
Modeling Social and Individual Trust in
Requirements Engineering Methodologies?

Paolo Giorgini1, Fabio Massacci1, John Mylopoulos1,2, and Nicola Zannone1

1 Department of Information and Communication Technology
University of Trento - Italy

{massacci,giorgini,zannone}@dit.unitn.it
2 Department of Computer Science

University of Toronto - Canada
jm@cs.toronto.edu

Abstract. When we model and analyze trust in organizations or in-
formation systems we have to take into account two different levels of
analysis: social and individual. Social levels define the structure of or-
ganizations, whereas individual levels focus on individual agents. This
is particularly important when capturing security requirements where a
“normally” trusted organizational role can be played by an untrusted
individual.
Our goal is to model and analyze the two levels finding the link between
them and supporting the automatic detection of conflicts that can come
up when agents play roles in the organization. We also propose a formal
framework that allows for the automatic verification of security require-
ments between the two levels by using Datalog and has been implemented
in CASE tool.

Keywords: Information Technologies; Social; Security & Trust; Re-
quirements and methodologies; Trust specification, analysis and rea-
soning; Realization of prototypes; Agent-Oriented Technologies.

1 Introduction

The last years have seen a major interest for methodologies for software engi-
neering that could capture trust and security requirements from the very early
stage of design [10, 12, 14, 18, 19]. Still all proposals (including our own) discuss
the system or the organization looking at roles and positions rather than individ-
ual agents. From a certain viewpoint this is to be expected natural as a software
engineer doesn’t want to design and implement John Doe but rather the generic
Cashier agent. However, in a recent study, the majority of Information Security
Administrators said that their biggest worry is employee negligence and abuse
[15]. Internal attacks can be more harmful than external attacks since they are
? This work has been partially funded by the IST programme of the EU Commission,

FET under the IST-2001-37004 WASP project, by the FIRB programme of MIUR
under the RBNE0195K5 ASTRO Project and by PAT MOSTRO project.



being performed by trusted users that can bypass access control mechanisms.
So, we need models that compare the structure of the organization (roles and
relations among them) with the concrete instance of the organization (agents
playing some roles in the organization and relations among them).

Among the requirements engineering methodologies, the Tropos agent-oriented
requirements methodology [1] involves two different levels of analysis: social and
individual. In the organization level we analyze roles and positions of the organi-
zation, whereas in individual level the focus is on single agents. Of course there
is no explicit separation between the two levels, and so Tropos is not able to
maintain the consistency between the social level (roles and positions) and the
individual level (agent).

In the trust management setting, as far we know, there are only few proposals
that analyze both social and individual levels and compare them. Huynh et
al. [8] introduce role-based trust to model the trust resulting from the role-
based relationships between two agents, but no requirements methodology is
proposed. Sichman et al. [17] propose an approach where agents mental attitude
is characterized by their personal mental attitude and the one which they have
by playing a role. However, there is not a complete separation between the two
levels. Therefore, this approach is not able to identify possible conflicts that can
be arise by analyzing each level separately, and so system designers cannot verify
the correctness and consistency of the structure of organizations.

In this paper we focus on the problem of identifying and solving conflicts
emerging between the social and the individual level in the Secure Tropos model
that we have proposed. Our goal is to:

– design models at both social level and individual level, independently;
– verify correctness and consistency of social level;
– map relations at social level into models at individual level;
– solve conflicts if needed;
– verify correctness and consistency of models at individual level.

The remainder of the paper is structured as follows. Next (§2) we provide
an brief description of Tropos concepts and describe the basic ones that we use
for modeling security. Then, we show how Tropos concepts are mapped into
the Secure Tropos framework and vice versa (§3). Next (§4) we analyze how
social relationships are propagate between social and individual levels, and show
how this can generate conflicts. We present a formal framework for automati-
cally identifying and solving conflicts (§5). Finally, we discuss related works and
conclude the paper (§6).

2 Tropos and Secure Tropos

Tropos [1] is a development methodology, tailored to describe both the organi-
zational environment of a system and the system itself. Tropos uses the concepts
of actor, goal, soft goal, task, resource and social dependency for defining the
obligations of actors (dependees) to other actors (dependers). An actor is an

2



active entity that performs actions to achieve goals. Actors could have depen-
dencies on other actors as well as dependencies from other actors. Actors can
be decomposed into sub-units for modeling the internal structure of an actor
preserving the intentional actor abstraction provided by modeling processes in
terms of external relationships. Complex social actors can be modeled using
three types of sub-units: agents, roles, and positions. An agent is an actor with
concrete, physical manifestations, such as a human individual. The term agent
is used instead of person since it can be used to refer to human as well as ar-
tificial agents. Agents are those that have characteristics not easily transferable
to other individuals. A role is an abstract characterization of the behavior of a
social actor within a certain domain. Its characteristics are easily transferable
to other social actors. A position represents a set of roles played by an agent. A
goal represents the strategic interests of an actor. A task specifies a particular
course of action that produces a desired effect, and can be executed in order
to satisfy a goal. A resource represents a physical or an informational entity.
Finally, a dependency between two actors indicates that one actor depends on
another to accomplish a goal, execute a task, or deliver a resource. In Tropos
diagrams, actors are represented as circles; services - goals, tasks and resources
- are respectively represented as ovals, hexagons and rectangles.

Secure Tropos [5] introduces four new concepts and relationships behind
Tropos dependency: trust, delegation, provisioning, and ownership. The basic
idea of ownership is that the owner of an service has full authority concerning
access and disposition of his service. The distinction between owning (owns) and
provisioning (provides) a service makes it clear how to model situations in which,
for example, a client is the legitimate owner of his/her personal data and a Web
Service provider that stores customers’ personal data, provides the access to
her/his data. We use the relation for delegation when in the domain of analysis
there is a formal passage of authority (e.g. a signed piece of paper, a digital
credential is sent, etc.). The trust relations have their intuitive meaning among
agents. As for trust relations among roles or positions, the semantic is subtler
as it refers to trust among organizations as we shall see in the next section.

3 Refining the concept of Dependency

The new Secure Tropos concepts allow for a refinement of the dependency con-
cept. In particular, we can now show how the dependency (depends) between
two actors can be expressed in terms of trust and delegation. In order to do
that, we introduce the distinction between delegation of permission and execu-
tion. In the delegation of permission (del perm) the delegatee thinks “Now, I
have the permission to fulfill the service”, whereas in the delegation of execution
(del exec), the delegatee thinks “Now, I have to get the service fulfilled”. Fur-
ther, we want separate the concept of trust from the concept of delegation, as
we might need to model systems in which some actors must delegate permission
or execution to other actors they don’t trust. Also in this case it is convenient
to have a suitable distinction for trust in managing permission and trust in

3



G

G

G

B

B

A

A

A B

Te

D

De De

D

Te

+

=

(a) Goal Dependency

B

B

A

A

A B

D D

Dp Dp

Tp Tp

R

R

R

=

+

(b) Resource Dependency

Fig. 1. Tropos dependency in terms of Secure Tropos

managing execution. The meaning of trust of permission (trust perm) is that an
actor (truster) trusts that another actor (trustee) uses correctly the service. The
meaning of trust of execution (trust exec) is that an actor (truster) trusts that
another actor (trustee) is able to fulfill the service.

The distinction between execution and permission allows us to define a de-
pendency in terms of trust and delegation. In particular, when the dependum
is a goal or a task we have delegation and trust of execution, whereas when the
dependum is a resource we have delegation and trust of permission. In symbols:

depends(A,B, S)⇐⇒ del exec(A,B, S) ∧ trust exec(A,B, S) (1)

where S is a goal or a task, and

depends(A,B, S)⇐⇒ del perm(ID , B,A, S) ∧ trust perm(B,A, S) (2)

where S is a resource.
A graphical representation of these formulas is given, respectively, in Fig. 1(a)

and in Fig. 1(b). These diagrams use the label D for Tropos dependency and
labels De and Te (Dp and Tp), respectively for delegation of execution and
trust of execution (delegation of permission and trust of permission). Notice,
also from Fig. 1 that the same dependency is mapped into differently oriented
relations at the lower level.

Another refinement is the introduction of negative authorizations which are
needed for some scenarios. Tropos already accommodates the notion of positive
or negative contribution of goals to the fulfillment of other goals. We use negative
authorizations to help the designer in shaping the perimeter of positive trust to
avoid incautious delegation certificates that may give more powers than desired.

Suppose that an actor should not be given access to a service. In situations
where authorization administration is decentralized, an actor possessing the right
to use the service, can delegate the authorization on that service to the wrong
actor. Since many actors may have the right to use a service, it is not always
possible to enforce with certainty the constraint that a actor cannot access a
particular service. We propose an explicit distrust relationship as an approach

4



for handling this type of constraint. This is also sound from a cognitive point
of view if we follow the definition of trust given by [2]: trust is a mental state
based on a set of beliefs. We can say that if, on your own knowledge, you feel to
trust me, then you trust me. Similarly, if you feel like distrusting me, then you
distrust me. Obviously, there are various reasons of distrusting in agents such as
unskillfulness, unreliability and abuse, but these situations are not treated here.

As we have done for trust, we also distinguish between distrust of execution
(distrust exec) and distrust of permission (distrust perm). The graphical diagrams
presented in this paper use the labels Se and Sp, respectively, for distrust of
execution and distrust of permission. In the case there is no explicit trust rela-
tionship between agents, the label “?” is used.

4 Social vs Individual Trust

In Tropos, stakeholders are presented as actors who depend on each other for
goals to be achieved, tasks to be performed, and resources to be furnished.
Since the concept of actor includes those of agent, role and position, the Tropos
models involve two different levels of analysis: social and individual. In the social
level we analyze roles and positions of the organization, whereas in individual
level the focus is on single agents. In particular, at social level the structure of
organizations are defined associating to every role (or position) objectives and
responsibilities relating to the activities that such roles have to perform within
the organizations. On the other hand, at individual level, agents not only are
defined with their objectives and responsibilities, but also they are associated to
role (or position) they can play.

This role-based approach takes advantage from specifying agents into two
steps: assignment of objectives and responsibilities to role, and assignment of
agents to roles. This allows to simplify the management of requirements. For
instance, when new responsibilities are considered by the information system,
the administrator needs only to decide to which roles such responsibilities have
to be assigned. Then, all agents that play those roles inherit them. This means
that relations spread from social level to individual level. Notice that when more
agents play the same role, all instances inherit the properties associated to that
role where the term property includes any relations presented above. Another
advantage is that we can capture vested interested or conflict of interest explicitly
during requirements phase.

Tropos supports also role hierarchy by using the relation ISA (is a). Notice
that this hierarchy is different from “standard” RBAC role hierarchy [9] where
higher roles in the hierarchy are more powerful and the notion of domination
is used. Instead our approach is based on the “standard” notion of hierarchy
proposed in UML-base and Database-base approaches. Referring to the study
case presented in [13] we have, for example, that Faculty Deans, Heads of De-
partment and Central Directorate Managers are Data Processors according the
Italian Privacy legislations.

5



approve
payment

order

approve
payment

order
? ?

TeTe

Bob Alice

AccountantManager

(a) Trust of execution

approve
payment

order

approve
payment

order

? ?Bob Charlie

EmployeeSe SeManager

(b) Distrust of execution

Fig. 2. Missing (dis)trust relations at individual level

Definition 1. Let r1 and r2 be roles. We say that r1 is a specialized sub-roles
of r2 (or, equivalently, r2 is generalized super-role of r1) if is a(r1, r2). Then,
all specialized sub-roles inherit all properties of the generalized super-role.

In above scenario, Faculty Deans, Heads of Department and Central Direc-
torate Managers have all properties assigned to Data Processors.

Yet, in Tropos there is no explicit separation between the two levels, and
it is very difficult to analyze and maintain the consistency between the social
level (dependencies between roles and positions) and the individual level (depen-
dencies between agents). For simplicity, in the remainder of the paper we don’t
distinguish role and position.

4.1 Missing Requirements

When we model and analyze functional trust and security relationships, it is
possible that such requirements are given only at individual level or at social
level. We would like to have a CASE tool that automatically completes models
given at individual level from the social one when any relations are missing. Let
us see why this is needed with examples from bank policies.

Example 1. In a bank context, branch managers have the objective to guarantee
the availability and correct execution of payment orders. A bank policy states
that a payment order should be issued only when it has been submitted and
approved. Banks have also a policy stating that a branch bank manager should
trust the chief accountants who work in his branch to approve payment orders
(Fig. 2(a)). Suppose that Bob is the branch manager and Alice a new chief
accountant and they have never met before. Then, Bob should trust Alice for
approving payment orders to guarantee the availability of the service.

Example 2. Another bank policy states that a branch bank manager should
distrust normal employees to approve payment orders (Fig. 2(b)). Suppose that
Bob is the branch manager and Charlie a newly employed cashier and they
don’t know each other. Then, Bob should distrust Charlie for approving payment
orders.

6



We don’t consider the case in which the relations are missing at social level
because this level represents the structure of the organization which should be
described explicitly in the requirements. The presence of a large number of trust
relations at individual level that is not matched by a social level may be an
indicator of a missing link at social level (or of a problem in the organization
for distrust relations). On the contrary, Hannoun et al. [7] propose to detect the
inadequacy of an organization regarding the relations existing among the agents
involved in the system.

4.2 Conflicts on Trust Relations

In [5] we have only considered when trust is explicit, and we have not distin-
guished the case where there is explicit distrust and the case where no trust
relation is given. Contrarily, in this paper we take in consideration all these
three possibilities. The presence of positive and negative authorization at the
same time could generate some conflicts on trust relationships. We define a trust
conflict the situation where there are both a positive and a negative trust relation
between two actors for the same service. Next, formal definitions are given.

Definition 2. A conflict on trust of execution occurs when

∃x, y ∈ Agent ∃s ∈ Service | trust exec(x, y, s) ∧ distrust exec(x, y, s)

Definition 3. A conflict on trust of permission occurs when

∃x, y ∈ Agent ∃s ∈ Service | trust perm(x, y, s) ∧ distrust perm(x, y, s)

A trust conflict may exist, for example, since system designers wrongly put
both a (implicit) trust relation and the corresponding distrust relation.

Example 3. A manager depends on a short-term employee for a certain sensitive
task, but short-term employees are distrusted for sensitive tasks (Figure 3(a)).

When we model and analyze security requirements, it is also possible that
such requirements are specified at both individual and social levels, they could
be in contrast with each other.

Example 4. Consider again Example 1 where bank managers trust accountants
for approving payment orders, and Bob is the manager and Alice an accountant
in a bank branch. What happen if Bob has had some problems with Alice in the
past and he doesn’t trust her? This scenario is presented in Fig.3(b).

Example 5. Consider again Example 2 where bank managers distrust employees
for approving payment orders, and Bob is the manager and Charlie a employee
in a bank branch. What happen if Bob trusts Charlie for approving payment
orders? This scenario is presented in Fig. 3(c).

7



Short
Term

Employee

perform
sensitive

task

perform
sensitive

task

Se Se

DD

Manager

(a) Conflict due to implicit trust

approve
payment

order

approve
payment

order

TeTe

Bob AliceSeSe

Manager Accountant

(b) Social Trust vs Individual Distrust

approve
payment

order

approve
payment

order

Bob

EmployeeSe Se

Te Te

Manager

Charlie

(c) Social Distrust vs Individual Trust

Fig. 3. Conflicts on (dis)trust relations

4.3 Solving Trust Conflicts

Our goal is to identify a solution in order to detect and, possibly, resolve conflicts
on trust relations. To this end, we propose to use monitoring (monitoring) for
solving conflicts since there is some evidence that it is good solution to prevent
undesirable behaviors in information systems [6, 11]. Monitors rely on events and
aim at observing, analyzing and controlling the execution of the information
system in order to define its current behavior model and correct the undesirable
behaviors, as well as unauthorized accesses.

Example 6. Referring to Example 4, we believe that Bob should monitor (or
delegate this task to another actor) whether Alice does what she has to do since
the organization imposes him to trust, but it is not his own choice.

4.4 Conflict of Interest

An agent can play (play) several roles. We assume that an agent is explicitly
assigned to a given roles and this assignment gives him the rights and respon-
sibilities assigned to that role. Conflicts of interest refer to scenarios where an
individual occupies dual roles which should not be performed simultaneously.
Because of the risk for abuse, performing both roles at the same time is con-
sidered to be inappropriate. In other words, the conflict of interest concerns the
potential advantage an agent could take of his position.

8



Definition 4. Let r1 and r2 be two roles that an agent cannot play at the same
time. A conflict of interest occurs when

∃x ∈ Agent | play(x, r1) ∧ play(x, r2)

Example 7. In a bank context, payment orders should be issued only when they
have been submitted and approved. A payment order should be submitted by
an employee and approved by a different accountant. This means that an agent
cannot play at the same time the role accountant and employee.

:- play(X, accountant) ∧ play(X, employee) ∧ agent(X)

Therefore, if we assume that the set of employees is disjoint from the set of
managers this kind of conflicts doesn’t exist.

The above notion of conflict of interest could be refined since it doesn’t show
why conflicts exist. Moreover, the definition we have done above could be too
strong since some time a conflict could be only for some specific instances.

Example 8. The scenario presented in Example 7 is far from real life: accountant
can usually execute employee tasks, but they cannot approve their own orders.

This example also reveals that, before verifying the consistency of the indi-
vidual level, we should be sure on the consistency of the organization structure:
it is also possible that a conflict arises by considering just the social level.

Further, some laws issued, for example, by Antitrust Division3 or some enter-
prises’ policies can impose that the same person must not own (be entitled) or
provide some certain services at the same time. An agent could own or provide
some service himself and could own or provide other services since he plays roles
that owns or is able to provide such services. Now, we refine the Definition 4 as
follows:

Definition 5. Let s1 and s2 be two services that an actor cannot own at the
same time. An ownership conflict occurs when

∃x ∈ Actor | owns(x, s1) ∧ owns(x, s2)

Definition 6. Let s1 and s2 be two services that an actor cannot provide at the
same time. A provisioning conflict occurs when

∃x ∈ Actor | provides(x, s1) ∧ provides(x, s2)

In this paper we define conflicts only on primitive properties, but similar
definitions can be given also for the derived ones presented in [5].

Example 9. An instance of the bank policy presented in Example 8 can be for-
malized with the following integrity constraints.

:- provides(A, submit order 25 ) ∧ provides(A, approve order 25 )

3 http://www.usdoj.gov/atr/

9



Tropos Primitives Secure Tropos Primitives

goal(Goal :g) provides(Actor :a, Service :s)
task(Task :t) wants(Actor :a, Service :s)
resource(Resource :r) owns(Actor :a, Service :s)

agent(Agent :a) del exec(Actor :a, Actor :b, Service :s)
position(Position :a) del perm(id :idC, Actor :a, Actor :b, Service :s)
role(Role :a) trust exec(Actor :a, Actor :b, Service :s)
play(Agent :a, Role :b) trust perm(Actor :a, Actor :b, Service :s)
is a(Role :a, Role :b) distrust exec(Actor :a, Actor :b, Service :s)
depends(Actor :a, Actor :b, Service :s) distrust perm(Actor :a, Actor :b, Service :s)

monitoring(Actor :a, Actor :b, Service :s)
trust mon(Actor :a, Actor :b, Service :s)

Table 1. Predicates

5 Formalization

We distinguish between two main types of predicates: primitive and derived.
These correspond to respectively extensional and intensional predicates in Dat-
alog. Extensional predicates are predicates set directly with the help of ground
facts and are the ones corresponding the edge and circles drawn by the re-
quirements engineer on the CASE tool. Intensional predicates are implicitly de-
termined with the help of rules. We start by presenting the set of extensional
predicates (Table 1) and refer to [5] for all rules related to previously introduced
concepts. Here we only present rules for the new concepts.

The left part of the table contains the primitives used for modeling Tropos
framework. The unary predicates goal, task and resource are used respectively for
identifying goals, tasks and resource. Note that type Goal, Task and Resource
are sub-types of Service. We shall use letters S, G, T and R possibly with
indices as metavariables ranging over the terms, respectively, of type Service,
Goal, Task and Resource. The intuition is that agent(a) holds if instance a is an
agent, position(a) holds if instance a is a position, and role(a) holds if instance
a is a role. Note that type Agent, Position and Role are sub-types of Actor.
We shall use letters X, Y and Z as metavariables ranging over the terms of type
Actor, A, B and C as metavariables ranging over the terms of type Agent, and
T , Q and V as metavariables ranging over the terms of type Role. Metalevel
variables are used as a syntactic sugar to avoid to write the predicates that type
variables. For example, when the metavariable G occurs in a rule, the predicate
goal(G) should be put in the body of the rule. The predicate play(a, b) holds if
agent a is an instance of role b. The intuition is that is a(a, b) holds if role a is
a specialization of role b. The predicate depends(a, b, s) holds if actor a depends
from actor b for service s.

In the right part we have the additional predicates introduced by the Secure
Tropos framework. When an actor has the capabilities to fulfill a service, he
provides it. The intuition is that provides(a, s) holds if actor a provides service s.

10



From Tropos to Secure Tropos

ST1: trust exec(X,Y,G) :- depends(X,Y,G)
ST2: del exec(X,Y,G) :- depends(X,Y,G)
ST3: trust perm(Y,X,R) :- depends(X,Y,R)
ST4: del perm(ID , Y,X,R) :- depends(X,Y,R)

From Secure Tropos to Tropos

ST5: depends(X,Y,G) :- trust exec(X,Y,G) ∧ del exec(X,Y,G) ∧
not distrust exec(X,Y,G)

ST6: depends(X,Y,R) :- trust perm(Y,X,R) ∧ del perm(ID , Y,X,R) ∧
not distrust perm(Y,X,R)

Table 2. Axioms for mapping Tropos into Secure Tropos and vive versa

The predicate wants(a, s) holds if actor a has the objective of fulfilling service s.
The predicate owns(a, s) holds if actor a owns service s. The owner of a service
has full authority concerning access and usage of his services, and he can also
delegate this authority to other actors. The predicate trust exec(a, b, s) (resp.
trust perm(a, b, s)) holds is actor a trusts that actor b is able to fulfill (resp.
uses correctly) service s where a is called truster and b trustee. The predicate
distrust exec(a, b, s) (resp. distrust perm(a, b, s)) holds is actor a distrusts actor
b for service s. The intuition is that monitoring(a, b, s) holds if actor a monitors
actor b on service s. The intuition is that trust mon(a, b, s) holds if actor a trust
actor b for monitoring service s. The predicate del perm(idC, a, b, s) holds if
actor a delegates to actor b the permission on service s. The actor a is called
the delegater ; the actor b is called the delegatee; idC is the certificate identifier.
The predicate del exec(a, b, s) holds if actor a delegates to actor b the execution
of service s.

Once the requirements engineer has drawn up the model (i.e. the extensional
predicates) we are ready for the formal analysis. To derive the right conclusions
from an intuitive model, we need to complete the model using axioms for the
intensional predicates. Axioms are rules of the form L:- L1 ∧ ... ∧ Ln where L,
called head, is a positive literal and L1, ..., Ln are literals and they are called
body. Intuitively, if L1, ..., Ln are true in the model then L must be true in
the model. We use the notation {L}:-L1, . . . , Ln to indicate that if L1, . . . , Ln
are true then L may be true. Essentially, L will be added to the model only if
some constraints demand its inclusion. This construction can be captured with a
simple encoding in logic programs. Notice also that when a relation uses variables
of type Actor the relation can apply to both social and individual levels, but
separately.

In Table 2 there are the axioms to map Tropos dependency into Secure Tropos
framework and vice versa. Notice that ST1-2 and ST5 have also to be repeated
for the case where the dependum is a task.

Table 3 defines the intensional versions, entrust exec and disentrust exec
(entrust perm and disentrust perm) of the extensional predicates trust exec and
distrust exec (trust perm and distrust perm) that are used to build (dis)trust

11



Trust of execution

T1: disentrust exec(X,Y, S) :- distrust exec(X,Y, S)
T2: disentrust exec(X,Z, S) :- entrust exec(X,Y, S) ∧ distrust exec(Y,Z, S) ∧

not disentrust exec(X,Y, S)
T3: entrust exec(X,Y, S) :- trust exec(X,Y, S) ∧ not disentrust exec(X,Y, S)
T4: entrust exec(X,Z, S) :- entrust exec(X,Y, S) ∧ entrust exec(Y,Z, S) ∧

not disentrust exec(X,Z, S)

Trust of permission

T5: disentrust perm(X,Y, S) :- distrust perm(X,Y, S)
T6: disentrust perm(X,Z, S) :- entrust perm(X,Y, S) ∧ distrust perm(Y,Z, S) ∧

not disentrust perm(X,Y, S)
T7: entrust perm(X,Y, S) :- trust perm(X,Y, S) ∧ not disentrust perm(A,B, S)
T8: entrust perm(X,Z, S) :- entrust perm(X,Y, S) ∧ entrust perm(Y,Z, S) ∧

not disentrust perm(X,Z, S)

Confident of monitoring

T9: confident mon(X,Y, S) :- trust mon(X,Z, S) ∧monitoring(Z, Y, S)

Table 3. Axioms on Trust and Distrust

chains by propagating (dis)trust of execution (permission) relations. The in-
tuitive meaning of rules T1-2 (and T5-6 for permission) is presented in the
following examples.

Example 10. A branch manager depends on accountants for performing sensitive
tasks. This implies that the manager trusts accountants for it. On the other
hand, accountants distrust short-term employees for this goal. Therefore, the
manager distrusts short-term employees. This explains also the conflict shown
in Example 3.

Example 11. A bank policy states that the bank general manager should trust
branch managers for correctly managing branch cash desks. Another branch
policy states that the branch manager have not to permit (distrust of permission)
short-term employees for managing branch cash desks. Therefore, the general
manager distrusts short-term employees.

T3-4 (respectively T7-8) rules are used to build trust chains by propagating
trust of execution (permission) relations. T9 introduces the intensional predicate
confident mon(a, b, s): actor a is confident that there exists someone that moni-
tors actor b for service s. Also this set of axions applies to both social level and
individual level, independently, and so A, B and C have to be typed as roles for
the social level and as agents for the individual level.

Table 4 presents the axioms for role hierarchy and for mapping relations from
social level to individual level. The predicate specialize is the intensional version
of is a, whereas instance is intensional version of play. Axioms Ax1-12 have to
be repeated replacing the predicate instance with specialize and predicate agent
with role for completing social level with respect to role hierarchy.

12



Role Hierarchy

RH1: specialize(T,Q) :- is a(T,Q)
RH2: specialize(T,Q) :- specialize(T, V ) ∧ is a(V,Q)
RH3: instance(A, T ) :- play(A, T )
RH4: instance(A, T ) :- instance(A,Q) ∧ specialize(Q,T )

From social level to individual level

Ax1: provides(A,S) :- provides(T, S) ∧ instance(A, T )
Ax2: wants(A,S) :- wants(T, S) ∧ instance(A, T )
Ax3: owns(A,S) :- owns(T, S) ∧ instance(A, T )
Ax4: trust exec(A,B, S) :- trust exec(T,Q, S) ∧ instance(A, T ) ∧ instance(B,Q)
Ax5: trust perm(A,B, S) :- trust perm(T,Q, S) ∧ instance(A, T ) ∧ instance(B,Q)
Ax6: distrust exec(A,B, S) :- distrust exec(T,Q, S)∧instance(A, T )∧instance(B,Q)
Ax7: distrust perm(A,B, S) :- distrust perm(T,Q, S) ∧ instance(A, T ) ∧

instance(B,Q)
Ax8: del exec(A,B, S) :- del exec(T,Q, S) ∧ instance(A, T ) ∧ instance(B,Q)
Ax9: del perm(ID , A,B, S) :- del perm(ID , T,Q, S)∧instance(A, T )∧instance(B,Q)
Ax10: monitoring(A,B, S) :- monitoring(T,Q, S) ∧ instance(A, T ) ∧ instance(B,Q)
Ax11: trust mon(A,B, S) :- trust mon(T,Q, S) ∧ instance(A, T ) ∧ instance(B,Q)

Ax12: depends(A,B, S) :- depends(T,Q, S) ∧ instance(A, T ) ∧ instance(B,Q)

Table 4. Axioms for role hierarchy and for mapping social level into individual level

Pro1: :- entrust exec(X,Y, S) ∧ disentrust exec(X,Y, S)
Pro2: :- entrust perm(X,Y, S) ∧ disentrust perm(X,Y, S)

Pro3: :- entrust exec(A,B, S)∧disentrust exec(T,Q, S)∧instance(A, T )∧instance(B,Q)
Pro4: :- entrust perm(A,B, S) ∧ disentrust perm(T,Q, S) ∧ instance(A, T ) ∧

instance(B,Q)
Pro5: :- disentrust exec(A,B, S)∧entrust exec(T,Q, S)∧instance(A, T )∧instance(B,Q)
Pro6: :- disentrust perm(A,B, S) ∧ entrust perm(T,Q, S) ∧ instance(A, T ) ∧

instance(B,Q)

Table 5. Properties for identifying conflicts

Properties are different from axioms: they are desirable design features, but
may not be true (or too costly to implement) of the particular design at hand.
Table 5 presents the properties used to identifying conflicts that occur when
both a trust and a distrust relations exist among two actors for the same service.
Pro1-2 are used to identify generic conflicts and correspond to Definition 2 and
3. These properties apply to both social level and individual level, independently
and so A and B have to be typed as role for the social level and as agents for the
individual level. Pro1-2 can be refined in order to identify conflicts of the form
of Fig. 3(c) (Pro3-4) and Fig. 3(b) (Pro5-6).

Table 6 formalizes the proposal for solving conflicts when there is a trust
relation at social level and a distrust relation at individual level.

To accommodate C1-2 in our framework we have to modify axioms Ax6-7 in
Table 4. The new version of these axioms is given in Table 7.

13



C1: {monitoring(M,B, S)}:- disentrust exec(A,B, S) ∧ entrust exec(T,Q, S) ∧
instance(A, T ) ∧ instance(B,Q) ∧ trust mon(A,M,S)

C2: {monitoring(M,B, S)}:- disentrust perm(A,B, S) ∧ entrust perm(T,Q, S) ∧
instance(A, T ) ∧ instance(B,Q) ∧ trust mon(A,M,S)

Table 6. Axioms for solving conflicts

Ax6′: distrust exec(A,B, S) :- distrust exec(T,Q, S)∧ instance(A, T )∧ instance(B,Q)∧
not confident mon(A,B, S)

Ax7′: distrust perm(A,B, S) :- distrust perm(T,Q, S)∧instance(A, T )∧instance(B,Q)∧
not confident mon(A,B, S)

Table 7. Axioms in order to support monitoring

6 Related Work and Conclusions

Computer Security is one of today’s hot topic and the need for conceptual models
of security features have brought up a number of proposals especially in UML
community [4, 10, 12, 14, 18, 16].

Lodderstedt et al. [12] present a modeling language, based on UML, called
SecureUML. Their approach is focused on modeling access control policies and
how these (policies) can be integrated into a model-driven software development
process. To address security concerns during software design, Doan et al. [4] in-
corporate Mandatory Access Control (MAC) into UML. Ray et al. [16] propose
to model RBAC as a pattern by using UML diagram template. Further, they
represent constraints on RBAC model through the Object Constraint Language.
Similarly, Jürjens [10] proposes an extension of UML to accommodate security
requirements by using Abstract State Machine model and adding several stereo-
types to accommodate its proposal towards security verification. McDermott and
Fox adapt use cases [14] to capture and analyze security requirements, and they
call the adaption an abuse case model. Sindre and Opdahl define the concept of
a misuse case [18], the inverse of a use case, which describes a function that the
system should not allow. CORAS [3] is a model-based risk assessment method
for security-critical systems. It is essentially a risk management process based
on UML and aims to adapt, refine, extend and combine existing methods for
risk analysis.

We have presented here an enhanced trust and security requirements engi-
neering methodology that is able to capture trust conflicts at social and indi-
vidual level. Our framework is supported by a CASE tool called STTool.4 A
screenshot is shown in Fig. 4. This tool is implemented in JAVA and provides a
user friendly interface within the DLV system to the requirements engineer for
the verification of the correctness and consistency of trust and security require-
ments in the organization.

4 http://sesa.dit.unitn.it/sttool/

14



Fig. 4. STTool

References

1. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. TROPOS:
An Agent-Oriented Software Development Methodology. JAAMAS, 8(3):203–236,
2004.

2. C. Castelfranchi and R. Falcone. Principles of trust for MAS: Cognitive anatomy,
social importance and quantification. In Proc. of ICMAS’98, pages 72–79. IEEE
Press, 1998.

3. F. den Braber, T. Dimitrakos, B. A. Gran, M. S. Lund, K. Stølen, and J. Ø.
Aagedal. The CORAS methodology: model-based risk assessment using UML and
UP. In UML and the unified process, pages 332–357. Idea Group Publishing, 2003.

4. T. Doan, S. Demurjian, T. C. Ting, and A. Ketterl. MAC and UML for secure
software design. In Proc. of FMSE’04, pages 75–85. ACM Press, 2004.

5. P. Giorgini, F. Massacci, J. Mylopoulous, and N. Zannone. Requirements Engi-
neering meets Trust Management: Model, Methodology, and Reasoning. In Proc.
of iTrust’04, LNCS 2995, pages 176–190. Springer-Verlag, 2004.

6. Z. Guessoum, M. Ziane, and N. Faci. Monitoring and Organizational-Level Adap-
tation of Multi-Agent Systems. In Proc. of AAMAS’04, pages 514–521. ACM Press,
2004.

7. M. Hannoun, J. S. Sichman, O. Boissier, and C. Sayettat. Dependence Relations
between Roles in a Multi-Agent System: Towards the Detection of Inconsistencies
in Organization. In Proc. of 1st. Int. Workshop on Multi-Agent Based Simulation,
LNCS 1534, pages 169–182. Springer-Verlag, 1998.

15



8. D. Huynh, N. R. Jennings, and N. R. Shadbolt. Developing an Integrated Trust and
Reputation Model for Open Multi-Agent Systems. In Proc. of 7th Int. Workshop
on Trust in Agent Societies, pages 65–74, 2004.

9. S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian. Flexible support
for multiple access control policies. TODS, 26(2):214–260, 2001.

10. J. Jürjens. Secure Systems Development with UML. Springer-Verlag, 2004.
11. G. A. Kaminka, D. V. Pynadath, and M. Tambe. Monitoring Teams by Overhear-

ing: A Multi-Agent Plan-Recognition Approach. JAIR, 17:83–135, 2002.
12. T. Lodderstedt, D. Basin, and J. Doser. SecureUML: A UML-Based Modeling

Language for Model-Driven Security. In Proc. of UML’02, LNCS 2460, pages
426–441. Springer-Verlag, 2002.

13. F. Massacci, M. Prest, and N. Zannone. Using a Security Requirements Engineer-
ing Methodology in Practice: The compliance with the Italian Data Protection
Legislation. Comp. Standards & Interfaces, 2005. To Appear. An extended version
is available as Technical report DIT-04-103 at eprints.biblio.unitn.it.

14. J. McDermott and C. Fox. Using Abuse Case Models for Security Requirements
Analysis. In Proc. of ACSAC’99, pages 55–66. IEEE Press, 1999.

15. L. Ponemon. What Keeps Security Professionals Up At Night?, April 2003. URL:
http://www.darwinmag.com/read/040103/threats.html.

16. I. Ray, N. Li, R. France, and D.-K. Kim. Using UML to visualize role-based access
control constraints. In Proc. of SACMAT’04, pages 115–124. ACM Press, 2004.

17. J. S. Sichman and R. Conte. On personal and role mental attitudes: A preliminary
dependence-based analysis. In Proc. of SBIA’98, LNCS 1515, pages 1–10. Springer-
Verlag, 1998.

18. G. Sindre and A. L. Opdahl. Eliciting Security Requirements by Misuse Cases. In
Proc. of TOOLS Pacific 2000, pages 120 –131. IEEE Press, 2000.

19. A. van Lamsweerde, S. Brohez, R. De Landtsheer, and D. Janssens. From Sys-
tem Goals to Intruder Anti-Goals: Attack Generation and Resolution for Security
Requirements Engineering. In Proc. of RHAS’03, pages 49–56, 2003.

16


