of the Purchase Request. If all is
well, then the trace is extended with a Says event from the Merchant
to the Payment Gateway. This event uses the EncB primitive, which
stands for encapsulation with baggage. It is defined in terms of the
simple encapsulation primitive Enc as follows:

EncB SK K EK M b == {|Enc SK K EK {|M, Hash b |}, b |}
Enc SK K EK M == {|Crypt K (sign SK M), Crypt EK (Key K) |}

Take particular note of the condition

CardSecret k 6= 0 −→
P I = {|sign (priSK C) {|HPIData, Hash OIData |}, encPANData |};

If this Cardholder is registered, then we verify the dual signature by
checking that the signed hash HPIData equals the hash sent as the third
component of the Purchase Request, and verify that the second com-
ponent of the dual signature equals the hash of OIData. These essential
checks can be neatly expressed without resorting to equality tests in the
precondition of the rule: where two fields have to agree, we simply give
them the same variable name. The same technique is used to express
the Payment Gateway’s verification of the dual signature.

Figure 4 contains the Purchase Response sent from the Merchant
to the Cardholder. It is very simple, containing the transaction identi-
fiers, Cardholder’s nonce challenge and hashed Purchase Amount, all
digitally signed by the Merchant.

During the modelling stage, the support for equational reasoning in
Isabelle allows to express messages like Purchase Request succinctly.
Unfortunately, Isabelle’s simplifier expands equations during proofs,
producing subgoals many pages long. Handling such huge formulae
requires additional memory and processor time, and makes great de-
mands on the human verifier. (See further discussion in §9.).

4.4. An Aside on Digital Envelopes

Equations are necessary in our SET formalization because messages
have many repeated fields. We have seldom used them before, even for
complex protocols such as TLS or Kerberos. A message containing both
M and Hash M involves a repetition of M when it is treated formally.

Further repetitions arise from the EXcrypt digital envelope, as ob-
served in the previous section. We could simplify this to a simple
public-key encryption, as we have done in our informal presentation
of the SET Purchase protocols on Section 3. Our first proofs made this
very simplification. They were useful for identifying the main guaran-
tees to be verified. However, the simplification resulted in a considerable

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.16

Verifying the SET Purchase Protocols 17

AuthReq:

" [[evsAReq ∈ set pur;

Key KM /∈ used evsAReq; KM ∈ symKeys;

Transaction = {|Agent M, Agent C, Number OrderDesc,

Number PurchAmt |};
HOD = Hash{|Number OrderDesc, Number PurchAmt |};
OIData = {|Number LID M, Number XID, Nonce Chall C, HOD,

Nonce Chall M |};
CardSecret k 6= 0 -->

P I = {|sign (priSK C) {|HPIData, Hash OIData |}, encPANData |};
Gets M {|P I, OIData, HPIData |} ∈ set evsAReq;

Says M C (sign (priSK M) {|Number LID M, Number XID,

Nonce Chall C, Nonce Chall M,

cert P EKj onlyEnc (priSK RCA) |})
∈ set evsAReq;

Notes M {|Number LID M, Agent P, Transaction |}
∈ set evsAReq]]

=⇒ Says M P

(EncB (priSK M) KM (pubEK P)

{|Number LID M, Number XID, Hash OIData, HOD |} P I)

evsAReq ∈ set pur"

AuthResS:

" [[evsAResS ∈ set pur;

C = Cardholder k;

Key KP /∈ used evsAResS; KP ∈ symKeys;

CardSecret k 6= 0; KC2 ∈ symKeys; KM ∈ symKeys;

P I = {|sign (priSK C) {|Hash PIData, HOIData |},
EXcrypt KC2 (pubEK P) {|PIHead, HOIData |} PANData |};

PANData = {|Pan (pan C), Nonce (PANSecret k) |};
PIData = {|PIHead, PANData |};
PIHead = {|Number LID M, Number XID, HOD, Number PurchAmt, Agent M,

Hash{|Number XID, Nonce (CardSecret k) |}|};
Gets P (EncB (priSK M) KM (pubEK P)

{|Number LID M, Number XID, HOIData, HOD |}
P I)

∈ set evsAResS]]
=⇒ Says P M

(EncB (priSK P) KP (pubEK M)

{|Number LID M, Number XID, Number PurchAmt |}
authCode)

evsAResS ∈ set pur"

Figure 3. Authorisation Request and Response

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.17

18 G. Bella, F. Massacci and L. C. Paulson

PRes:

" [[evsPRes ∈ set pur; KP ∈ symKeys; M = Merchant i;

Transaction = {|Agent M, Agent C, Number OrderDesc,

Number PurchAmt |};
Gets M (EncB (priSK P) KP (pubEK M)

{|Number LID M, Number XID, Number PurchAmt |}
authCode)

∈ set evsPRes;

Gets M {|Number LID M, Nonce Chall C |} ∈ set evsPRes;

Says M P

(EncB (priSK M) KM (pubEK P)

{|Number LID M, Number XID, Hash OIData, HOD |} P I)

∈ set evsPRes;

Notes M {|Number LID M, Agent P, Transaction |}
∈ set evsPRes]]

=⇒ Says M C

(sign (priSK M) {|Number LID M, Number XID, Nonce Chall C,

Hash (Number PurchAmt) |})
evsPRes ∈ set pur"

Figure 4. Purchase Response

loss of precision. The digital envelope not only admits the possibility of
the symmetric key’s being compromised, but binds the message com-
ponents more loosely. If we model the digital envelope by the direct
encryption Crypt EK {|M, m |}, then M and m can only be compromised
together. In the model, one can lose the symmetric key, thus disclosing
M to the spy, without disclosing m. This difference in the security level
is also witnessed by the difference of importance between M and m in
the actual SET protocol. The message M, protected by a symmetric key,
merely contains the order information (so what if the spy discovers your
bad taste in music?), while m, protected by a public key encryption,
contains the credit card details (deserving of stronger protection). The
current formalization includes full digital envelopes, which makes the
proofs considerably more complicated.

5. Verified Properties

The Formal Protocol Definition [21] does not formally specify the goals
of SET. All we have are the explicit but imprecise requirements from
the Business Description [20, page 6], which we quote here:

1. Provide confidentiality of payment information

2. Ensure integrity of all transmitted data

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.18

Verifying the SET Purchase Protocols 19

3. Provide authentication that a Cardholder is a legitimate user of a
branded payment card account

4. Provide authentication that a Merchant can accept branded pay-
ment card transactions.

Such goals are of course broader than the ones that can be actu-
ally formalized, as they include business notions such as existence of
trust relations. At this stage, a modelling decision must be made. We
have used our judgement to transform these vague goals into a possi-
ble equivalent notion in the formal domain. Other researchers might
have chosen different formalizations. We address the first two business
requirements as follows:

1. Provide confidentiality of the PAN and the PANSecret between
(uncompromised) cardholders and payment gateways, because this
is the relevant payment information that remains in our model4

2. Ensure integrity of all transmitted data that is signed by some
uncompromised party

These intermediate requirements are expressed as a number of theo-
rems, which are presented below. Note that the second requirement
implies that every message that appears to come from a certain party
actually does come from that party, or else that party has been com-
promised.

Dealing with the last two business goals requires the combination
of the results in this paper and our account on the cardholder and
merchant registration phases [6]. To provide authentication that a card-
holder is a legitimate users of a credit card brand means that there
is a chain of trust from the cardholder digital credentials (PAN and
signature key) and the credit card Issuer. For merchants, providing
evidence that they can accept branded credit cards means that there is
chain of trust from their digital credentials (public key for encrypting
data sent to them, and private key signing data sent by them) to the
corresponding SET authorities.

In the SET registration paper, we showed that Cardholders and
Merchant can safely register their keys and that the confidentiality of
the PAN coming from the SET Certification Gateway is also protected.
If a Cardholder has a valid certificate from a SET Root, then he is a
legitimate user of a credit card. Here, we start from the public/private
key pairs of Cardholders and Merchants and combine the results of

4 For instance we have dropped the Bank Information, assuming that it is encoded
in the PAN.

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.19

20 G. Bella, F. Massacci and L. C. Paulson

the previous paper with those of this paper each time we state in
the hypothesis of a theorem that Cardholders or Merchants are not
compromised.

Back to the formal model, our proofs followed the usual pattern
suggested by Paulson [29]: possibility properties, regularity properties,
secrecy properties and finally the integrity and authenticity guaran-
tees for the SET participants, namely the Cardholder, Merchant and
Payment Gateway.

Possibility properties affirm that the protocol can run from start
to finish, and therefore that message formats are consistent between
rounds. Possibility properties are logically trivial, but are non-trivial to
verify due to the size of the protocol. They say nothing about security,
but constitute a vital sanity check on the protocol definition. They
are essential for protocols as complex as SET, where human experts
cannot even read the complete view of the entire detailed and unfolded
protocol. The formalized protocol may be secure simply because it
cannot be run! Many researchers appear to ignore this sanity check.
For the Purchase transaction, we proved possibility properties for both
the signed and unsigned message flows.

Regularity properties are obvious consequences of the model: pri-
vate keys cannot become compromised during a run, certificates signed
by the Root Certification Authority are correct, and so forth. Their
proofs are usually straightforward applications of induction followed
by simplification and a small amount of classical reasoning.

As for secrecy properties, first we must prove that the symmetric keys
used in digital envelopes are secure. From this lemma, we can prove that
nonces encrypted using those keys are secure. Using these two lemmas
we can show that the first business requirement — confidentiality of the
payment data — is satisfied. In particular, we have proved that both
the PANSecret and the Cardholder’s PAN remain secure. In one sense,
these proofs require significant effort, since their proof scripts occupy
a substantial part of the proof script. However, thanks to Isabelle’s
level of automation, we proved them easily by building on our previous
work on the Registration protocols [6]. Here is one example. A similar
theorem expressing confidentiality of the PANSecret is not shown.

Theorem 1. (PAN Secrecy, Signed) If the Spy can get the PAN of
a registered Cardholder, then the Cardholder has previously issued a
Purchase Request involving a compromised Payment Gateway.

Recall that compromised means under the Spy’s control. This theo-
rem is presented formally to illustrate how properties are specified in
Isabelle.

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.20

Verifying the SET Purchase Protocols 21

[[Pan (pan C) ∈ analz(knows Spy evs); C = Cardholder k;

CardSecret k 6= 0; evs ∈ set_pur]]
=⇒
∃ P M KC2 PIDualSign1 PIDualSign2 other OIDualSign.

Says C M {|{|PIDualSign1,
EXcrypt KC2 (pubEK P) PIDualSign2 {|Pan(pan C),other |}|},
OIDualSign |} ∈ set evs ∧

P ∈ bad

By analz(knows Spy evs) we denote the set of all messages that the
Spy can deduce from his knowledge of the events of the generic trace
evs. The inequality CardSecret k 6= 0 expresses that Cardholder k is
registered. The existentially quantified variables refer to the unknown
(and irrelevant) items in the Purchase Request that was sent to the
bad Payment Gateway (called P). Referring to the format of the Signed
Purchase Request in §3 and in Figure 2, we see that the only relevant
detail is PANData.

The proof, a typical confidentiality argument, involves induction fol-
lowed by heavy equational simplification and the automatic elimination
of trivial cases. It relies on a lemma on PANs that is proved by similar
methods. The version for unsigned Cardholders must be stated and
proved separately because the Purchase Request message has a different
format.

The remaining theorems are essentially integrity and authentication
properties. We adopted as a general guideline that the Cardholder, Mer-
chant and Payment Gateway should agree on all relevant details of the
transaction. The Payment Gateway knows the Purchase Amount and
credit card details. The Merchant knows about the Order Description
and Purchase Amount. The Cardholder knows both sets of information.

Most of these guarantees involve verifying digital signatures. Some
of them also apply to unsigned purchases. On the whole, they are easily
proved by induction; the most difficult ones rely on lemmas also proved
by straightforward inductions. The main results appear below. Note
that assumptions of the form A /∈ bad state that agent A is uncom-
promised. In some cases they are reasonable: when stating a guarantee
for a Merchant, it is realistic to assume that the Merchant himself is
uncompromised. In this case we do not mention it. In all other cases
they mark an important assumption on our trust model: who, beside
the partners of a message exchange, must be trusted for the protocol
to be secure.

Theorem 2. When the Merchant receives Authorization Response from
a trusted Payment Gateway, he knows that the Payment Gateway
signed it, including the transaction identifiers and the purchase amount,
which the Merchant can separately confirm.

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.21

22 G. Bella, F. Massacci and L. C. Paulson

Here is the Isabelle formulation:

[[MsgAuthRes = {|{|Number LID M, Number XID, Number PurchAmt |},
Hash authCode |};

Crypt (priSK (PG j)) (Hash MsgAuthRes) ∈ parts (knows Spy evs);

PG j /∈ bad; evs ∈ set pur]]
=⇒ ∃ M KM KP HOIData HOD P I.

Gets (PG j)

(EncB (priSK M) KM (pubEK (PG j))

{|Number LID M, Number XID, HOIData, HOD |} P I)

∈ set evs &

Says (PG j) M

(EncB (priSK (PG j)) KP (pubEK M)

{|Number LID M, Number XID, Number PurchAmt |} authCode)

∈ set evs

Notice the condition PG j /∈ bad : if the Merchant can trust the j-th
Payment Gateway to be uncompromised (in both his data and his
private keys) then Authentication Responses allegedly from the j-th
Payment Gateway do indeed come from him. The first conjunct in
the conclusions of the theorem also tells us that the Payment Gate-
way has received the message with the authorization request and the
corresponding XID.

The statement “When the Merchant receives Authorization Response”
is not modelled literally, which would require a Gets event. Instead, we
use the following condition:

Crypt (priSK (PG j)) (Hash MsgAuthRes) ∈ parts (knows Spy evs)

In plain English, it says “When the relevant part of the Authorization
Response appears in the traffic.” Indeed, knows Spy evs represents all
past traffic and parts denotes all parts of messages present there —
whether they are visible to the Spy or not. This condition is necessary
for the proof, since otherwise the inductive hypothesis would be too
weak.

Unfortunately, this theorem does not let us conclude that the Pay-
ment Gateway associates the transaction with this particular Merchant:
the variable M in the conclusion is existentially quantified. That is
because the Authorization Response message does not refer to M ; ab-
stractly, it is encrypted using M ’s public key, but the digital envelope
weakens that linkage. As so often in SET, signed messages lack explic-
itness: they should name the relevant parties rather than relying on the
uniqueness of session identifiers.

Theorem 3. When the Merchant sees a dual signature from an un-
compromised Cardholder, he can check (using LID M) that it was in-
tended for him and was issued by the Cardholder.

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.22

Verifying the SET Purchase Protocols 23

Here is the formal version of this statement:

[[MsgDualSign = {|HPIData, Hash OIData |};
OIData = {|Number LID M, etc |};
Notes M {|Number LID M, Agent P, extras |} ∈ set evs;

Crypt (priSK C) (Hash MsgDualSign) ∈ parts (knows Spy evs);

M = Merchant i; C = Cardholder k; C /∈ bad; evs ∈ set pur]]
=⇒ ∃ PIData PICrypt.

HPIData = Hash PIData &

Says C M {|{|sign (priSK C) MsgDualSign, PICrypt |},
OIData, Hash PIData |} ∈ set evs

Notice the condition C /∈ bad : the Merchant must assume that the
Cardholder is uncompromised. This assumption may seem dubious,
but it makes sense here. The intuition is that if a Cardholder has
been compromised, her keys could be used by the Spy to sign arbitrary
messages. No protocol can authenticate a user whose private keys are
in the hands of hackers.

The remaining main theorems are for the Payment Gateway and the
Cardholder, and concern the last steps of the protocol.

Theorem 4. When a Payment Gateway sees a dual signature from
uncompromised Cardholder and Merchant, he can verify that it orig-
inated with the given Cardholder for a transaction with the given
Merchant. He can also verify that the Merchant intended him to handle
the transaction.

The formal version makes clear the requirement that the Merchant
and Cardholder must be uncompromised. The conclusion asserts the
existence of the Merchant’s Notes event from the initial shopping agree-
ment and confirms the Cardholder’s sending a signed Purchase Request.

[[MsgDualSign = {|Hash PIData, HOIData |};
PIData = {|PIHead, PANData |};
PIHead = {|Number LID M, Number XID, HOD, Number PurchAmt, Agent M,

TransStain |};
Crypt (priSK C) (Hash MsgDualSign) ∈ parts (knows Spy evs);

evs ∈ set pur; C /∈ bad; M /∈ bad]]
=⇒ ∃ OIData OrderDesc K j trans.

HOD = Hash{|Number OrderDesc, Number PurchAmt |} &

HOIData = Hash OIData &

Notes M {|Number LID M, Agent (PG j), trans |} ∈ set evs &

Says C M {|{|sign (priSK C) MsgDualSign,

EXcrypt K (pubEK(PG j)) {|PIHead, Hash OIData |}
PANData |},

OIData, Hash PIData |} ∈ set evs

Theorem 5. When the Cardholder receives Purchase Response from
an uncompromised Merchant, he knows that the Merchant sent it. He

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.23

24 G. Bella, F. Massacci and L. C. Paulson

also knows that the Merchant received a message signed by a Payment
Gateway chosen by the Merchant to authorize the purchase.

In the formal version, we see that the Merchant must be uncompro-
mised. The conclusion asserts that the Merchant has participated in
the initial shopping agreement, received an instance of Authorization
Response and sent an instance of Purchase Response.

[[MsgPRes = {|Number LID M, Number XID, Nonce Chall C,

Hash (Number PurchAmt) |};
Gets C (sign (priSK M) MsgPRes) ∈ set evs;

Notes C {|Number LID M, Agent M, Agent C,

Number OrderDesc, Number PurchAmt |} ∈ set evs;

M /∈ bad; evs ∈ set pur]]
=⇒ ∃ P KP trans.

Notes M {|Number LID M,Agent P, trans |} ∈ set evs &

Gets M (EncB (priSK P) KP (pubEK M)

{|Number LID M, Number XID, Number PurchAmt |} authCode)

∈ set evs &

Says M C (sign (priSK M) MsgPRes) ∈ set evs

6. Failed Properties

What cannot be proved suggests potential vulnerabilities. It is impos-
sible to prove that the Cardholder and Payment Gateway agree on the
latter’s identity. Unless he trusts the Merchant, the Payment Gateway
has no reason to believe that the Cardholder intended him to take
part in the transaction. This lack of agreement occurs because the
Cardholder does not sign anything that specifies the Payment Gateway.

If the original Payment Gateway is bad, and can collude with a bad
Merchant, then he can remove the encryption from the dual signature
and communicate the Cardholder’s allegedly confidential data to the
Merchant, who can then send a new Authorization Request to an honest
Payment Gateway. We do not expect to see this attack in the real world,
primarily because a bad Payment Gateway has more lucrative crimes to
commit. No amount of tinkering with SET can reduce the need for trust
in Payment Gateways, who see the Cardholders’ confidential account
details. However, SET allows the Cardholder’s software to abort the
transaction before sending these confidential details if the proposed
Payment Gateway is not certified by the same credit card company
that issued the Cardholder’s certificate [22, page 314]. This indicates
that Cardholders are not expected to trust all Payment Gateways. It
also confirms our view that the name of the Payment Gateway is an
essential element of the transaction. Since we require all parties to agree

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.24

Verifying the SET Purchase Protocols 25

on all essential elements, we certainly want them to agree on the choice
of the Payment Gateway. The flaw can easily be fixed by inserting his
identity into PIData.

It might be an interesting research issue to investigate what guar-
antees can be derived if the abortion of the protocol by the Cardholder
in presence of a “wrong” Payment Gateway certificate is modelled.

Digital envelopes complicated the proofs in various ways and further
weakened our results for Payment Gateways. The simplified version of
SET shown in §3 above just uses public-key encryption, but our Isabelle
model is closer to SET itself: public-key encryption is applied to a sym-
metric key, which is used to encrypt the bulk of the message. We had
to prove secrecy of these symmetric keys, and the double encryptions
caused case splits in subgoals. Also, we found it hard to prove that the
symmetric keys were received intact. This may seem a peculiar thing
to worry about, since these keys are part of the security mechanism
and not part of the data being transmitted. Still, it would be odd if
Alice sent a digital envelope sealed with key K and Bob received this
envelope but sealed with K ′. These envelopes use hashing to establish
a link between the two parts; recall the definition of EXcrypt near the
end of §4. Again this problem is due to lack of explicitness: the key is
not included in the hash, and it should be.

To summarize, the Payment Gateway can confirm neither the iden-
tity of the intended Payment Gateways nor the original symmetric key
used in the Payment Information. This state of affairs is formalized as
an ugly and unsatisfactory theorem.

Theorem 6. When a Payment Gateway receives an Authorization Re-
quest with a dual signature, he knows that Cardholder and Merchant
packaged a Payment Instruction (not necessarily the one just received)
for some Payment Gateway (not necessarily him) with some digital
envelope (not necessarily the one just opened) where they agreed on
certain details that he can check. Even if Purchase Amount is seen only
by the Cardholder and not by the Merchant, both parties separately
compute the hash of Order Description and Purchase Amount, and the
Payment Gateway can compare them.

Figure 5 presents the Isabelle formulation. The variables P I’, P I’’,
KC’, j’, etc. are necessary because we cannot prove that they are equal
to the corresponding variables P I, KC, j, and so forth. If we could
prove these equalities, then we could simplify the form of the theorem
considerably.

Theorem 4 should not be confused with Theorem 6. The former
concerns a guarantee between Merchant and Payment Gateway; the
latter concerns a guarantee between the Cardholder and the Payment

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.25

26 G. Bella, F. Massacci and L. C. Paulson

[[AuthReqData = {|Number LID M, Number XID, HOIData, HOD |};
KC ∈ symKeys; C = Cardholder k;

PANData = {|Pan (pan C), Nonce (PANSecret k) |};
PIHead = {|Number LID M, Number XID, HOD, Number PurchAmt, Agent M,

TransStain |};
PIData = {|PIHead, PANData |};
PI sign = sign (priSK C) {|Hash PIData, HOIData |};
P I = {|PI sign, EXcrypt KC (pubEK(PG j)) {|PIHead, HOIData |} PANData |};
Gets (PG j) (EncB (priSK M) KM (pubEK (PG j)) AuthReqData P I)

∈ set evs;

evs ∈ set pur; C /∈ bad; M /∈ bad]]
=⇒ ∃ OIData OrderDesc KM’ trans j’ KC’ KC’’ P I’ P I’’.

HOD = Hash{|Number OrderDesc, Number PurchAmt |} &

HOIData = Hash OIData &

Notes M {|Number LID M, Agent (PG j’), trans |} ∈ set evs &

Says C M {|P I’, OIData, Hash PIData |} ∈ set evs &

Says M (PG j’) (EncB (priSK M) KM’ (pubEK(PG j’))

AuthReqData P I’’) ∈ set evs &

P I’ = {|PI sign, EXcrypt KC’ (pubEK (PG j’))

{|PIHead, Hash OIData |} PANData |} &

P I’’ = {|PI sign, EXcrypt KC’’ (pubEK (PG j))

{|PIHead, Hash OIData |} PANData |}

Figure 5. P is (almost) assured that C and M agree: Theorem 6 In Isabelle Syntax

Gateway. As we already explained, this asymmetry exists because the
Payment Gateway is chosen by the Merchant and never mentioned by
the Cardholder.

Other properties are customarily proved for authentication proto-
cols. For instance, one can scan Lowe’s [17] or Gollmann’s [13] clas-
sification and check what variant of agreement is verifiable. This is a
tricky question: we have eliminated fields that are immaterial to the
main goals of the protocol as listed in the Business Description but
that may be essential for other security properties. For instance, we
have eliminated request-response identifiers which are recommended by
Gong and Syverson [14] to make authentication protocols more robust
and secure. Our weakened version of the protocol is sufficiently detailed
for a careful verification of some properties, namely the main properties
that we identified in the specifications (see again §5). We do not claim
that attacks against our abstract model necessarily work in full SET.
If a researcher is interested in verifying sophisticated authentication
properties, he should not use our model as is, but should reconsider
the steps that we have simplified.

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.26

Verifying the SET Purchase Protocols 27

7. Theorem-Proving Aspects

Verifying a large protocol places enormous demands on the theorem
prover and its human user. The formulae tend to be large, complex
and unintelligible. Isabelle can simplify such formulae using rewrite
rules, but the main weapon against such formulae is Isabelle’s classical
reasoner [28, 30]. This is essentially a tableau prover, but it applies
known lemmas in addition to the basic rules of first-order logic. The user
invokes the classical reasoner via tactics such as blast (pure tableau
reasoning), auto (classical reasoning combined with rewriting to break
up all subgoals) and force (a brute-force combination of classical rea-
soning and rewriting that attempts to prove a subgoal), and a number
of user defined tactics.

The verification of SET comprises six Isabelle theories totalling
over 4300 source lines. Two of these theories concern Cardholder and
Merchant Registration. The other four are as follows.

MessageSET.thy contains a theory of messages for cryptographic
protocol analysis, based on the one used in prior work but adapted
for SET. The major modification is that we break down agents
into Cardholders, Merchants, Payment Gateways and Certification
Authorities. We also introduce a new type (distinct from nonces)
for PANs.

EventSET.thy describes the general theory of protocol events, build-
ing on the previous theory. The only SET-specific adaptation is to
specify that the root certification authority is not compromised.

PublicSET.thy describes the complicated world of public keys, dig-
ital certificates, digital envelopes and simiar constructs used in
SET. It defines 19 different functions and abbreviations.

Purchase.thy specifies and verifies Purchase Request and Payment
Authorization, regarded as a single protocol.

Table I presents a number of summary statistics. As one can see from
the table, the fully automatic proof tactics (blast, auto, force) are not
sufficient to tame the problem even when given the required lemmas.
Our proof strategy is usually the following: identify the required form
of induction; give the resulting subgoals to automatic tactics; try split-
ting up any remaining subgoals into separate cases; look for ways to
improve simplification. We may conclude that a lemma must be proved
by induction, requiring a recursive application of the strategy.

In this section, we consider three difficult inductions in more de-
tail. In each, we devote attention to one particular subgoal: the one

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.27

28 G. Bella, F. Massacci and L. C. Paulson

Table I. Script Statistics

MessageSET EventSet PublicSET Purchase

Proved theorems 128 14 48 59

Total tactics 266 25 77 250

blast tactic 67 0 16 35

auto, force tactics 60 14 20 38

simp tactic 88 10 19 14

Inductions 47 6 4 30

Adding auto rules 42 1 23 47

Removing rules 1 2 0 7

New tactics defined 3 1 1 0

corresponding to a signed Purchase Request. This is the most inter-
esting message, and it illustrates the problem of abbreviations getting
expanded in proofs.

The first example is a lemma required to prove the secrecy of sym-
metric keys. Similar lemmas are discussed in earlier papers [6, 29],
but the proof dramatically blows up with the Purchase protocols. As
always, the form of the theorem involves quantification and embedded
implications (expressed using −→), as well as set operators.

lemma symKey compromise:

"evs ∈ set pur =⇒
(∀ SK KK. SK ∈ symKeys −→
(∀ K ∈ KK. K /∈ range(λC. priEK C)) −→

(Key SK ∈ analz (Key‘KK ∪ (knows Spy evs))) =

(SK ∈ KK ∨ Key SK ∈ analz (knows Spy evs)))"

Recall that induction generates a subgoal for every protocol step, and
also for the base case, the case for the spy, and a few other cases. We
get 13 subgoals in all, each containing a copy or copies of the induction
formula. Prior to simplification, we prepare some of the subgoals by
adding certain facts that hold in those cases (these are consequences of
existing assumptions). At this point, the Isabelle proof state displayed
to the user is 418 lines long, the Purchase Request case taking up 93
lines of this. Such huge subgoals defy comprehension. They can be
tackled only by tools that prove them outright or at least break them
down to a few manageable parts.

Here, simplification is the obvious step. Simplification is particularly
taxing in secrecy proofs because the necessary rewrite rules tend to

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.28

Verifying the SET Purchase Protocols 29

Figure 6. Secrecy Proof: The Purchase Request subgoal, simplified

cause a lot of case splits. Simplification of this large proof state takes
about 16 seconds (on a 2.5GHz Apple G5 processor). The simplified
Purchase Request case becomes comprehensible: it is 23 lines long
and contains no complex expressions. Figure 6 displays this subgoal
exactly as it appears to the Isabelle user. Six subgoals (comprising
191 lines) survive simplification. The one concerning the Spy is proved
automatically by a special tactic dedicated to that purpose. The other
five subgoals, including Purchase Request, are proved automatically by
Isabelle’s blast tactic. The total runtime to prove the six subgoals is
under one second.

Now consider the proof of the secrecy of the PAN, theorem 1. It
differs from the previous secrecy proof in several respects. One obvious
difference is the need for existential quantifiers in the induction formula.
Prior to simplification, the Isabelle proof state is approximately as
large and complicated as in the proof described above. Simplification
takes only eight seconds and leaves only three subgoals. Unfortunately,
the Purchase Request case has blown up to an unintelligible 136 lines:
the expansion of abbreviations did not lead to further simplifications.
Fortunately, blast can prove this subgoal. Appropriate tactics prove
the other two subgoals automatically, in a fraction of a second.

For a third example, consider theorem 2. Although the proof is
by induction, it is a regularity property. Such theorems tend to have
simpler proofs than those involving secrecy. Just before simplification,

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.29

30 G. Bella, F. Massacci and L. C. Paulson

Figure 7. The Spy subgoal, simplified

although the proof state as a whole is unusually large, the Purchase
Request case is only 55 lines long. Simplification proves this case and
leaves only two subgoals. Figure 7 presents one of these subgoals as it is
displayed to the user. It is rather incomprehensible compared with the
one appearing in Fig. 6. Fortunately, blast proves the two remaining
subgoals automatically.

Given the complexity of these proofs, the attraction of fully auto-
matic verifiers is obvious. The advantage of using a general-purpose
tool such as Isabelle is its generality: we can change the formalization
to model new types of protocols and new security environments.

8. Related Work

Only few others have attempted to verify SET. Stoller [34] has pro-
posed a theoretical framework for the bounded analysis of e-commerce
protocols but has only considered a hugely simplified description of the
payment protocols of SET.

Meadows and Syverson [25] have proposed a language for describing
SET specifications but have not actually verified the protocol. They
have used the temporal language NPATRL (the NRL Protocol Analyser

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.30

Verifying the SET Purchase Protocols 31

Temporal Requirements Language) for specifying a number of SET’s
requirements. Some requirements are technical, such as “honest princi-
pals will faithfully execute the protocol,” while others directly address
the protocol goals. The paper is not about verifying those requirements,
which is left as future work. Instead, it concentrates on the difficulties
in specifying them formally, an issue that concerns us too.

Kessler and Neumann [16] have extended an existing belief logic
with predicates and rules to reason about accountability. Although
accountability is not a stated goal of SET, it is clearly desirable. They
concentrate upon the Merchant’s ability to prove to a third party that
the Order Information originated with the Cardholder. Using the cal-
culus of the logic, they conclude by pen and paper that the goal is
met, so the Cardholder cannot repudiate the transaction. We have an
equivalent result in Theorems 3 and 4: if a Merchant receives a dual
signature from the network, then the Cardholder sent it (unless the
Cardholder is compromised).

Most automatic protocol verification tools rely on finite-state model
checking. In contrast, the inductive approach to verifying security pro-
tocols can deal with unbounded numbers of protocol participants, nonces,
interleaved sessions, etc. This feature, combined to the mechanical sup-
port offered by the proof assistant Isabelle, turns out to be important
in analysing huge protocols such as SET.

For example, a careful analysis of the data underlying the customary
table reporting new and old bugs on the Clark-Jacob library in model
checking papers, reveals that serious limitations were imposed on the
number of agents, sessions, nonces, and keys. Our simplified SET pro-
tocol requires eight nonces and symmetric keys for a single protocol run
from start to end. This is two or three times more than the number
of fresh values allowed by the best finite state model-checkers. Parallel
sessions would require an order of magnitude more nonces than what
is currently feasible. Yet, failure of agreement on the identity of the
Payment Gateway (§6) would remain invisible if we only allowed for
one Gateway.

Recent work by Basin et al. [3] makes significant improvements over
traditional model-checking. Infinite elements are represented using lazy
data-types: constructors that build data-types without evaluating their
arguments. The potentially infinite messages that the Spy can introduce
are treated using a dedicated symbolic representation. The resulting
method is tested on a number of classical protocols and on two real
protocols, IKE and SET. Unfortunately, a closer comparison with our
contribution is impossible because details about their SET analysis are
not published at time of this writing.

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.31

32 G. Bella, F. Massacci and L. C. Paulson

Many other formal approaches to protocol verification do not impose
finite bounds. These include strand spaces [12], the Spi-calculus [1] and
the work of Bozzano and Delzanno [10], who adopt a general-purpose
bottom-up evaluation scheme for first-order linear logic. Meadows sur-
veys many such approaches [24]. Methods such as the strand space or
the Spi-calculus are useful for gaining insights into security protocol
theory, but not for verifying real-world protocols. The methods by
Bozzano and Delzanno is promising, but it imposes certain conditions
on the protocol theory that may not apply to SET. It seems clear that
no pencil-and-paper method can verify real-world protocols.

It may be relevant to mention Hui and Lowe’s work [18]. They
have proposed a general theory to transform a complex protocol into
a simpler protocol while preserving any faults. However, they limited
their analysis to the Cybercash protocol. Furthermore, they offer no
guidelines for the determination of the safe simplifying transformation.
Only for authentication protocol is there a sufficient condition. When
applied to SET, this would lead to either no simplification (all nonces
and session keys are retained) or a trivial protocol (only the PAN is
retained).

9. Conclusions

Until now, the most complex protocols analysed using the inductive
method were Kerberos IV [9], TLS (the successor to SSL) [31], Shoup-
Rubin (which adopts smartcards) [4], and the Registration protocols
of SET [6]. The verification of the Purchase protocols of SET has still
been an open problem.

We succeeded in analysing an abstract, but still highly complex, ver-
sion of SET’s Purchase protocols. The difficulty consisted in digesting
the specification and scaling up. This is a major result: our methods
scale to a level of complexity where intuition falters. However, the
proofs often generated huge subgoals spanning several pages of text,
stretching the human interaction with the prover.

Where do we go from here? The analysis of more complex protocols
probably requires further advances, either in automation or in user
interfaces. Isabelle is a general-purpose proof assistant; a specialized
protocol verifier might be able to do better. For example, the visualiza-
tion of intermediate proof steps would be improved if we could avoid
expanding abbreviations, with the consequent exponential blowup. No
other protocols that we have seen make such heavy use of abbreviations,
but they will become increasingly common as people try to verify in-

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.32

Verifying the SET Purchase Protocols 33

dustry standards. Research is therefore needed on how to reason in the
presence of abbreviations.

A theory of abstraction and compositionality might allow the proof
of a big protocol to be divided into smaller parts. We should be able
to separate the correctness proof for digital envelopes from that of
a protocol that uses digital envelopes. Both automatic and manual
verifiers would benefit. The problem of compositionality is being tackled
for manual analysis by Guttman et al. [15, Section. 6] using strand
spaces, and by Durgin et al. [11] using a specialized protocol logic.
The development and exploitation of such a theory is a major research
problem, and we can expect any correctness proof for digital envelopes
to impose conditions on how the protocol uses them. This still should
lead to simpler proofs than at present, where we simply expand out the
definitions of the envelopes.

The hardest task in our verification of SET has been that of di-
gesting and abstracting the specifications. For us, the Formal Protocol
Definition [21] is misleadingly named; it appears to consist of the
Programmer’s Guide [22] minus the information on how messages are
handled. It should include explicit, formal statements of the protocol’s
goals. Complex protocols should be specified as refinements of more ab-
stract protocols, whereas at present, protocol verifiers have to discover
the abstract protocols themselves. It is a waste of effort, for the design
must have evolved from an abstract protocol.

The myth that protocol verification is prohibitively expensive can
be laid to rest. The cost of our efforts is small compared with the total
cost of the SET design. The verification would have been cheaper and
easier if we could have received the essential protocol directly from the
designers. Verification should be an integral part of the design process.

From a security standpoint, it is customary to expect that every
protocol is either correct or else vulnerable to attacks. However, SET
lies in neither extreme. We were able to prove the most important goals,
which gives grounds for reasonable confidence in SET. Yet, in the issue
of agreement between the Cardholder and Payment Gateway on the
latter’s identity, we found that the property fails. This flaw is easy to
fix.

Acknowledgements

F. Massacci was partially funded by grants EU IST/2001/37004 WASP,
FIRB/RBNE0195K5 ASTRO and FIRB/RBAU01P5SS. The work at
Cambridge was funded by the epsrc grant GR/R01156/R01 Verifying
Electronic Commerce Protocols.

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.33

34 G. Bella, F. Massacci and L. C. Paulson

References

1. M. Abadi and A. Gordon. A calculus for cryptographic protocols: The spi
calculus. In Proc. of the 4th ACM Conf. on Comm. and Comp. Sec. (CCS-97).
ACM Press and Addison Wesley, 1997.

2. M. Abadi and R. M. Needham. Prudent engineering practice for cryptographic
protocols. IEEE Trans. on Software Engineering, 22(1):6–15, January 1996.

3. D. Basin, S. Mödersheim, and L. Viganò. An On-The-Fly Model-Checker for
Security Protocol Analysis. In E. Snekkenes and D. Gollmann, editors, Proc. of
the 8th Eur. Sym. on Res. in Comp. Sec., LNCS 2808, pages 253–270. Springer-
Verlag, Heidelberg, 2003.

4. G. Bella. Inductive verification of smart card protocols. J. of Comp. Sec.,
11(1):87–132, 2003.

5. G. Bella, F. Massacci, and L. C. Paulson. The verification of an industrial
payment protocol: The SET purchase phase. In V. Atluri, editor, 9th ACM
Conference on Computer and Communications Security, pages 12–20. ACM
Press, 2002.

6. G. Bella, F. Massacci, and L. C. Paulson. Verifying the SET registration
protocols. IEEE J. of Selected Areas in Communications, 21(1):77–87, 2003.

7. G. Bella, F. Massacci, and L. C. Paulson. An overview of the verification of
SET. International Journal of Information Security, accepted 2003. in press.

8. G. Bella, F. Massacci, L. C. Paulson, and P. Tramontano. Formal verification
of cardholder registration in SET. In F. Cuppens, Y. Deswarte, D. Gollman,
and M. Waidner, editors, Computer Security — ESORICS 2000, volume 1895
of Lecture Notes in Comp. Sci., pages 159–174. Springer, 2000.

9. G. Bella and L. C. Paulson. Kerberos version IV: Inductive analysis of the
secrecy goals. In Quisquater et al. [32], pages 361–375.

10. M. Bozzano and G. Delzanno. Automated protocol verification in linear logic.
In Proc. of the 4th ACM Conference on Principles and Practice of Declarative
Programming (ACM PPDP’02), pages 38–49. ACM Press and Addison Wesley,
2002.

11. N. Durgin, J. Mitchell, and D. Pavlovic. A compositional logic for proving
security properties of protocols. J. of Comp. Security, 11(4):677–721, 2004.

12. F. J. T. Fábrega, J. C. Herzog, and J. D. Guttman. Strand spaces: Proving
security protocols correct. J. of Comp. Sec., 7:191–220, 1999.

13. D. Gollmann. What do we mean by entity authentication? In Proc. of the 15th
IEEE Sym. on Sec. and Privacy, pages 46–54. IEEE Comp. Society Press,
1996.

14. L. Gong and P. Syverson. Fail-stop protocols: An approach to designing secure
protocols. In Proceedings of the 5th IFIP Working Conference on Dependable
Computing for Critical Applications (DCCA-5), September 1995.

15. J. Guttman. Security goals: Packet trajectories and strand spaces. In R. Focardi
and F. Gorrieri, editors, Foundations of Security Analysis and Design - Tutorial
Lectures, volume 2171 of Lecture Notes in Comp. Sci., pages 197–261. Springer-
Verlag, 2001.

16. V. Kessler and H. Neumann. A sound logic for analysing electronic commerce
protocols. In Quisquater et al. [32].

17. G. Lowe. A hierarchy of authentication specifications. In Proc. of the 10th
IEEE Comp. Sec. Found. Workshop, pages 31–43. IEEE Comp. Society Press,
1997.

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.34

Verifying the SET Purchase Protocols 35

18. G. Lowe and M. L. Hui. Fault-preserving simplifying transformations for
security protocols. J. of Comp. Sec., 9:3–46, 2001.

19. Mastercard & VISA. SET Secure Electronic Transaction: External Inter-
face Guide, May 1997. On the Internet at http://www.setco.org/set\
specifications.html.

20. Mastercard & VISA. SET Secure Electronic Transaction Specification: Busi-
ness Description, May 1997. On the Internet at http://www.setco.org/set\
specifications.html.

21. Mastercard & VISA. SET Secure Electronic Transaction Specification: Formal
Protocol Definition, May 1997. On the Internet at http://www.setco.org/

set\ specifications.html.
22. Mastercard & VISA. SET Secure Electronic Transaction Specification: Pro-

grammer’s Guide, May 1997. On the Internet at http://www.setco.org/set\
specifications.html.

23. C. Meadows. Analysis of the Internet Key Exchange protocol using the NRL
Protocol Analyzer. In SSP-99, pages 216–231. IEEE Comp. Society Press,
1999.

24. C. Meadows. Formal methods for cryptographic protocol analysis: Emerg-
ing issues and trends. IEEE Journal on Selected Areas in Communications,
21(1):44–54, 2003.

25. C. Meadows and P. Syverson. A formal specification of requirements for pay-
ment transactions in the SET protocol. In R. Hirschfeld, editor, Proceedings
of Financial Cryptography 98, volume 1465 of Lecture Notes in Comp. Sci.
Springer-Verlag, 1998.

26. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant
for Higher-Order Logic. Springer, 2002. LNCS Tutorial 2283.

27. A. Paller. Alert: Large criminal hacker attack on Windows NTE-banking and
E-commerce sites. On the Internet at http://www.sans.org/newlook/alerts/
NTE-bank.htm, Mar. 2001. SANS Institute.

28. L. C. Paulson. Generic automatic proof tools. In R. Veroff, editor, Automated
Reasoning and its Applications: Essays in Honor of Larry Wos, chapter 3. MIT
Press, 1997.

29. L. C. Paulson. The inductive approach to verifying cryptographic protocols.
J. of Comp. Sec., 6:85–128, 1998.

30. L. C. Paulson. A generic tableau prover and its integration with Isabelle.
Journal of Universal Computer Science, 5(3):73–87, 1999.

31. L. C. Paulson. Inductive analysis of the internet protocol TLS. ACM Trans.
on Inform. and Sys. Sec., 2(3):332–351, 1999.

32. J.-J. Quisquater, Y. Deswarte, C. Meadows, and D. Gollmann, editors. Com-
puter Security — ESORICS 98, volume 1485 of Lecture Notes in Comp. Sci.
Springer, 1998.

33. RSA Laboratories. PKCS-7: Cryptographic Message Syntax Standard, 1993.
On the Internet at http://www.rsasecurity.com/rsalabs/pkcs.

34. S. D. Stoller. A bound on attacks on payment protocols. In Proc. 16th Annual
IEEE Symposium on Logic in Computer Science (LICS), June 2001.

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.35

bell-mass-paul-04-JAR.tex; 17/06/2005; 10:07; p.36

