
What the Heck is this Application doing? - A

Security-by-Contract Architecture for Pervasive

Services∗

N. Dragoni
Technical University of Denmark

ndra@imm.dtu.dk

F. Massacci
University of Trento

massacci@dit.unitn.it

T. Walter and C. Schaefer
DOCOMO Euro-Labs

surname@docomolab-euro.com

Abstract

Future pervasive environments are characterized by non-fixed architec-

tures made of users and ubiquitous computers. They will be shaped by per-
vasive client downloads, i.e. new (untrusted) applications will be dynami-

cally downloaded to make a better use of the computational power available

in the ubiquitous computing environment.

To address the challenges of this paradigm we propose the notion of

security-by-contract (S×C ), as in programming-by-contract, based on the

notion of a mobile contract that a pervasive download carries with itself.

It describes the relevant security features of the application and the relevant

security interactions with its computing environment. The contract can be

used to check it against the device policy for compliance.

In this paper we describe the S×C concepts, the S×C architecture and im-

plementation and sketch some interaction modalities of the S×C paradigm.

Keywords: security-by-contracts, security architecture, pervasive downloads,

pervasive services, policies, policy enforcement.

∗This work is partly supported by the project EU-IST-STREP-S3MS (www.s3ms.org). A prelim-

inary, much shorter version of this paper has been accepted to IEEE SecPerU-07.

1

* Cover Letter



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

What the Heck is this Application doing? - A

Security-by-Contract Architecture for Pervasive

Services∗

Abstract

Future pervasive environments are characterized by non-fixed architec-

tures made of users and ubiquitous computers. They will be shaped by per-
vasive client downloads, i.e. new (untrusted) applications will be dynami-

cally downloaded to make a better use of the computational power available

in the ubiquitous computing environment.

To address the challenges of this paradigm we propose the notion of

security-by-contract (S×C ), as in programming-by-contract, based on the

notion of a mobile contract that a pervasive download carries with itself.

It describes the relevant security features of the application and the relevant

security interactions with its computing environment. The contract can be

used to check it against the device policy for compliance.

In this paper we describe the S×C concepts, the S×C architecture and im-

plementation and sketch some interaction modalities of the S×C paradigm.

Keywords: security-by-contracts, security architecture, pervasive downloads,

pervasive services, policies, policy enforcement.

1 Introduction

Security and trust have been identified as key issues in the pervasive computing

vision from their earliest inception [1]. Indeed, the paradigm of pervasive services

[2] envisions a nomadic user traversing a variety of environments and seamlessly

and constantly receiving services from other portables, hand-helds, embedded or

wearable computers. Bootstrapping and managing security of services in this sce-

nario is a major challenge as downloaded code might be malware using too much

resources of the device or even harm the device.

We argue that the challenge is bigger than the ”simple” pervasive service vision

because it does not consider the possibilities that open up when we realize that

∗This work is partly supported by the project EU-IST-STREP-S3MS (www.s3ms.org). A prelim-

inary, much shorter version of this paper has been accepted to IEEE SecPerU-07.

1

* Manuscript
Click here to view linked References



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

the smart phone in our pocket has already more computing power than the PC

encumbering our desk 15 years ago.

Current pervasive services, including context-aware services, do not exploit the

computational power of the mobile device. Information is provided to the mobile

user anywhere but the computing infrastructure is centralized [3]. Even when it is

decentralized to increase scalability and performance [4, 5], such distribution does

not exploit the device’s computing power.

We believe that the future of pervasive services will be shaped by pervasive
client downloads. When traversing environments the nomadic user does not only

invoke services according a web-services-like fashion (either in push or pull mode)

but also download new applications that are able to exploit the computational power

of the user’s device. For instance, in order to make a better use of the services

available in the environment.

Client downloads create new threats and security risks on top of the ”sim-

ple” pervasive service invocation because it violates the model of mobile software

download behind the Java [6] and .NET mobile security architectures [7, 8]:

• Most pervasive software producers are small and medium sized enterprises

(SME) which cannot afford the costs of certification necessary to obtain an

operator’s certification and thus the downloaded application will not run as

trusted code.

• A pervasive download is essentially untrusted code whose security properties

we cannot check and whose code signature (if any) has no degree of trust.

• According to the classical security model it should be sandboxed, its inter-

action with the environment and the device’s own data should be limited.

• Yet this is against the whole business logic, as we made this pervasive down-

load precisely to have lots of interaction with the pervasive environment!

• In almost all cases this code is trustworthy, i.e. not harming the host system,

being developed to exploit the business opportunities of pervasive services.

Contributions of the Paper. Given the above considerations, our contributions

are as follows:

• We develop the concept of Security-by-Contract (S×C ) as a mechanism to

make the trust-less download of code possible. S×C covers all stages of the

software life-cycle: from design and development to execution. The key

idea behind S×C is that the result of each stage of the software life-cycle

is verified against defined properties and, if verification was successful, it is

forwarded to the next stage. Besides generic hardware and software platform

properties, verification may as well take policies into account. Mobile users

have an interest that downloaded code respects their policies, e.g., which

2



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

communication resources can be used to what extent so that malware is pre-

vented from using too many resources. Mobile operators have an interest

that the application does not harm the functioning of the mobile device. S×C
enables the trustworthy (modulo above mentioned properties and policies)

execution of the downloaded code on the user’s mobile device.

• Although designed to cover the software life-cycle, S×C provides the flexi-

bility to choose among the tools, to skip verifications and to enter the process

at any point of the life-cycle. Where to enter the workflow depends on the

available data.

• Although the computational power of mobile devices is steadily increasing,

it may not be sufficient to perform some of the verification steps on the device

itself. To cope with this situation, the S×C paradigm allows for an outsourc-

ing of some verifications to (trusted) third parties. Involving third parties,

however, requires that the communication between the involved parties (or

stakeholders) is being protected. Thus, the S×C concept has to be embedded

into an architecture that provides access to the S×C services for performing

mentioned verification and which is supported by a security service.

Outline of the Paper. We start discussing related work (§2) to motivate the need

for a generic security framework for pervasive services. Then we describe the

Security-by-Contract S×C paradigm in detail (§3) and discuss the phases of the

software life-cycle and applicable verification techniques. Further, we discuss

our layered security architecture and security services (§4) supporting the S×C
paradigm, and discuss the vulnerabilities and mitigation strategies of the employed

security services (§5). We highlight our implementation of the S×C architecture

(§6) and sketch some interaction modalities of the S×C paradigm (§7) before we

conclude.

2 Related Work

Four main approaches to mobile code security can be broadly identified in the liter-

ature: sandboxes limit the instructions available for use, code signing ensures that

code originates from a trusted source, proof-carrying code (PCC) carries explicit

proof of its safety, and model-carrying code (MCC) carries security-relevant be-

havior of the producer’s mobile code.

Sandbox Security Model. This is the original security model provided by Java.

The essence of the approach [9] is that a computer entrusts local code with full

access to vital system resources (such as the file system). It does not, however,

trust downloaded remote code (such as applets), which can access only the limited

resources provided inside the sandbox. The limitation of this approach is easily

3



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

recognizable: it can provide security only at the cost of unduly restricting the func-

tionality of mobile code (e.g., the code is not permitted to access any files). The

sandbox model has been subsequently extended in Java 2 [6], where permissions

available for programs from a code source are specified through a security policy.

Policies are decided solely by the code consumer without any involvement of the

producer. The implementation of security checking is done by means of a runtime

stack inspection technique [10].

In .NET each assembly is associated with some default set of permissions ac-

cording to the level of trust. However, the application can request additional per-

missions. These requests are stored in the application’s manifest and are used at

load-time as the input to policy, which decides whether they should be granted. Per-

missions can also be requested at runtime. Then, if granted, they are valid within

the limit of the same method, in which they were requested. The set of possible

permissions includes, for instance, permissions to use sockets, the web, file IO, etc.

Cryptographic Code-Signing. Cryptographic code-signing is widely used for cer-

tifying the origin (i.e. the producer) of mobile code and its integrity. Typically, the

software developer uses a private key to sign executable content. The application

loading the module then verifies this content using the corresponding public key.

This technique is useful only for verifying that the code originated from a

trusted producer and it does not address the fundamental risk inherent to mobile

code, which relates to mobile code behavior. This leaves the consumer vulnerable

to damage due to malicious code (if the producer cannot be trusted) or faulty code

(if the producer can be trusted). Indeed, if the code originated from an untrusted

or unknown producer, then code-signing provides no support for safe execution of

such code. On the other hand, code signing does not protect against bugs already

present in the signed code. Patched or new versions of the code can be issued, but

the loader (which verifies and loads the executable content and then transfers the

execution control to the module) will still accept the old version, unless the newer

version is installed over it. [11] address the software aging problem proposing a

method that employs an executable content loader and a short-lived configuration

management file.

Certification systems like “Symbian signed”1 are only guaranteeing that, for

example, the identity of the application provider has been checked and that the ap-

plication installs files in specific directories. Technically speaking, the certificate

identifies the application’s origin, and grants access to those capability-protected

APIs that the application declared at build-time. But this approach has two main

limitations. Firstly, it is worth noting that capabilities protecting the most sensitive

system services (such as Trusted Computing Base or All Files, that is the so-called

“Device Manufacturer Capabilities” in the Symbian OS jargon) are not granted for

all Symbian signed applications. These capabilities are only available through the

“Open Signed” (with a Publisher ID) and “Certified Signed” options. Moreover, as

1https://www.symbiansigned.com/

4



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

part of the signing process, an application requiring any of these capabilities must

gain the approval of a phone manufacturer. Secondly, in the signing process it is not

checked if the application is doing things not wanted by the user e.g., sending data

with information the user does not want to be sent (see F-Secure Weblog (www.f-

secure.com/weblog) from May 11th 2007, “Just because it’s Signed doesn’t mean

it isn’t spying on you”).

Proof-Carrying Code (PCC). The PCC approach [12] enables safe execution of

code from untrusted sources by requiring a producer to furnish a proof regarding

the safety of mobile code. Then the code consumer uses a proof validator to check,

with certainty, that the proof is valid (i.e. it checks the correctness of this proof) and

hence the foreign code is safe to execute. Proofs are automatically generated by a

certifying compiler [13] by means of a static analysis of the producer code. The

PCC approach is problematic for two main reasons [14]. A practical difficulty is

that automatic proof generation for complex properties is still a daunting problem,

making the PCC approach not suitable for real mobile applications. A more fun-

damental difficulty is that the approach is based on a unrealistic assumption: since

the producer sends the safety proof together with the mobile code, the code pro-

ducer should know all the security policies that are of interest to consumers. This

appears an impractical assumption since security may vary considerably across dif-

ferent consumers and their operating environments.

Model-Carrying Code (MCC). This approach is strongly inspired by PCC, shar-

ing with it the idea that untrusted code is accompanied by additional information

that aids in verifying its safety [15]. With MCC, this additional information takes

the form of a model that captures the security-relevant behavior of code, rather

than a proof. Models enable code producers to communicate the security needs

of their code to the consumer. The code consumers can then check their policies

against the model associated with untrusted code to determine if this code will vi-

olate their policy.

Many attempts have been made to apply the above traditional security concepts

and solutions to pervasive platforms. However, in most cases, a lot of modifica-

tions are needed in order for the security infrastructure to fit within the pervasive

framework leading to a high level of risk of introducing new breaches [16]. The

infrastructure supporting a pervasive computing system introduces new security

challenges not addressed in existing security models, including in the domain of

trust management [16, 17, 18]. As a result, a generic security framework for per-

vasive services is needed [19].

5



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

3 Security-By-Contract Framework

In this section we present the overall S×C framework proceeding as follows. First,

we focus on the S×C innovative components (§3.1), namely security contract and

policy. Then, in §3.2, we describe the phases of the mobile application life-cycle

in which the S×C paradigm is present.

3.1 S×C Innovative Components

The environment is shaped by four groups of stakeholders: mobile users, service
providers or developers, mobile operators, and third parties, shown in Fig. 1.

Figure 1: S×C stakeholders

Mobile code developers provide a description of the security behavior that their

code exhibits.

Definition 1 (Contract) A contract is a behavioral specification of the security
relevant actions (VM API Calls, Operating System Calls) of the application.

Loosely speaking, a contract contains a description of the relevant features

of the application and the relevant interactions with its host platform. Security

contracts may include fine-grained resource control (e.g., silently initiate a phone

call or send an SMS), memory usage, secure and insecure web connections, user

privacy protection, confidentiality of application data and constraints on access

from other applications already on the platform.

Example 1 Examples of security contracts for mobile applications include:

• The application sends no more than a specified number of messages in each
session.

• The application only loads each image from the network once.

• The application does not initiate calls to international numbers.

6



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

• The application does not send MMS messages.

• The application connects only to its origin domain.

• The application does not use the FileConnection.delete() function.

• The application only receives messages on a specific port.

• A message sent does not exceed the payload of a single SMS message.

• The application closes all files, it had opened.

On the other hand, mobile users and mobile operators would like that any

downloaded application respects their policies. And, these policies should be

matched by the application’s contract.

Definition 2 (Policy) A policy is a specification of the acceptable behavior of ap-
plications to be executed on the platform with respect to security actions.

Permissions can be granted or not, depending, for instance, on previous actions

of the application or some conditions in the application environment. Let us look

at two examples.

Example 2 Personal information security and preventing a device to run out of
battery using wireless connections can be ensured by the following policies:

• “No external connections are allowed if the application has accessed the

user’s personal information.” Here granting the permission depends on the
application’s previous actions.

• “The application is not allowed to use wireless connection if the battery level

is below a certain limit”. Here granting the permission depends on the state
of application’s environment.

With the security-by-contract paradigm each ”application” may consist of four

components (Figure 2):

Executable Code It may well be native code, though we focus on managed code

and notably CLI and Java byte-code based solutions.

Runtime level contract The component just introduced.

Proof of compliance An optional component that allows for a quick verification

that the code actually complies with the claims stated in the contract (aka

proof-carrying-code).

Application credentials Credentials (signatures, certificates, etc.) needed by the

application to run.

7



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Executable code Managed or native code for the no-

madic device.

Runtime level contract Component describing all secu-

rity relevant actions and behavior of executable

code.

Proof of compliance Optional component supporting an

efficient verification that the code complies with

claims stated in the contract.

Application credentials (Signatures, certificates, etc.)

needed by the application to run.

Figure 2: Components of a S3MS Application

By signing the code the developer binds it with the claims on its security-

relevant behavior, i.e. its contract, and thus provides a semantics to digital sig-
natures. This represents one of the key ideas behind the S×C approach: a digital

signature should not just certify the origin of the code but rather bind together the
code with a contract describing its security relevant features.

3.2 S×C Life-Cycle

Figure 3 summarizes the phases of the mobile application life-cycle in which the

S×C paradigm is present. In order to guarantee that an application complies with its

contract or the user’s policy we should consider the stages where such enforcement

can be done, as shown in Tab. 1.

Table 1: Enforcing S×C at Different Stages
Development (I) at design and development time

Deployment
(II) after design but before shipping the appli-

cation
(III) when downloading the application

Execution (IV) during the execution of the application

Enforcing at level (I) can be achieved by appropriate design rules and requires

developer support; (II) and (III) can be carried out through (automatic) verification

techniques. Such verifications can take place before downloading (e.g., static ver-
ification [20, 21] done to prove compliance of code and contract) or as a combina-

tion of pre and post-loading operations (e.g., through proof carrying code [22] and

in-line monitors [23, 24]); (IV) can be implemented by runtime checking [25, 24].

With reference to Fig. 3 an idealized workflow runs as follows. The first step

is the contract authoring stage in which a contract for the application is specified.

8



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 3: Mobile Application Life-Cycle

The contract is used to express requirements to the application development team,

requirements that are being derived from contracts of already existing applications,

or from a template of the mobile operator. Considering the requirements from

the mobile operators already during development eases deployment of the mobile

application later on.

Once we have the right contract and application at hand, we have the problem

of compliance of the application with the contract. The proof of compliance can be

generated by running a static analysis on the code and check for the properties as

claimed in the contract. Alternatively, the code might be in-lined so that the claims

of the contract are enforced by the in-lined code. If either verification methods

succeeds the workflow may continue.

The next step then is of contract and policy matching. This represents the basic

tenet of the S×C vision: by augmenting applications with contracts we can decide

before running an application on our mobile whether its security behavior is com-

patible with our security policy. Specifically, contract and policy matching is done

by proofing that the requirements as defined by the policies imply the properties of

the application as defined by the contract. For our S×C paradigm, the approach is

to map contracts and policies to sets of traces and checking for trace set inclusion

[26] or simulation [27].

The last and final step addresses what happens if we “really” want to run an

application, even if matching failed. A solution is runtime monitoring where the

application is executed under the control of a monitor. The monitor intercepts all

security relevant actions and checks them against the applicable policy. Execution

of the application is terminated if the policy is violated.

Besides the described workflow, other workflows are conceivable. As depicted

in Fig. 4, another workflow starts with the enforcement of the policy either by in-

9



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

lining or runtime monitoring. The latter is always an option and applicable even if

no contract for the application is available.

Note that only contract and policy matching is not sufficient neither does only

code and contract verification suffice. The combination of technologies along the

complete mobile application life-cycle gives the guarantee that the downloaded

code complies to its contract and obeys defined policies.

Figure 4: Enforcement strategies workflow

Tab. 2 shows strengths (
√

) and limitations (×) of each technology w.r.t. the

identified requirements.

4 Layered S×C Architecture

The S×C architecture, to be further discussed below, supports the mobile applica-

tion life-cycle (Figure 3) while dealing with the different technical and business

impacts of the verification methods.

• The mobile application life-cycle is quite complex and a number of stake-

holders are involved: developer and user but eventually more when some

tasks are outsourced to third parties. Obviously, the various stages of the de-

velopment, deployment and execution cycle are triggered by data elements

that are to be exchanged between stakeholders. Consequently, one set of

functions of the S×C architecture is concerned with the protection of the

communication between stakeholders as well as the protection of exchanged

data elements such as code, contract, proof and policies.

10



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 2: Technologies Strengths and Weaknesses

Criteria Static Analysis In-lined Monitors Runtime Monitors

Works with existing devices
√ ? √

Works with existing appli-

cations

? × √

Does not modify applica-

tions

√ × √

Offline proof of correctness
√ √ ×

Load-time proof of correct-

ness

× √ ×

May depend on runtime

data

× √ √

Does not affect runtime per-

formance

√ ? ×

• For a sustainable business model some support for accounting, charging and

billing needs to be provided which requires that service usages, e.g., request-

ing an in-lining service, can be attributed to a specific entity. This requires

authentication and non-repudiation services being specified in the S×C ar-

chitecture.

4.1 Application and S×C Layer

Above considerations motivate a layered S×C architecture. Our proposed S×C
architecture differentiates four layers as depicted in Fig. 5.

Figure 5: S×C Architecture

The application layer defines the top layer of the architecture. The services

11



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

being provided depend on the usage scenario:

• The user experiences the application layer as the layer where he can initiate

the download of mobile applications as well as initiating the certification

process if not already done.

• For the developer the layer integrates the development tools that are being

used for the implementation of the mobile application.

• Lastly, the third party runs its certification process in this layer.

The application layer rests on the S×C layer. The services of the S×C layer are

listed in Tab. 3. They enable the user to download mobile applications (from the

developer or a third party) and to initiate the S×C services.

• The developer can use proof-carrying-code for the proof of compliance of

code and contract. Later on, the user checks the correctness of the proof-

carrying-code on his device by calling the respective check S×C service.

• Code and contract compliance by in-lining is a service that might be carried

out by a trusted third party2 by invoking the inline(Code,Contract)
service. The trusted third party may assert that the in-lining is correct and

covers all of the properties of the contract. If in-lining is combined with

proof-carrying-code then it can be done by the developer himself. The user

can verify the result and thus can establish the required trust in the down-

loaded application.

• Lastly, monitoring execution of the mobile application for policy compliance

can reasonably be done on the mobile device only running the monitor
service.

Depending on the complexity of the code, its contract and the policy, execution

of some of the S×C services is demanding with respect to computational power and

memory capacity of the executing devices. It is obvious that certain services cannot

be executed on these platforms. In Tab. 3 we consider two interesting cases from

the point of view of the business models of S×C for pervasive services. Obviously,

the more powerful mobile devices become the more S×C services can run on the

device. Thus, offering less business opportunities for third parties.

Example 3 In the self-service model the device is powerful enough to perform
most tasks by itself on-device.

Example 4 In the value-added services model the S×C services are offered by a
third party such as the mobile operator.

2Trusted third party is any party that is regarded as trustworthy by the user, e.g., it might be his

mobile network operator.

12



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Further, with on-line we refer to a service that might be executed on-demand,

i.e. a communication with the pervasive environment is established in order to set

up a channel between the developer’s, third party’s or user’s devices. A service is

offered off-line if a service is requested and executed in advance. For instance, this

is an option for the in-lining of code for contract compliance which can be done

much in advance of the actual mobile application download.

Table 3: Business Model for S×C services

Service Behavior Self-Service Value-Added Serv.
get(Code, Contract) Gets a specific code and con-

tract from either the developer

or a third party.

on-line on-line

analyze(Code, Contract) The code is analyzed for com-

pliance with the contract.

N/A off-line

inline(Code, Contract) The code is submitted to the in-

lining service for code/contract

compliance assurance.

N/A off-line

inline(Code, Policy) The code is submitted to the in-

lining service for code/policy

compliance assurance.

on-device on-line/off-line

match(Contract, Policy) The contract is analyzed for

compliance with the policy.

on-device on-line/off-line

monitor(Code, Policy) The monitoring of the code wrt

the policy is initiated.

on-device N/A

check(Code, Contract, Proof) The proof is checked against

the given code and contract.

on-device on-line

proofGen(Code, Contract) The compliance of code and

contract is established.

N/A off-line

manage(Policy) The service enables a party to

create, update or delete poli-

cies.

on-device on-line/on device

We come back to the use of the S×C services when we discuss interaction

modalities (§7).

4.2 Security layer

Whenever S×C services require communication with an external party, the S×C
layer calls the services of the security layer to protect the communication between

the parties. The purpose of the security services is to mitigate vulnerabilities or to

detect attacks; some vulnerabilities and attacks are shown in Fig. 6.

The security services offered are listed below. Note that these are comprised

of a set of well-known security services except for the protected data service (see

below).

Authentication service Authentication mitigates masquerading by respective means,

e.g., user name and password, certificates etc. Access control mitigates au-

13



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 6: Vulnerabilities and Attacks

thorization violation. Based on the verified identity of the party, it is deter-

mined which resources (e.g., code and contract) or services (e.g., in-lining)

the party is entitled to use.

Confidentiality service Confidentiality mitigates eavesdropping by encrypting data

before sending as only those entities that share the respective keys are able

to encrypt and to decrypt the data.

Key exchange service Key exchange is being part of setting up secure communi-

cation channels. Depending on the cryptographic algorithm used – symmet-

ric or asymmetric – keys need to be established in advance (symmetric) or

are exchanged on demand (asymmetric; using public/private key pairs).

Hashing service Integrity mechanisms such as cryptographic hash functions mit-

igate the modification of data elements and the modification of request and

response messages in the sense that changes are noticeable.

Signing service Signing a data element or a message is a fundamental security

mechanism. Besides use cases such as accountability of communication ac-

tions as well as non-repudiation, signatures can as well be used to protect

data elements such as code and contract. Signing mitigates the threats of

modifying code and contract, modifying the message to convey code and

contract from developer to user masquerading a developer, forgery of sent

messages to contain arbitrary (eventually malicious) code and contract.

Protected data service Obviously, the keys, certificates, policies, etc. are to be

stored such that only authorized entities can access them and are protected

against tampering. Access to the data service may be protected by a pass

phrase, biometric trait, etc.

The interactions between the described layers are as follows (see Section §7 as

well): assuming that the user of the mobile device is performing a download of an

14



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

application from a developer then the user calls the respective method of the S×C
layer (i.e. get(Code, Contract)). Further, this call is mapped onto a call to

the security layer. The security layer subsequently maps this call into a sequence of

method calls to set up a connection with the developer, to perform authentication

of the developer, to get the package containing code, contract and signature, to

check the signature for correctness, to extract code and contract from the received

package and to hand code and contract back to the calling S×C layer which in turn

gives the code and contract back to the application layer.

4.3 Lower layers

These simply support the security layer in its communication with other mobile de-

vices and servers. We assume the lower layers are comprised of a TCP/IP protocol

stack.

5 Securing the Mobile Application Life-Cycle

Whereas the S×C framework basically aims at protecting mobile devices against

harmful code, the proposed security architecture is aiming at protecting the busi-

ness processes and software certification process. In this section we look into is-

sues that come up with our S×C paradigm, particularly what may go wrong while

running through the stages of the S×C process but as well while stakeholders com-

municate. The latter refers to securing the communication link between entities

utilizing the services of the security layer of our S×C architecture, while the for-

mer asks for an assessment of the risks associated with the S×C paradigm.

In the described context but not limited to it, assessing the risks associated with

the S×C paradigm means considering which entity is performing the proof (veri-

fication) and by what means. As pointed out earlier (Tab. 3) all the S×C services

may be executed on-device or on-line/off-line. If done on-device then the sole re-

sponsibility of establishing the required confidence in the downloaded code is with

the device’s user. However, the user has to be aware of that the confidence relies

on the assumptions that the verification methods are correctly implemented (which

we deliberately assume), are correctly executed (i.e. have not been tampered with,

which we as well assume as given) and that any verification of code and contract

but as well as in-lining and runtime monitoring is done only up to the extent as

given by the policies (as defined by user or mobile operator). Note, that the in-

tegrity of the systems as well as the S×C services being executed is beyond the

scope of this paper. Tamper-resistance techniques may be applicable here.

The previous statements hold as well for the case that certain S×C services

are executed on-line/off-line by a trusted third party. By invoking a S×C service

remotely, the user is assuming the result – proof of compliance, contract/policy

matching, etc. – is correct (modulo the assumption discussed above).

In summary, the security-by-contract paradigm differentiates two levels of trust.

15



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Running the S×C provided verification methods establishes trust in the downloaded

application. Utilizing the security services establishes trust in the communication

as well in the communication peer.

6 Implementation of the S×C Architecture

Section §4 has defined the security layer and security services of the S×C architec-

ture. Our implementation is utilizing the Secure Socket Layer (SSL) protocol as

well as utilizing existing implementations of cryptographic libraries that support

the basic cryptographic functions for signing, etc. which we use to implement the

required non-repudiation service.

Figure 7: S×C Security Architecture

The implementation of the S×C architecture supports two user interfaces: a

graphical user interface (GUI) that runs on S×C clients (Fig. 8(a)) and a portal

interface (Fig. 8(b)). Both interfaces provide access to all S×C services (Tab. 3).

(a) Client Graphical User Interface (b) Portal User Interface

Figure 8: Graphical User Interfaces

As depicted in Fig. 9 the core of the implementation is the server hosting and

running the verification methods. These are encapsulated as web services which

can be invoked by clients using the GUI. Alternatively, a client may get access to

16



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

the verification methods via a web portal. The implementation of the S×C archi-

tecture provides for a distribution of verification methods across servers that may

run and are administered by different domains. As shown in Fig. 9, portal and ver-

ification server are in different domains as well is a third server in another domain

that runs, for instance, the static analysis verification method. The provided flexi-

bility allows for the support of business models where all verification methods are

offered by one administrative domain (which integrates the web services as well as

the portal interface) or several domains cooperate, e.g. an mobile network operator

(MNO) providing the portal and other third parties the verification methods. For

the user, the distribution of services is transparent. The user has to decide which

interface to use and which of the S×C services to invoke across domains.

Figure 9: Client, Server and Portal integration

7 Interaction Modalities

As discussed above, the use of verification methods depends on the capabilities of

the mobile device that downloads and executes a mobile application. In this section

we discuss some usage modalities that represent particularly interesting business

cases for value-added service offerings in pervasive environments.

7.1 Policy and contract as well as policy matching on mobile device

The process of downloading mobile applications is initiated by the user. The user

has to authenticate with the server which holds the requested code. If required the

server authenticates with the user’s device. After authentication has taken place, the

code is downloaded onto the user’s mobile device. Subsequent to the download, the

S×C layer (Fig. 5) is taking control of the further steps until execution. Assuming

that the downloaded code arrives as in Fig. 2, the following steps are to be done:

1. The signature has to be verified, i.e. the public key of the signing authority

has to be retrieved and the signature has to be verified.

17



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

2. The contract has to be extracted from the packet containing code as well as

contract.

3. The proof of compliance has to be verified.

4. The platform policy has to be retrieved.

5. Contract and platform policy have to be forwarded to the contract-policy

matching software module (i.e. operation match(Contract, Policy) is called).

6. If matching is successful the code can be loaded and executed; maybe exe-

cution is done under the control of a monitor (i.e. operation monitor(Code,

Policy) is called).

7.2 Policy on mobile device and contract and policy matching by third
party

With this scenario we build on the previous scenario, i.e. the code is downloaded

onto the user’s mobile device, but extend the scenario as shown in the sequence di-

agram of Fig. 10(a). A third party is involved that performs the contract and policy

matching. So, the user’s device sends the contract and policy to the third party. We

assume that the user’s device sends a signed message including contract and policy

to the third party. Upon reception of the message the third party verifies the mes-

sage’s signature, extracts contract and policy, performs contract-policy matching

by calling operation match(Contract, Policy) of the S×C layer, and subsequently

returns the signed results back to the user’s device.

If all policies are stored with the third party and contract and policy matching

is done by the third party, the third party only needs to know which policy it has to

match against which contract. This scenario is discussed next.

7.3 Policy with third party and contract and policy matching done by
third party

The last option being considered is the one where the third party functions as a

”portal”, i.e. the only interface of the user from his mobile device to the environ-

ment is via this portal. The interactions of the user with the portal are shown in

Fig. 10(b).

Note that the policy may be defined by the user and transferred to the portal in

advance. However, if the portal is run by the user’s MNO then it might be very well

that the MNO defines a policy for all its users. In this case the policy is already

with the portal.

8 Conclusion

In this paper we have proposed the notion of Security-by-Contract (S×C), as in

programming-by-contract, based on the notion of a mobile contract that a perva-

18



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

(a) Policy with user, contract/policy

matching by 3rd party

(b) Download and service via portal

Figure 10: Sample Interactions

sive download carries with itself. It describes the relevant security features of the

application and the relevant security interactions with its nomadic host. The key

idea behind S×C is that a digital signature should not just certify the origin of the

code but rather bind together the code with a contract.

The main contributions of this paper can be summarized as follows. First, we

have described a layered architecture supporting the S×C paradigm for pervasive

security. Then we have discussed the threats and mitigation strategies for security

services. Third, we have described the implementation of the S×C architecture.

Finally, we have sketched some interaction modalities how a user may experience

the security-by-contract paradigm.

Acknowledgement

The author would like to thank the anonymous reviewers for their fruitful com-

ments.

References

[1] Mark Weiser. Some computer science issues in ubiquitous computing. Com-
munications of the ACM, 36(7):75–84, 1993.

[2] J. Bacon. Toward Pervasive Computing. IEEE Perv., 1(2):84–86, 2002.

19



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[3] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster. The Anatomy of

a Context-Aware Application. WiNet, 8(2 - 3):187–197, 2002.

[4] C. Diot and L. Gautier. A distributed architecture for multiplayer interactive

applications on the internet. IEEE Network, 13(4):6–15, 1999.

[5] D. Chakraborty, K. Dasgupta, S. Mittal, A. Misra, A. Gupta, E. Newmark, and

C.L. Oberle. Businessfinder: harnessing presence to enable live yellow pages

for small, medium and micro mobile businesses. IEEE Comm., 45(1):144–

151, Jan. 2007.

[6] L. Gong and G. Ellison. Inside Java(TM) 2 Platform Security: Architecture,
API Design, and Implementation. Pearson Education, 2003.

[7] Brian LaMacchia and Sebastian Lange. .NET Framework security. Addison

Wesley, 2002.

[8] N. Paul and D. Evans. .NET Security: Lessons Learned and Missed from

Java. In Proc. of ACSAC’04, 2004.

[9] Li Gong. Java Security: Present and Near Future. IEEE Micro, 17(3):14–19,

1997.

[10] Dan S. Wallach and Edward W. Felten. Understanding Java Stack Inspection.

In Symposium on Security and Privacy, Oakland, CA, USA, 1998. IEEE.

[11] John R. Michener and Tolga Acar. Managing System and Active-Content

Integrity. IEEE Computer, 33(7):108–110, 2000.

[12] George C. Necula. Proof-Carrying Code. In POPL ’97: Proceedings of
the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 106–119, New York, NY, USA, 1997. ACM Press.

[13] George C. Necula and Peter Lee. The Design and Implementation of a Certi-

fying Compiler. SIGPLAN Not., 39(4):612–625, 2004.

[14] R. Sekar, C. R. Ramakrishnan, I. V. Ramakrishnan, and S. A. Smolka. Model-

Carrying Code (MCC): a New Paradigm for Mobile-Code Security. In NSPW
’01: Proceedings of the 2001 Workshop on New security paradigms, pages

23–30, New York, NY, USA, 2001. ACM Press.

[15] R. Sekar, V.N. Venkatakrishnan, Samik Basu, Sandeep Bhatkar, and Daniel C.

DuVarney. Model-Carrying Code: a Practical Approach for Safe Execution of

Untrusted Applications. ACM SIGOPS Operating Systems Review, 37(5):15–

28, 2003.

[16] Michael Collins, Simon Dobson, and Paddy Nixon. Security Issues with Per-

vasive Computing Frameworks. In Pervasive’06: Proceedings of the Work-
shop on Privacy, Trust and Identity Issues for Ambient Intelligence, pages

679–685. Springer Verlag, 2006.

20



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[17] C. English, P. Nixon, S. Terzis, A. McGettrick, and H. Lowe. Dynamic trust

models for ubiquitous computing environments. In First Workshop on Secu-
rity in Ubiquitous Computing at the Fourth Annual Conference on Ubiquitous
Computing (Ubicomp2002), 2002.

[18] C. English, P. Nixon, S. Terzis, A. McGettrick, and H. Lowe. Security mod-

els for trusting network appliances. In 5th IEEE International Workshop on
Networked Appliances. IEEE, 2002.

[19] Ghita Kouadri Mostfaoui. Security in Pervasive Environments, What’s Next?

In Hamid R. Arabnia and Youngsong Mun, editors, Security and Manage-
ment, pages 93–98. CSREA Press, 2003.

[20] X. Leroy. Bytecode verification on java smart cards. Softw. Pract. Exper.,
32(4):319–340, 2002.

[21] Gennady Chugunov, Lars-Åke Fredlund, and Dilian Gurov. Model checking

of multi-applet javacard applications. In CARDIS, pages 87–96, San Jose,

CA, USA, 2002. USENIX.

[22] G. C. Necula and P. Lee. Safe, untrusted agents using proof-carrying code.

In Mobile Agents and Security, pages 61–91. Springer-Verlag, London, UK,

1998.

[23] U. Erlingsson. The inlined reference monitor approach to security policy

enforcement, 2003. Technical report 2003-1916, Department of Computer

Science, Cornell University.

[24] J. Ligatti, L. Bauer, and D. Walker. Edit automata: Enforcement mechanisms

for run-time security policies. IJIS, 4(1–2):2–16, February 2005.

[25] Ulfar Erlingsson and Fred B. Schneider. Irm enforcement of java stack in-

spection. In SP ’00: Proceedings of the 2000 IEEE Symposium on Security
and Privacy, page 246, Washington, DC, USA, 2000. IEEE Computer Soci-

ety.

[26] N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan. Security-by-contract:

Toward a semantics for digital signatures on mobile code. In EuroPKI 2007:
Proceedings of the Fourth European PKI Workshop: Theory and Practice,

pages 297–312, Mallorca, Spain, 2007. Springer-Verlag.

[27] P. Greci, F. Martinelli, and I. Matteucci. A framework for contract-policy

matching based on symbolic simulations for securing mobile device applica-

tion. In Leveraging Applications of Formal Methods, Verification and Valida-
tion, volume 17 of Communications in Computer and Information Science,

pages 221–236. Springer-Verlag, 2008.

21



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

9 Bibliographical Sketch

Nicola Dragoni obtained his M.S. Degree in Computer Science in 2002 and his

Ph.D. in Computer Science in 2006, both at University of Bologna. From 2002 to

2006 he also worked as Research Assistant at the Department of Computer Science

at the same University. He visited the Knowledge Media Institute at the Open Uni-

versity (UK) and the MIT Center for Collective Intelligence (USA), respectively in

2004 and 2006. In 2007 and 2008 he joined University of Trento as post-doctoral

Research Fellow working on the S3MS project. Between 2005 and 2008 he also

worked as freelance IT consultant. Since 2009 he is an assistant professor in secu-

rity and distributed systems at the Denmark Technical University (DTU).

Fabio Massacci received an M.Eng. in 1993 and Ph.D. in Computer Science

and Engineering at University of Rome “La Sapienza” in 1998. He joined Uni-

versity of Siena as an assistant professor in 1999, was visiting researcher at IRIT

Toulouse in 2000, and joined Trento in 2001, where he is now full professor. His

research interests are in security requirements engineering, formal methods, and

computer security. His h-index on Google Scholar is 20, and his h-index normal-

ized for individual impact (hI norm) is 13 (in June 2008). He is currently scientific

coordinator of multimillion Euros industry R&D European projects on security and

compliance.

Thomas Walter is a senior manager in the Smart and Secure Services Group

of DOCOMO Euro-Labs, Germany. His research interests include security of soft-

ware and services for mobile devices, security policies, and access and usage con-

trol in distributed environments. Thomas has an Diploma degree in computer sci-

ence (University of Hamburg, Germany) and a Doctorate in electrical engineering

(Swiss Federal Institute of Technology Zurich, Switzerland). He is a member of

Gesellschaft für Informatik (GI) and the IEEE.

Christian Schaefer received his Diploma degree in Computer Science from the

University of Karlsruhe (TH), Germany. Since September 2003 he is working

as a researcher for DOCOMO Euro-Labs in Munich, Germany. His main research

interests are the enforcement of security policies in distributed systems with a focus

on usage control and security of mobile handsets. He is a member of IEEE.

22


