Security-by-Contract: Toward a Semantics for Digital
Signatures on Mobile Code*

N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan

Department of Information and Communication Technologies
University of Trento, ITALY
surname @dit.unitn.it

Abstract. In this paper we propose the notion of security-by-contract, a mobile
contract that an application carries with itself. The key idea of the framework is
that a digital signature should not just certify the origin of the code but rather bind
together the code with a contract. We provide a description of the overall life-
cycle of mobile code in the setting of security-by-contract, describe a tentative
structure for a contractual language and propose a number of algorithms for one
of the key steps in the process, the contract-policy matching issue. We argue that
security-by-contract would provide a semantics for digital signatures on mobile
code thus being a step in the transition from trusted code to trustworthy code.

1 Introduction

Mobile devices are increasingly popular and powerful. Yet, the growth in computing
power of nomadic devices has not been supported by a comparable growth in available
software: on high-end mobile phones we cannot even remotely find the amount of third
party software that was available on our old PC.

One of the reasons for this lack of applications is also the security model adopted
for mobile phones. The current security model is exemplified by the JAVA MIDP 2.0
approach and is based on trust relationships: mobile code is run if its origin is trusted.
This essentially boils down to mobile code is accepted if it is digitally signed by a
trusted party. The level of trust of the “trusted party” determines the privileges of the
code by essentially segregating it into appropriate trust domain.

The problem with trust relationship, i.e. digital signatures on mobile code, is twofold.
At first we can only reject or accept the signature. This means that inter-operability in
a domain is either total or not existing: an application from a not-so-trusted source can
be denied network access, but it cannot be denied access to a specific protocol, or to
a specific domain. E.g. if a payment service is available on the platform and an appli-
cation for paying parking meters is loaded, the user cannot block the application from
performing large payments.

The second (and major) problem, is that there is no semantics attached to the sig-
nature. This is a problem for both code producers and consumers.

From the point of view of mobile code consumers they must essentially accept the
code “as-is” without the possibility of making informed decisions. One might well trust

* Research partly supported by the project EU-IST-STREP-S3MS.

SuperGame Inc. to provide excellent games and yet might decide to rule out games that
keep playing while the battery fells below 20%. At present such choice is not possible.

From the point of view of the code producer they produce code with unbounded lia-
bility. They cannot declare which security actions the code will do, by signing the code
they essentially declare that they did it. The consequence is that injecting an application
in the mobile market is a time consuming operation as SME developers must essentially
convince the operators that their code will not do anything harmful.

1.1 Contribution of the Paper

We propose in this paper the notion of security-by-contract (as in programming-by con-
tract [1]): the digital signature should not just certify the origin of the code but rather
bind together the code with a contract. Loosely speaking, a contract contains a de-
scription of the relevant features of the application and the relevant interactions with
its host platform. A mobile platform could specify platform contractual requirements,
a policy', which should be matched by the application’s contract. Among the relevant
features, one can list fine-grained resource control (e.g. silently initiate a phone call or
send a SMS), memory usage, secure and insecure web connections, user privacy protec-
tion, confidentiality of application data, constraints on access from other applications
already on the platform.

We provide here a description of the overall life-cycle of mobile code in the setting
of security-by-contract, describe a tentative structure for a contractual language and
propose a number of algorithms for one of the key steps in the process, namely the
issue of contract-policy matching.

We argue that security-by-contract would provide a semantics for digital signatures
on mobile code thus being a step in the transition from trusted code to trustworthy code.

The research is performed within the limits of the European project “Security of
Software and Services for Mobile Systems” (S3MS)32.

The rest of the paper is organized as follows. In Section 2 we present the security-
by-contract framework providing a description of the overall life-cycle of mobile code
in this setting. In Section 3 we describe typical security requirements to mobile appli-
cations. In Section 4 we focus on contract specification defining also the notion of
contract-policy matching. Then in Section 5 we propose an algorithm for contract-
policy matching based on the contractual language of Section 4. We end the paper
discussing related work and conclusions.

2 The Security-by-Contract Life-Cycle

The framework of security-by-contract for mobile code is essentially shaped by three
groups of stake-holders: mobile operator, service provider and/or developer, mobile
user. This is shown in Fig. 1.

" In the sequel we will refer to policy as the security requirements on the platform side and by
contract the security claims made by the mobile code.
2 More information concerning this project can be acquired at http:\ \ www.s3ms.org.

Operator
J 3 7 =

A’
= Mobile Platform /

User Policy Service
Developer/Provider

Fig. 1. Key Stakeholders

Table 1. Enforcing Security-by-Contract at Different Stages

Development Deployment Execution
(IT) after design but
before shipping the
application

(D) at design and de-
velopment time

(III) when download-|(IV) during the execu-
ing the application [tion of the application

The mobile code developers are responsible to provide a description of the security
behavior that their code provides.

Definition 1 (Contract). A contract is a formal complete and correct specification of
the behavior of an application for what concerns relevant security actions (Virtual Ma-
chine API Calls, Operating System Calls).

By signing the code the developer certifies that the code complies with the stated claims
on its security-relevant behavior.

On the other side we can see that users and mobile phone operators are interested
that all codes that are deployed on their platform are secure. In other words they must
declare their security policy:

Definition 2 (Policy). A policy is a formal complete specification of the acceptable
behavior of applications to be executed on the platform for what concerns relevant
security actions (Virtual Machine API Calls, Operating System Calls).

A contract should be negotiated and enforced during development, at time of deliv-
ery and loading, and during execution of the application by the mobile platform. Fig. 2
summarizes the phases of the application/service life-cycle in which the contract-based
security paradigm is present.

In order to guarantee that an application complies with its desired contract or the
policy requested on a particular platform we should consider the stage where such en-
forcement can be done as shown in Table 1.

Mobile Policy

P .
Mobile Pdicy on
Mobile Device

\ \ Application Deployment Loading Execution

A\ Application '\ liance with Mobile and Monitoring
development // wath Infra- Contract & Runtime:

// Contracts structure Matching //Enforcement

Static analysis Possibly proof-
In-line monitoring chedking for
Contract e
P monitors
SME
Devdoper |

Fig. 2. Application/Service Life-Cycle

Enforcing at level (I) can be achieved by appropriate design rules and require de-
veloper support; (II) and (IIT) can be carried out through (automatic) verification tech-
niques. Such verifications can take place before downloading (static verification by
developers and operators followed by a contract coming with a trusted signature) or
as a combination of pre and post-loading operations (e.g., through in-line monitors and
proof carrying code); (IV) can be implemented by run-time checking. All methods have
different technical and business properties. From an operator’s view point:

— working on existing devices would rule out run-time enforcement and favour static
analysis, code signing and signature verification on the mobile platform. Monitors
may be used (for properties that could not be proved), but on-device proof would
then not be possible.

— Operators distrusting the certification process could rely on run-time checks, at the
price of upgrading devices’ software. Monitors could be used and contracts could
be verified on the device itself.

— An operator who wants to be able to run existing applications would prefer run-time
enforcement.

The users’ perspectives could be different as individuals might care more of privacy,
whereas companies might care more of security. Their interest could be on ease of
matching the mobile contract against the mobile policy or the combination of policies
(e.g. operator, company, user or roaming on another operator’s network). The Table 2
shows some of possible strengths and limitations of each different technology.

Contract-Policy Matching. As we can see in Fig. 2, one of the key problems in the
overall security-by-contract life-cycle is the contract-policy matching issue: given a
contract that an application carries with itself and a policy that a platform specifies,
is the contract compliant with the policy? Intuitively, matching should succeed if and
only if by executing the application on the platform every behavior of the application
that satisfies its contract also satisfies the platforms policy. Contract-policy matching
represents a common problem in the life-cycle because it must be done at all levels:

Table 2. Enforcement Technology Strengths and Weaknesses

Criteria Static Analysis|Monitors|Runtime
Works with existing devices N ? X
Works with existing applications ? X v
Does not modify applications N X N
Offline proof of correctness N N X
Load-time proof of correctness X N X
May depend on run-time data X N v
Does not affect runtime performance N ? X

both for development and run-time operation. To address this issue we need efficient
algorithms to match application contracts with device policies. This will be the target
of Section 5.

3 How a Contract Should Look Like?

If contract represents the security behavior of an application the temptation would be to
make such contractual claims arbitrarily complex. Since we argue that contract should
be matched by mobile device a complex procedure is likely to defy the very spirit of
our proposal.

However, a detailed case study [20] in the booming real of Mobile Games shows
that detailed contracts are not really necessary. The characteristic feature of these ap-
plications is that they need wide access to connectivity to execute correctly. However,
the user still wants to control that this connectivity is not abused or misused. Therefore
the same permission can be granted or not granted depending, for instance, on previous
actions of the applet or some conditions on application environment.

Let us make two examples. Personal information security can be ensured by the
following policies:

Example 1. “No external connections are allowed if the application has accessed the
user’s personal information”. In this example granting of the permission depends on
the applets’ previous actions.

Example 2. Using wireless connection can make the device runs out of battery very
quickly. To prevent it one can apply the following policy: “The application is not al-
lowed to use wireless connection if the battery level is below a certain limit”. In this
example the permission to run for the application depends on the state of its environ-
ment.

Other examples of security policies for mobile devices include:

1. The application sends no more than a number messages in each session.
2. The application only loads each image from the network once.
3. The delay between two periodic invocations of the MIDlet is at least T.

. The application does not initiate calls to international numbers.

. The application only uses files whose name matches a given pattern.

. The application does not send MMS messages.

The application connects only to its origin domain.

. The application does not use the FileConnection.delete() function.

. The application only receives SMS messages on a specific port.

. The length of a SMS message sent does not exceed the payload of a single SMS
message.

11. The application must close all files that it opens.

SRR RS

Notice the difference between policies 1 and 2. The first one specifies the constraint
on a single execution (session) of the program. The second one puts a restriction on all
runs of the application. Policy 3 also requires to make a distinction between multiple
sessions of the application. For this reason the contracts must include the constructs
that define the scope of the obligation. Moreover, such policies as policy 11 are most
naturally expressed at the level of separate objects (in this case objects of type FileCon-
nection). So three possible scopes of the obligation are:

Multisession — the obligation must be fulfilled by all runs of the application as a whole.
Session — the obligation must be fulfilled by each run of the application separately.
Object — the obligation must be fulfilled by each object of a given type.

Another important issue is the granularity of the protected resources. The require-
ments above show that the field of application of the policy can be limited to particular
services (HTTP, SMS, etc.) or even API calls (policy 8). Hence the fine-grained control
over the protected resources is an important requirement to the security framework.

4 Contract Specification

A single contract/policy is specified as a list of disjoint rules (for instance rules for
connections, rules for PIM and so on) instead of one giant specification describing all
possible security properties. A rule is defined according to the following grammar:

<RULE> :=
SCOPE [OBJECT <class> |
SESSION |
MULTISESSION]
RULEID <identifier>
<formal specification>

Rules can differ both by SCOPE and RULEID.Scope definition reflects at which
scope (OBJECT, SESSION, MULTISESSION) the specified contract will be applied.
The tag RULEID identifies the area of the contract (which security-relevant actions the
policy concerns, for example “files” or “connections”).

We assume that SCOPE and RULEID divide the set of security-relevant actions
into non-interleaving sets so that two rules with different scopes and RULEIDs (in

the same contract specification) cannot specify the same security-relevant actions. This
assumption allows us to perform matching as a number of simpler matching operations
on separate rules, as we will show in Section 5.

For SESSION and MULTISESSION scopes there is a possibility to set RULEID
equal to *, which means that the contract can include the actions from any area. Still we
recommend to consider such an option carefully before using it because the matching
of such contracts and policies can be inefficient.

The <formal specification> partofarule gives arigorous and not ambigu-
ous definition of the behavior (semantics) of the rule. Since several semantics might be
used for this purpose (such as standard process algebras, security automata, Petri Nets
and so on), for the limited scope of this paper we abstract from a particular formal
specification, identifying the necessary abstract constructs for combining and compar-
ing rules. Moreover, we assume that rules can be combined and compared for matching
only if they have the same scope. This assumption allows us to reduce the problem of
combining rules to the one of combining their formal specifications, without consider-
ing scopes. Therefore the first thing we do when analyzing the specifications is to group
rules within one scope together and reason about them separately.

We have identified the following abstract operators (C' and P indicate a generic
contract and policy respectively):

[Combine Operator 6] Spec = P;=1,... ,Spec;
It combines all the rule formal specifications Spec,, ..., Spec,, in a new specifica-
tion Spec.
— [Simulate Operator ~] Spec” ~ Spec?’
It returns 1 if rule formal specification Specc simulates rule formal specification
SpecP , 0 otherwise.
— [Contained-By Operator C] Spec” C Spec”
It returns 1 if the behavior specified by Speco is among the behaviors that are
allowed by SpecP , 0 otherwise.
— [Traces Operator] S = Traces (Spec)
It returns the set S of all the possible sequences of actions that can be performed
according to the formal specification Spec.

We assume that the above abstract constructs are characterized by the following
properties:

Property 1. Traces (Spec, @ Spec,) = Traces (Spec,) U Traces (Spec,)
Property 2. Spec, C Spec, < Traces (Spec,) C Traces (Spec,)
Property 3. Spec, = Spec, = Traces (Spec,) C Traces (Spec,)

Definition 3 (Exact Matching). Matching should succeed if and only if by executing
the application on the platform every trace that satisfies the application’s contract also
satisfies the platform’s policy:

Traces (®i=1,... .nSpect) C Traces (®i=1,... mSpec;)

Table 3. Examples of Contract/Policy Matching

Contract/Policy Rule Object can use one type|Object can use every
of connection only type of connections

Object can use HTTP connections only o} o}

Object can use HTTP and SMS connections O o}

Definition 4 (Sound Sufficient Matching). Marching should fail if by executing the
application on the platform there might be an application trace that satisfies the con-
tract and does not satisfies the policy.

Definition 5 (Complete Matching). Matching should succeed if by executing the ap-
plication on the platform every traces satisfying the contract also satisfy the policy.

By applying Def. 4 we might reject “good” applications that are however too diffi-
cult or too complex to perform. On the other hand, Def. 5 may allow “bad” applications
to run but it will certainly accept all “good” ones (and “bad” applications can later be
detected, for instance, by run-time monitoring). Examples of matching between con-
tracts and policies are shown in Table 3.

5 Contract Matching Algorithm

In this Section we provide a generic algorithm for contract/policy matching. The algo-
rithm is generic since it does not depend on the formal model adopted for specifying the
semantics of rules (process algebra, security automata, Petri Nets, and so on). In other
words, the algorithm is defined by means of the abstract constructs discussed in Sec-
tion 4. Therefore, to exploit the algorithm it will be sufficient to have an implementation
of these constructs in the formal language adopted for specifying rules. In Section 5.1
we will provide an automata-based implementation of such constructs, giving in this
way a complete version of the algorithm for rules formally specified with automata.

As shown in Fig. 3, the generic contract/policy matching algorithm takes as inputs
two rule sets R and RY representing respectively the contract and the policy to be
matched. The algorithm checks if RY “matches” R .

Algorithm 1 lists the source code of the MatchContracts function, which repre-
sents the root function of the whole algorithm. Basically, the algorithm works as fol-
lows. First of all, both rule sets R and R¥ are partitioned according to the scope of
the rules (lines 1 and 2). This is done by calling the Partition procedure (Algorithm
2) that partitions a generic rule set R in a sequence of rule sets with the same scope:

<RSESSION7 Ryurrisessions {Reiass}etassece > As discussed in Section 4, this
partition is necessary because in the S3MS framework comparison of rules starts only
within a certain scope. Created two sequences of scope-specific rule sets (one for the
contract and one for the policy), the algorithm checks if each rule set in the sequence

Ruls Set AT Rule Set A
— i ~ <idl=

(WT_)_._:_:.KI' <igi> (I;/..-!-l?_,\l'

hS F_J!' ko) &)

(__._.r'_ <2 'P(—_,l' -
oy O
Oy 2MATCH??, | 17 Ay
O’ et =
(_:r,-l-'(_" <idnz Q,,—b-f:\ <dme=
T 7 ¥
et)

" 1 S

Fig. 3. Contract/Policy Matching Problem

of the contract matches the corresponding rule set in the sequence of the policy (lines
3-11). In other words, we match rules within the same scope. This is done by calling the
MatchRules function (lines 4-6) that we discuss in the next paragraph. If all succeeds
(line 11), than the contract matches the policy. Otherwise, matching fails.

Matching Rules with the Same Scope. Matching between rules is performed by the
MatchRules function (Algorithm 3). Since the rules of the two input sets R and R
must have the same scope, before doing matching checks the algorithm cleans R and
RF removing the scope from each rule. As a consequence, two sets L and L¥ of pairs
(IDC/ P SpecO/ P) are built. Now the algorithm is ready to check the contract/policy

match. Each pair in L is compared with the set L by means of the MatchSpec
function (line 4). When a match is not found for a pair (line 6), i.e. the MatchSpec
function returns 0, that pair is stored in a rule set Lffm-le g (line 7).

If for all rules in L” there exists a match with L, i.e. the MatchSpec function
returns 1 for each pair in L so that L?M-le 4 = 0, then the match between rules succeeds
and the algorithm returns 1 (lines 10-11). Otherwise, if lefailed # 0 (i.e. there are no
rules in L that match with the rules of Lfm-le 2 then the algorithm performs a last
“global” check. More precisely, the combination of the rules in LY is matched with the
combination of the rules in L]fjaile 4 (ine 13). If also this match does not succeed, then
the algorithm returns 0, otherwise it returns 1.

Matching Specifications. The MatchSpec function (Algorithm 4) checks the match be-
tween a set of pairs £ = { (ID{, Spect) ,..., (IDY, SpecS)) and a pair (IDF, Spec”)
representing respectively the rules of the contract and a rule of the policy to be matched.
The function returns 1 in two situations:

1. there exists a pair (IDY, Spec®) in L that matches with (IDF, Spec”)

Algorithm 1 MatchContracts Function

Input: rule set R, rule set R”
Output: 1if R matches RY , 0 otherwise

) c c c i c
L: <RSESSION7 RS1vLT1sESSI0N » A Reélass }classeCC> <« Partition(R)

2 <R§ESSION7 RVULTISESSION: {RZM }czasse<P> <= Partition(RP)
3: if MatchRules (RgESSIONa RgESSION) then

4: if MatchRules (Rg/[ULTISESSION: RJ\P/[ULTISESSION) then
5 for all class € ¢T do // for all classes in policy

6: if MatchRules (R, Ri...) then// if class ¢ (€, then R .o = 0
7: skip

8 else

9: return(0)

10: end if

11: end for
12: return(1)
13: endif
14: end if

15: return(0)

Algorithm 2 Partition Procedure

Input: rule set R

Output: <RSESSION7 Rymvrrrsessions {Rclass}classe<>

. RSESSION = {T‘ ER | Scope(r) = SESSION}

: Ruvrrisession < {r € R | Scope(r) = MULTISESSION}
: for all class € ¢ do // for all classes in contract/policy

Retass < {r € R | Scope(r) = OBJECT < class >}

: end for

Algorithm 3 MatchRules Function

Input: rule set RS, rule set RY

Output: 1if RY matches RT, 0 otherwise
1: LC < {(IDC, Speco) | <sc0pe, DY, SpecC> € RO}

2. L < {(IDP7 SpecP) | <sc0pe, IDP,SpecP> € RP}

3: for all (ID”, Spec”) € L” do

4: if MatchSpec(L¢, (ID”, Spec”)) then

5: skip

6: else// may return () for efficiency

7 L?ailed ~ L})ailedu (IDP7 SpCCP)

8 endif

9: end for

10: if Lf,i7.4 = 0 then

11: return(1)

12: else

13: return(MatChSpeC ((*, @ (e, specC)eLC) , (*, (e, SP“P)GLf’aued)))
14: end if

Algorithm 4 MatchSpec Function
Input: L¢ = ((ID{, Spec{),..., (IDS, Spec’)), (ID”, Spec”)
Output: 1 if LE matches (IDP , Spec”), 0 otherwise

1: if 3 (ID, Spec”) € LY A IDY = ID” then

2: if HASH(Spec”) = HASH(Spec’’) then

3: return(1)

4: elseif Spec” ~ Spec” then

5: return(1)

6: elseif Spec” C Spec’” then

7 return(1)

8: else// Restriction: if same ID then same specification must match
9: return(0)

10: endif

11: else

12: MatchSpec((*, B(e, Specc)eLC) (% Specp))
13: end if

2. the combination of all the specifications in L& matches with (ID¥, Spec”)

Otherwise, the function returns 0.

Specification matching is verified as follows. If there exists a pair (IDC, Specc) in
LC such that ID® is equal to ID¥ (line 1), then the algorithm checks the hash values
of the specifications SpeCO and SpecP . Matching succeeds if they have the same value
(line 2). Otherwise, the algorithm checks if Specc simulates SpecP (line 4). If this is
the case, then the matching succeeds, otherwise the more computationally expensive
containment check is performed (line 6). If also this check fails, the algorithm ends and
matching fails (because the rules with the same ID must have the same specification).

If there exists no pair in L such that IDY is equal to ID¥’ (line 11) then the al-
gorithm checks the match between the combination of all the specifications in L and
(ID”, Spec”) (line 12).

5.1 Applying the Generic Matching Algorithm to Automata-based Rule
Specifications

In this Section we show how the matching algorithm can be used when the behavior of
rules (<formal specification>) is specified by means of finite state automata
(FSA). In this way we provide a complete algorithm for matching contracts with FSA-
based rule specifications. As already remarked at the beginning of Section 5, we just
need to provide an implementation of the &, C and = operators used in Algorithms 3
and 4. For the sake of clarity, we briefly introduce FSA. Then we provide algorithms
for implementing the abstract constructs.

FSA are widely used as a powerful formalism both for system modeling and for
specification of system properties. Basically, FSA consists of finite numbers of states;
transitions between states are performed through actions. A subset of states is selected

- gonnection open

= PIN open

connectionopen

Fig.4. The Automata-Based Specification of the Policy from Example 1 (circles with double
borders denote accepting states, arrows represent the transition, where labels denote actions)

to be accepting states. If after performing a sequence of actions (a run) the FSA arrives
in an accepting state then the automaton is said to accept this sequence of actions.

FSA that represents a model of the system can be extracted directly from the control-
flow graph of the program. This automaton specifies actual behavior of the system.
An automaton that specifies the desired behavior can be either built directly or from
other specification language. For example, FSA for a temporal logic specification can
be constructed using the tableaux method [11].

Example 3. To illustrate how FSA can be used for property specifying let us show the
automaton for the policy from Example 1. The automaton has two accepting states. It
remains in the first (initial) one until the action “PIN open” occurs. This action brings
the automaton in the second accepting state. All actions in this state preserve it save the
action “connection open”. If “connection open” occurs the automaton is brought to the
last (non-accepting) state, from which there is no outgoing transition. In this case the
automaton terminates in a non-accepting states, which means that the automaton does
not accept this run. The resulting automaton is presented at Fig. 4.

Combining Automata-Based Rules. The exploitation of automata for formally specify-
ing rules allows a straightforward implementation of the combine operator &: rules are
combined by simply making the synchronous product of the related automata.

Automata Matching as Language Inclusion. Given two automata Aut® and Aut” rep-
resenting respectively a rule formal specification of a contract (Specc) and of a policy
(SpecP), Specc C SpecP when L,,c C L,P, ie. the language accepted by Aut®
is a subset of the language accepted by Aut’. Informally, each behavior of Aut® is
among the behaviors that are allowed by the policy Aut?’. Assuming that the automata
are closed under intersection and complementation, then the matching problem can be
reduced to an emptiness test [2]:

=0

In other words, there is no behavior of Aut® that is disallowed by Aut” . If the inter-
section is not empty, any behavior in it corresponds to a counterexample. Algorithm 5
lists the basic steps for implementing the C operator for FSA-based rule specifications.

‘CAutC - ‘CAutP < EAutc N ‘CAutP =0& ‘CAutO n ‘Cm

Algorithm 5 FSA-Based Implementation of C

Input: two FSA-based rule specifications Aut® and Aut”
Output: 1if Ac C Ap, 0 otherwise

: Complement the automaton Aut”

: Construct the automaton Aut’ that accepts £,,c N LoF

. if Aut’ is empty then
return(1)

else
return(0)

: end if

e

Algorithm 6 FSA-Based Implementation of ~

Input: two FSA-based rule specifications Aut® and Aut?
Output: 1if Ac =~ Ap, 0 otherwise.

1: Construct the automaton Aut’ = Aut® U Aut”

2: Build the parity game graph G (q(’)\Lllc , qé”‘P)

3: Compute the winning nodes W using Jurdzinski algorithm
4 if (g2, gt"") € W then

5: return(1)

6: else

7: return(0)

8: end if

Automata Simulation. Several notions of simulation relations for automata have been
introduced in literature ([3, 5, 4, 9] to mention only a few) and discussing each of them
is outside the scope of the paper. Intuitively, we can say that a state g; of an automata
A “simulates” a state g; of an automata B if every “behavior” starting at ¢ can be
mimicked, step by step, starting at g;, i.e. ¢; = ¢; = L(A[g;]) C L(Alg;]).

The main approach for determining simulation relations among automata consists
of reducing the simulation problem to a simulation game, i.e. to the problem of search-
ing the winning nodes of a parity game graph [4]. Algorithm 6 summarizes the basic
operations needed for implementing a simulation construct following this approach [5].
Basically, a parity game graph is constructed starting from two automata A and B and
according to a well specific notion of simulation relation (the * in the algorithm in-
dicates a generic simulation relation). Then the Jurdzinski algorithm [10] is used for
determining the set of winning nodes.

6 Related Work

Four main approaches to mobile code security can be broadly identified in literature:
sandboxes limit the instructions available for use, code signing ensures that code orig-
inates from a trusted source, proof-carrying code (PCC) carries explicit proof of its
safety, and model-carrying code (MCC) carries security-relevant behavior of the pro-
ducer mobile code.

Sandbox Security Model. This is the original security model provided by Java. The
essence of the approach [6] is that a computer entrusts local code with full access to
vital system resources (such as the file system). It does not, however, trust downloaded
remote code (such as applets), which can access only the limited resources provided
inside the sandbox. The limitation of this approach is that it can provide security but
only at the cost of unduly restricting the functionality of mobile code (e.g., the code is
not permitted to access any files). The sandbox model has been subsequently extended
in Java 2 [7], where permissions available for programs from a code source are specified
through a security policy. Policies are decided solely by the code consumer without any
involvement of the producer. The implementation of security checking is done by means
of a run-time stack inspection technique [19].

In .NET each assembly is associated with some default set of permissions accord-
ing to the level of trust. However, the application can request additional permissions.
These requests are stored in the application’s manifest and are used at load-time as the
input to policy, which decides whether they should be granted. Permissions can also
be requested at run-time. Then, if granted, they are valid within the limit of the same
method, in which they were requested. The set of possible permissions includes, for
instance, permissions to use sockets, web, file 10, etc.

Cryptographic Code-Signing. Cryptographic code-signing is widely used for certifying
the origin (i.e., the producer) of mobile code and its integrity. Typically, the software
developer uses a private key to sign executable content. The application loading the
module then verifies this content using the corresponding public key.

This technique is useful only for verifying that the code originated from a trusted
producer and it does not address the fundamental risk inherent to mobile code, which
relates to mobile code behavior. This leaves the consumer vulnerable to damage due
to malicious code (if the producer cannot be trusted) or faulty code (if the producer
can be trusted). Indeed, if the code originated from an untrusted or unknown producer,
then code-signing provides no support for safe execution of such code. On the other
hand, code signing does not protect against bugs already present in the signed code.
Patched or new versions of the code can be issued, but the loader (which verifies and
loads the executable content and then transfers the execution control to the module) will
still accept the old version, unless the newer version is installed over it. [12] proposes
a method that employs an executable content loader and a short-lived configuration
management file to address this software aging problem.

Proof-Carrying Code (PCC). The PCC approach [14] enables safe execution of code
from untrusted sources by requiring a producer to furnish a proof regarding the safety
of mobile code. Then the code consumer uses a proof validator to check, with certainty,
that the proof is valid (i.e., it checks the correctness of this proof) and hence the foreign
code is safe to execute. Proofs are automatically generated by a certifying compiler [15]
by means of a static analysis of the producer code. The PCC approach is problematic
for two main reasons [16]. A practical difficulty is that automatic proof generation for
complex properties is still a daunting problem, making the PCC approach not suitable
for real mobile applications. A more fundamental difficulty is that the approach is based
on a unrealistic assumption: since the producer sends the safety proof together with

the mobile code, the code producer should know all the security policies that are of
interest to consumers. This appears an impractical assumption since security may vary
considerably across different consumers and their operating environments.

Model-Carrying Code. This approach is strongly inspired by PCC, sharing with it the
idea that untrusted code is accompanied by additional information that aids in verifying
its safety [17]. With MCC, this additional information takes the form of a model that
captures the security-relevant behavior of code, rather than a proof. Models enable code
producers to communicate the security needs of their code to the consumer. The code
consumers can then check their policies against the model associated with untrusted
code to determine if this code will violate their policy. Since MCC models are signif-
icantly simpler than programs, such checking can be fully automated. This model has
been mainly proposed for bridging the gap between high-level policies and low-level
binary code, enabling analyses which would otherwise be impractical (as for PCC).

For policy specification other languages can be used as well. For instance, tem-
poral logic formulae are widely applied for this purpose [8]. Also there is a number
of XML-based languages for specification of access control policies, such as XACML
[13]. However, while these languages suit well for describing security policies, they are
less convenient for formal specification of the whole system, and in our framework it is
essential to cover both these aspects. Therefore we chose a FSA-based language, which
is suitable for specification of contracts as well as policies. However, it is worth noting
that there is a mapping from temporal logic to FSA, which enables translating policies
written as logic formulae into our FSA-based language.

7 Conclusion

In this paper we have proposed the notion of security-by-contract, a mobile contract that
an application carries with itself. The key idea of the approach is that a digital signature
should not just certify the origin of the code but rather bind together the code with
a contract. From this point of view, our framework essentially makes more concrete
some ideas behind MCC. In particular, we use a high level specification language with
features that simplify contract/policy matching and allow expressing realistic security
policies. Also our matching algorithm is improved for efficiency as it is intended for
use on such resource-critical devices as mobiles. For this reason we first perform easier
checks of sufficient criteria before performing a complete check (see Alg. 4). Other
optimizations are also discussed. These features also differentiate our approach from
other frameworks for modeling resource contractualisation, such as [18].

The contributions of the paper are threefold. First, we have proposed the security-
by-contract framework providing a description of the overall life-cycle of mobile code
in this setting. Then we have described a tentative structure for a contractual language.
Finally, we have proposed a number of algorithms for one of the key steps in the life-
cycle process: the issue of contract-policy matching.

The main novelty of the proposed framework is that it would provide a semantics
for digital signatures on mobile code thus being a step in the transition from trusted
code to trustworthy code.

References

10.

11.

13.

14.

15.

16.

17.

18.

19.

20.

. Building bug-free O-O software: An introduction to Design by Contract(TM). Availabe at

http://archive.eiffel.com/doc/manuals/technology/contract/.

. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 2000.
. D. L. Dill, A. J. Hu, and H. Wong-Toi. Checking for Language Inclusion Using Simula-

tion Relations. In Proceedings of CAV’91: 3rd International Workshop on Computer Aided
Verification, pages 329-341. Springer, 1991.

. K. Etessami. A hierarchy of polynomial-time computable simulations for automata. In

Proceedings of CONCUR’02, pages 131-144. Springer-Verlag, 2002.

. K. Etessami, T. Wilke, and R. Schuller. Fair Simulation Relations, Parity Games, and State

Space Reduction for Buchi Automata. In Automata, Languages and Programming, 28th
international colloquium, volume 2076 of Lecture Notes in Computer Science, pages 694—
707. Springer, 2001.

. L. Gong. Java Security: Present and Near Future. /EEE Micro, 17(3):14-19, 1997.
. L. Gong and G. Ellison. Inside Java(TM) 2 Platform Security: Architecture, API Design, and

Implementation. Pearson Education, 2003.

. K. Havelund and G. Rosu. Efficient monitoring of safety properties. Software Tools for Tech.

Transfer, 2004.

. T. Henzinger, O. Kupferman, and S. Rajamani. Fair Simulation. In Proceedings of CON-

CUR’97, pages 273-287. Academic Press, Inc., 1997.

M. Jurdzinski. Small Progress Measures for Solving Parity Games. In 17th Symposium
on Theoretical Computer Science (STACKS), volume 1770 of Lecture Notes in Computer
Science, pages 290-301. Springer, 2000.

Y. Kesten, Z. Manna, H. McGuire, and A. Pnueli. A decision algorithm for full propositional
temporal logic. In Computer Aided Verification, pages 97-109, 1993.

. J. R. Michener and T. Acar. Managing System and Active-Content Integrity. /EEE Com-

puter, 33(7):108-110, 2000.

T. Moses. eXtensible Access Control Markup Language (XACML) version 1.0. Technical
report, OASIS, 2003.

G. C. Necula. Proof-Carrying Code. In POPL ’97: Proceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 106—-119, New York,
NY, USA, 1997. ACM Press.

G. C. Necula and P. Lee. The Design and Implementation of a Certifying Compiler. SIG-
PLAN Not., 39(4):612-625, 2004.

R. Sekar, C. R. Ramakrishnan, I. V. Ramakrishnan, and S. A. Smolka. Model-Carrying Code
(MCC): a New Paradigm for Mobile-Code Security. In NSPW ’01: Proceedings of the 2001
Workshop on New security paradigms, pages 23-30, New York, NY, USA, 2001. ACM Press.
R. Sekar, V.N. Venkatakrishnan, Samik Basu, Sandeep Bhatkar, and Daniel C. DuVarney.
Model-Carrying Code: a Practical Approach for Safe Execution of Untrusted Applications.
ACM SIGOPS Operating Systems Review, 37(5):15-28, 2003.

N. Le Sommer. Towards Dynamic Resource Contractualisation for Software Components.
In International Working Conference on Component Deployment (CD 2004), volume 3803
of Lecture Notes in Computer Science, pages 129—143. Springer, 2004.

D. S. Wallach and E. W. Felten. Understanding Java Stack Inspection. In IEEE Symposium
on Security and Privacy, 1998.

A. Zobel, C. Simoni, D. Piazza, X. Nuez, and D.Rodriguez. Business case and se-
curity requirements. Public Deliverable D5.1.1, EU Project S3MS, Report available at
www.s3ms.org, October 2006.

