Interactive Credential Negotiation for Stateful
Business Processes*

Hristo Koshutanski and Fabio Massacci

Dip. di Informatica e Telecomunicazioni - Univ. di Trento
via Sommarive 14 - 38050 Povo di Trento (ITALY)
{hristo, massacci}@dit.unitn.it

Abstract. Business Processes for Web Services are the new paradigm
for lightweight enterprise integration. They cross organizational bound-
aries, are provided by entities that see each other just as business part-
ners, and require access control mechanisms based on trust management.
Stateful Business Processes, enforcing separation of duties or service lim-
itations based on past or current usage, pose additional research chal-
lenges. Clients, which may not know the right set of credentials to supply
to each partner, may end up in dead-ends and servers should help them
find out what must be revoked and what missing is that grant access to
a particular resource.

We propose a logical framework and an interactive algorithm based on
negotiation of credentials for access control that works for Stateful Busi-
ness Processes. We show that our algorithm is sound (no grant is given
to unauthorized clients), complete (authorized clients get grant) and re-
sistant against DoS attempt.

1 Introduction

Business Processes (BPs) for Web Services (WS) are the new buzzword for e-
commerce integration. BPs allow for a lightweight integration of partners’ ser-
vices and the establishment of virtual enterprises on the Web. To support this
effort a number of standards have emerged: SOAP and WSDL for basic func-
tionalities, BPEL4WS and ebXML for complex business processes.

Business Processes can be seen as workflows distributed among independent
partners where all communication is channeled by the invocation of web services.
Since each ”task” of the workflow is offered as a web service that can be activated
by anyone credentials must be used to enforce access control.

In this paper we discuss our system for reasoning about access control for
Stateful BPs for WS. The basic intuition is that partners, offering web services
in a BP, do not know a priori what credentials clients may need to present nor
clients know exactly which services they want, as the BP may take different

* This work is partially funded by the IST programme of the EU Commission FET
under the IST-2001-37004 WASP project and by the FIRB programme of MIUR
under the RBNE0195K5 ASTRO Project and RBAUO1P5SS Project.

paths. So, we need an interactive process in which a client starts a business
process and partners evaluate client’s current credentials to determine whether
they are sufficient to unlock a resource or something is missing. If missing is
found then they communicate it back to the client which, in turn, may decline
some of the requested credentials and a new path must be sought.

If Business Processes are stateless this can be accomplished using either trust
negotiation by Yu et al. [1], Bonatti and Samarati’s framework for access to Web
Services [2] or our own framework for interactive access control [3] with various
degree of automation, flexibility and restriction on policies. For example Yu et
al. reasures monotone policies.

If the access control to a BP is stateful (i.e. access decision can change de-
pending on past interactions or past presented credentials) this is no longer
possible. For example separation of duties means that we cannot escalate priv-
ileges by supplying more credentials. Past requests or services may deny access
to future services as in Bertino et al. [4] centralized access control model for
workflows.

So, we need to find a way for BP partners to find a solution assuming they
only know their policies. Further, it does not make sense for a BP to ask all
potentially useful credentials (too demanding and privacy intruding for clients)
nor such option is practical, considering that partners may prefer to ask for some
credentials directly the clients rather than making them publicity available.

1.1 Owur Contribution

In this paper we give an algorithm for full-fledged access control for stateful BP
and show that it is correct, complete and resistant against malicious clients.
The intuition behind an interactive access control algorithm is the following.

— Initially a client submits a set of credentials and a service request.

— Then the algorithm checks whether the request is granted by the access
policy according to the client’s set of credentials.

— If the check fails the algorithm computes all credentials disclosable from the
disclosure policy according to the presented credentials.

— After that, using abductive reasoning, the algorithm finds a (minimal) solu-
tion set of missing credentials that unlocks the desired resource and preserves
consistency.

— If such a set cannot be found, the algorithm performs a recovery step in which
it runs the abductive reasoning again to find a (minimal) set of excessing
credentials that ban the client to get a solution for the resource.

— Once a solution (missing or excessing credentials) is found it is communicated
back to the client so that he can provide the missing credentials and revoke
the excessing ones.

We note that in contrast to intra-enterprise workflow systems [4], a partner
offering a service has no way to assign to a client the right set of credentials
which would be consisted with his future requests (because the partner cannot

Role: R; > Role: R; when role Role: R; dominates role Role: R;.

Role: R; >senices Role: R; when for service Service: S, role Role: R; dominates role Role: R;.

assign (P, Service: S) when an access to the service Service: S is granted to P. Where P can be either
a Role: R or User:U.

(a) Predicates for assignments to Roles and Services

declaration (User:U) it is a statement by the User:U for its identity.
credential (User: U, Role: R) when User: U has a credential activating Role: R.
credentialTask (User: U, Service: S) when User: U has the right to access Service: S.

(b) Predicates for Credentials

running (P, Service: S, Number: N) when the Number: N-th activation of Service: S is executed by P.

abort (P, Service: S, Number: N) if the Number: N activation of Service: S within a workflow aborts.

success (P, Service: S, Number: N) if the Number : N-th activation of Service : S within a workflow
successfully executes.

grant (P, Service: S, Number: N) if the Number: N request of Service: S has been granted

deny (P, Service: S, Number: N) if the Number: N-th request of Service: S has been denied.

(b) Predicates for System’s History and State

Fig. 1. Predicates used in the model

assign to or prohibit the client future tasks). So, we must have some roll-back
procedure by which, if the user has sent “wrong” credentials, he can revoke them.
Following is a short introduction to the basic framework and reasoning ser-
vices. Section 3 introduces the interactive access control algorithm for stateful
BP. Next, Section 4 extends the interactive algorithm to cope with malicious
clients and shows that the extended version is resistant to Denial of Service at-
tacks. Theoretical part of the stateful framework together with the theorems for
soundness and completeness is presented in Section 5. Then, Section 6 introduces
the global management and initialization of session profiles in the framework.
Finally, Section 7 looks through the related work and concludes the paper.

2 Basic Framework

This section shortly introduces the basic model in our framework and we refer
the reader to [3] for more details. The formal model is based on normal logic
programs under the stable model semantics [5]. We have predicates for requests,
credentials, assignments of users to roles and of roles to services, see Figure 1.
They are self explanatory, except for role dominance: a role dominates another
if it has more privileges. We have constants for user’s identifiers, denoted by
User: U, for roles, denoted by Role: R, and one for services, denoted by Service:S.
Policies are written as normal logic programs. These are sets of rules:

A« Bi,...,Byp, notCy,..., notCy, (1)

where A, B; and C; are (possibly ground) predicates among those shown in
Figure 1. A is called the head of the rule, each B; is called a positive literal and

each not Cj is a negative literal, whereas the conjunction of the B; and not C}
is called the body of the rule. If the body is empty the rule is called a fact. In
our framework, we also need constraints that are rules with an empty head.

<—Bl,...,Bn7 notCl,..., notCm (2)

The intuition is to interpret the rules of a program P as constraints on a solution
set S (a set of ground atoms) for the program itself. So, if S is a set of atoms,
rule (1) is a constraint on S stating that if all B; are in S and none of C; are
in it, then A must be in S. A constraint (2) is used to rule out from the set
of acceptable models situations in which B; are true and all C; are false (those
situations are not acceptable).

Definition 1 (Logical Consequence and Consistency). We use the symbol
P = L, where P is a policy and L is either a credential or a service request, to
specify that L is a logical consequence of a policy P. P is consistent (P [~ 1) if
there is a model for P.

This reasoning service is used in most logical formalizations [6]: if the request r
is a consequence of the policy (P) and the credentials (C) (i.e. PUC =), then
access is granted otherwise it is denied.

A number of works have deemed such blunt denials unsatisfactory and there-
fore it has been proposed by Bonatti and Samarati [2] and Yu et al. [1] to send
back to the client some of the rules that are necessary to gain additional access.
Figure 2 shows the essence of the approaches. In their work it is revised to allow
for the flow of rules and information to users.

1. verify that the request is a logical consequence of the credentials, namely
PUCET,

2. if the check succeeds then grant access else
(a) select some rule r «— p € PartialEvaluation(P UC),
(b) if r exists then send the rule back to the client else deny access.

Fig. 2. Disclosable Access Control

The systems proposed in [2, 1] are flat, i.e. in p the client will find all missing
credentials to continue the process until r is granted. In many cases this is
neither sufficient nor desirable. If the policy is not flat, it has constraints on the
credentials that can be presented at the same time (e.g., separation of duties)
or a more complex role structure is used, these systems would not be complete.

Here, a partner must be able to infer the causes of a failed request and to ask
a client the missing credentials. The corresponding logical process is no longer
deduction but it is abduction. So we must have co-existence of deduction (for
deciding access and disclosure of information) and abduction (for explaining
failed requests).

Definition 2 (Abduction). The abductive solution over a policy P, a set of
predicates (credentials) H (with a partial order < over subsets of H) and a
ground literal L is a set of ground atoms E such that: (i) E C H, (ii) PUE E L,
(iti)) PUE [~ L, (iv) any set E' < E does not satisfy all conditions above.

Traditional p.o.s are subset containment or set cardinality.
How we bootstrap from the two basic reasoning services a comprehensive
interactive access control algorithm for BPs is the subject of the next section.

3 Interactive Access Control for Stateful Systems

Stateful systems are systems where the status of the current state depends on the
status of the system in past conditions, i.e. access decision can change depending
on past interactions or past presented credentials.

In our framework each partner has a security policy for access control P4
and a security policy for disclosure control Pp. The policy for access control is
used for making decision about usage of all web services offered by a partner.
The policy for disclosure control is used to decide credentials whose need can be
potentially disclosed to a client.

To execute a service of the fragment of a partner, the user will submit a set
of presented credentials C,, a set of revoked credentials C, and a service request
r. We assume that C, and C, are disjoint. We also need to keep a memory of past
credentials submitted by a user. This is the role of Cp, the set of active credentials
that have been presented by the client in past requests to other services within
the domain of a partner.

In many workflow authorization schemes, the policy alone is not sufficient
to make an access control decision and thus we need to identify a history of
ezecution H of services under the control of a partner. It keeps track on what
has been done by the system and what is the current status of it. For instance a
branch manager of a bank clearing a cheque cannot be the same member of staff
who has emitted the cheque [4, pag.67]. If we had no memory of past credentials
then it would be impossible to enforce any security policy for separation of duties
on the application workflow.

Once a client makes a service request, the authorization mechanism starts a
session in which the client iterates with the system until a final decision of grant
or deny is taken. In the same session context, we keep a set of declined credentials
Cnr, a set of missing credentials Caq and a set of excessing credentials Cg. The set
Cnr consists of credentials that the client has declined to present to the system
during an authorization session. The sets Caq and Cg keep information from the
output of the last interaction. Once the session is started, the algorithm loads
the policies for access and disclosure control P4 and Pp together with the two
sets: the history of execution H and the client’s active credentials Cp.

Our interactive access control solution for stateful services and applications
is shown in Figure 3. The logical explanation of the algorithm is the following.
The algorithm’s input consists of client’s sets of currently presented credentials
C,, revoked ones C, and the service request r. When a client requests a specific

Global vars: Car, Cm, Ce; Initially Cyr = Caq = Cs = 0;
Internal input: Pa, Pp, H, Cp;

Input: Cp, C, and r;

Output: grant/deny/<ask(Ca),revoke(Ce)>;

update Cp = (Cp \ Cr) UCy,
update Cxr = Ca U (Cam \ Cp), where Caq is from the last interaction,
Set up Cm = Ce = 0,
verify whether the request r is a security consequence of the policy access P4 and
presented credentials Cp, namely PAUHUCp Er and PAUHUCH £ L,
5. if the check succeeds then return grant else
(a) compute the set of disclosable credentials Cp = {c | Pp UCp = c}\ (CAxUCp),
(b) use abduction to find a minimal set of missing credentials Caq C Cp such that
both PAUHUCp UCm Er and PAUHUCPUCA = L,
(c) if a set Caq exists then return <ask(Caq),revoke(Ce)> and iterate else
i. for every ¢ € Cp introduce a new credential ¢ in the language,
ii. use abduction to find a minimal set of missing credentials Cypm C
{¢| ¢ € Cp} UCp such that
— PaUHU{c+<noté. |ceCptUCm ET,
— PAaUHU{c—not é.|ce€CptUCnm £ L,
iii. if no set Caq exists then return deny else
A. compute Ce ={c | é € Cam} and Capq = Caq N Cop,
B. return <ask(Cum),revoke(Ce)> and iterate.

Ll

Fig. 3. Interactive Access Control Algorithm for Stateful Services

service the authorization mechanism creates a new session and initializes to
empty set the variables Car, Caq and Cg.

Then, the set of active credentials Cp is updated by removing the revoked
ones C, from it and then adding the newly presented credentials C, (ref. step 1).
The declined credentials Cxr are updated by credentials the client was asked in
the previous interaction minus the ones that he has currently presented. Step 3
prepares the two sets Caq and Cg for the interaction output.

Next, the algorithm checks whether the request r is granted by P4 and Cp
(step 4). If the check fails then in step 5a the algorithm computes all creden-
tials disclosable from Pp and Cp and from the resulting set removes all already
declined and presented credentials. In this way we avoid dead loops of asking
something already declined or presented. Step 5b computes (using abduction rea-
soning) a (minimal) solution for r. Up to this point the algorithm is essentially
our interactive access control algorithm for stateless WS described in [3].

If in step 5¢ no Caq was found then we come to the part of the algorithm
devoted to stateful systems. The motivation here is that if a solution for r cannot
be found in Cp it means that

— either the client does not have enough privileges to get the disclosure of more
missing credentials so that the abduction can find a solution

— or in the client’s set of credentials Cp there is something “wrong” that bans
the client to get any solution, i.e. it makes P4 inconsistent.

In the first case there is nothing you can do and we should just quietly deny
access. In the second case we could have a possibility for recovery.

So, following the second case, in steps 5(c)i and 5(c)ii, we use abduction over
the set of disclosable and active credentials Cp U Cp searching for a possible
solution Caq that unlocks r and preserves consistency in P4 U H. If a solution
for r is found it clearly indicates that this solution could not be found in step 5b
because of the existence of “wrong” credentials in Cp that makes P 4 inconsistent.
In this case we compute the set of excessing credentials Cg as the set difference
Cp \ Cr. Here we separate the definitely good (consistent) solution Caq from the
rest in Cp.

Notice that steps 5(c)i—5(c)iii could be simplified by simply setting Ce = Cp
and Cyq = 0, i.e. asking the client to revoke everything and restart from scratch.
We believe that this is hardly practical. We want to have a more precise control
on the revokable credentials i.e. of being able to compute a minimal set of revok-
able and missing credentials. To do so we introduce for each credential ¢ € Cp a
new symbol for it ¢ in the model, step 5(c)i in Figure 3. Then after obtaining the
set of new symbols {¢ | ¢ € Cp} we generate a set of rules {c < not ¢. | ¢ € Cp}.
The trick here is that negating all credentials in Cp using the newly introduced
symbols and running abduction reasoning over the set union of {¢ | ¢ € Cp} UCp
(step 5(c)ii) allows us to find a minimal solution Cpaq for r that itself indicates
what should be revoked and what should be asked from the client.

Let us consider the set {c < not é. | ¢ € Cp}. Since we attach this set to
PAUHUCp so it follows that all credentials in Cp will be deduced again except
those that the corresponding new symbol appears in Cpq. So, all new-symbol
credentials appearing in Caq, computed in step 7(c)ii, will be treated such that
the absence of their respective credentials in Cp allows the abduction reasoning
to find a solution set for 7.

Remark 1 (Multiple Activations and Revocations of Credentials). In an interac-
tive access control process the algorithm may ask the client to present credentials
that he has revoked (was explicitly asked for that) in previous interactions or
ask the client to revoke credentials that the same has activated.

Since we do not know what solution a client has for a particular resource so in the
presence of alternatives in the access policy the system may choose the “wrong”
one' such that later on when the right alternative is chosen it may require the
revocation/activation of credentials that were already activated/revoked by the
client in the interactions with the“wrong” one.

Ezxample 1. Abstracting from a specific meaning let us have the following sce-
nario. A client with a set of available credentials {C4,Cp, Cc} wants to access a
service . The client’s set of active credentials (already presented to the system)

! Here we call “wrong” alternative a solution set that the client does not have it.

is Cp = {C¢} and history H = (). The policies for access and disclosure control
are shown below.

PA 7“<—CA,CB. P’D CA<—.

7“<—Cc,CD. CB<—.
— Ca,Co. Co +—.
Cp .

Now, let suppose that the client initially requests service r with set of presented
credentials C,, = {Ca}. According to the algorithm in Figure 3 the check in step
4 will fail, then in step 5b abduction will not find any solution because the policy
is inconsistent with the client’s set of credentials and so the algorithm will reach
step 5(c)ii. The output of this step, considering the minimality criterion subset
containment, is:

— Abduction output: {CA, Cp }, algorithm result: ask({Cp}), revoke({Ca4})
— Abduction output: {C’c, C’B}, algorithm result: ask({Cg}), revoke({Cc})

Since we do not know what solution the client has so we must choose one of the
two outcomes listed above.

If we are lucky and choose the solution <ask({Cgp}), revoke({Cc})> then
on the next interaction since the client has in possession {C4, Cp, Cc} the same
presents Cp, revokes Cc and gets grant r in step 5 in the next interaction.

In the other case, if we choose the solution <ask({Cp}), revoke({C4})>
then on the next interaction the client will revoke C'4 but will decline to present
Cp, simply because he does not have it. Then the check in step 4 will not succeed
because Cp = {Cc} does not contain enough credentials to unlock r. Following
that, the abduction reasoning is step 5b will not find a solution because in Cp
there is a credentials C¢c that is inconsistent with the only solution available in
Cp ={C4,Cg}.

Running again abduction reasoning with minimality according subset con-
tainment the only solution found is {Cc, C4,Cp} and the respective outcome
of the algorithm is <ask({Ca,Cp}), revoke({Cc})>. Essentially, we ask the
client to restart from scratch.

On the next interaction since the client has in possession {C4,Cpg,Cc} so
he revokes C¢, presents {C4,Cp} and in step 5 gets grant r.

4 Coping with Malicious Clients

We need to improve the algorithm in Figure 3 to protect the server against
Denial of Service (DoS) attacks. To do so we consider the client as an entity
that can manipulate the system only via its input sets of credentials C, and
C,. Particularly, he may present in his input set C, credentials, which he has
revoked in past interactions with the system, without been explicitly asked for
it and, respectively, may revoke credentials in C,, which he has activated and
presented to the system in past interactions, again without been asked for it. In

Global vars: CN’, CR, Cz,{7 CM, Cg; Initially CN’ = CR = Cz,{ = CM = Cg
Internal input: Pa, Pp, H, Cp;

Input: Cp, C, and r;

Output: grant/deny/<ask(Ca),revoke(Ce)>

Il
=

update Cr = (CR \CM) U (C N Cg),
update Cp = (Cp \ Cr) U (Cp \Cr) U (C, NCa) U (Cp NCnr),
update Cxr = Ca U (Caq \ Cp),
update Cyy = Cy U (Ce \ Cr),
Set up Cm = Ce = 0,
verify whether the request r is a security consequence of the policy access P4 and
presented credentials Cp, namely P4aUHUCp Er and PAUHUCp [~ L,
7. if the check succeeds then return grant else
(a) compute the set of disclosable credentials Cp = {c | Pp UCp = c}\ (CA UCp),
(b) use abduction to find a minimal set of missing credentials Caq C Cp such that
both PAUHUCPUCMm Erand PAUHUCPUCMm L,
(c) if a set Caq exists then return <ask(Ca),revoke(Cs)> and iterate else
i. for every c € (Cp \ Cy) introduce a new credential ¢ in the language,
ii. use abduction to find a minimal set of missing credentials Cam C
{¢| c€ (Cp\ Cu)} UCp such that
— PAUHU (CPﬁCu) U{C<—n0t C. | cE (C'p \Cu)}UCM ': T,
— PAUHU(CpNCy)U{c—mnot é. |ce (Cpr\Cu)} UCm }E L,
iii. if no set Caq exists then return deny else
A. compute Ce = {c | ¢ € Cm} and Cym = Ca N Cp,
B. return <ask(Ca),revoke(Cs)> and iterate.

OOt Wi

Fig. 4. Extended Access Control Algorithm

both cases it would bring the system in a previous state (by letting it compute
the same solution again and again). A malicious client could thus waste server’s
time forever.

The new algorithm is shown in Figure 4. In step 1, a new data set is in-
troduced, the set of revoked credentials Cr, which accumulates all credentials
revoked by a client in an interaction session for a particular service r. So, step
1 updates the set of revoked credentials by removing from Cx the set of missing
credentials C a4, asked in the last interaction, and adding to the resulting set the
newly revoked credentials C,.. The motivation for the set difference Cr \ Crq is
that whatever the client presents from Ca, it is dropped from Cr because it is
not any more revoked and whatever it is not presented in Caq but is dropped
from Cx is added to the set of declined credentials Cas. In this case revoked and
declined credentials are kept disjoint, i.e. Cr N Cpr = 0.

Extending further step 1, to prevent situations of revoking credentials not
supposed to be revoked by the client, we update Cx by adding only those cre-
dentials from C,. that the client was explicitly asked in the previous interaction,
i.e. adding only C, N C¢.

Step 2 updates the client set of active credentials by removing from Cp the set
of all revoked credentials and adding to it the set of newly activated credentials
C,. First we use the set difference Cp \ Cr to remove all revoked credentials and
second, expanding the set of active credentials, we add from currently presented
credentials C,, only the credentials that have not been revoked before — Cp, \ Cr
— and we add also those credentials in C, that the system has asked the client
— Cp NCpq — or the client has declined to present in past interactions but it is
presenting now — C, N Cyr.

In other words, step 2 allows the client to activate credentials among those:

— that the system has asked him to present in the last interaction or

— that he has denied to present in past interactions or

— brand new credentials? that the client has not supplied to the system at the
time of interacting.

Then, in step 4, we introduce a new data set Cy;. The role of Cy is analogous
of that for Cnr and serves as a data store for those credentials that a client has
declined to revoke in an interaction session. Cy is updated by adding to it the
set difference of excessing credentials the client was asked in the last interaction
minus the ones currently revoked. Similarly, once a client refuses to revoke a
credential the same credential will not be considered in a possible output again.

We note that a client at any time can present credentials that he has declined
to present in previous interactions, although he will never be asked for them
again. Here, a client is not allowed (the system will not consider) to revoke
credentials that he has refused to revoke before without been asked for it. The
last requirement is mainly because the revocation of credentials is usually a
cumbersome process and once the client refuses to revoke a credential then it is
unlikely to expect him to do it later in a negotiation process.

The last key-point of the extended algorithm is in step 7(c)ii. Here we run
the abduction reasoning over the set {¢ | ¢ € (Cp \ Ciy)} UCp. The set difference
Cp \ Cy comes from the fact that we do not want to ask the client to revoke
credentials that he has already refused to revoke. In this way we rule out those
models where the client already denied to comply to. We also note that the two
conditions in step 7(c)ii are analogous with their respective ones in Figure 3
because whatever we drop from Cp \ Cy we add it by the intersection of Cp NCy.

Now on, wherever we refer to the access control algorithm we refer to its
extended model shown in Figure 4.

5 Correctness and Completeness

This section presents the theoretical part of the stateful framework together with
theorems for soundness and completeness. We refer the reader to [7] for details
on the proofs of the theorems.

At first we introduce some preliminary definitions.

% excluding the revoked credentials since the system is aware of them.

10

Definition 3 (Solution Set for a Resource r). Let P4 is an access policy
and r be a request. A set of credentials Cs is a solution set for r according to P4
if v is a security consequence of P4 and Cs (PAUCs =1 and P4UCs = L).

Definition 4 (Completeness). If a client has a solution for a request r then
he always gets grant r.

Definition 5 (Soundness). If a client gets grant r then he has a solution for
T

In the following we assume that the sets of missing and excessing credentials
are disjoint, i.e. CoyNCe = @), otherwise the server will reject the answer outright.
Note that this is true for the interactive algorithm in Figure 4. We also assume
that at any time in an interaction process the sets of currently presented and
revoked credentials are disjoint, i.e. C, N C, = 0.

Definition 6 (Powerful and Compliant Client). A powerful and compli-
ant client is a client that whenever receives <ask(Caq),revoke(Cg)> returns
<Cm,Ce>, i.e. activates all ¢ € Cpq and revokes any c € Cg.

Definition 7 (Cooperative and Compliant Client). A client with ability to
manage (obtain or revoke) a set of credentials C is a cooperative and compliant
client if whenever receives <ask(Cn),revoke(Cg)> returns <Cyy NC, Ce N C>,
i.e. actiwates all ¢ € (Cpm NC) and revokes any ¢ € (Ce NC).

Definition 8 (Fair Access). Let P4 be an access control policy and let Cp,
be the set of ground instances of all credentials occurring in P4. The policy Pa
guarantees fair access if for any request r there exists a set Cs C Cp, that is a
solution for r.

Definition 9 (Fair Interaction). Let P4 and Pp be, respectively, an access
and disclosure control policies. The policies guarantee fair interaction if

1. P4 guarantees fair access and
2. if Cs 1is a solution for a request r then Cs s disclosable by Pp, i.e. Ve €
CS, P’D)Z C.

Theorem 1 (Soundness). Let P4 be an access policy, Pp be a disclosure pol-
icy and r a request. If a client gets grant r with the algorithm in Fig. 4 then he
has a solution set Cs that unlocks r according to P 4.

Theorem 2 (Termination). Let P4 be an access policy, Pp be a disclosure
policy and r a request. The access control algorithm in Fig. 4 always terminates.

We use the idea of well-founded tuples ordering so that at each interaction we
associate the tuple <Cps, Ciy, CpUCR >. Then we show that if the algorithm does
not return grant or deny (it terminates) then the sets in the tuple always increase
from one interaction to the next so that the maximal number of interactions is
bounded by the credentials occurring in the access policy.

11

5.1 Completeness

Definition 10 (Monotonic and Non-monotonic Policy). A policy P is
monotonic if whenever a set of statements C is a solution set for r according to
P then any superset C' D C is also a solution set for r according to P.

In contrast, a non-monotonic policy is a logic program in which if C is a
solution for r it may exists C' O C that is not a solution for r, i.e. PUC [~ r

Theorem 3 (Completeness for a Monotonic Access Policy). Let P4 be a
monotonic access policy, Pp be a monotonic disclosure policy and v a request. If
P4 and Pp guarantee fair access and interaction then a powerful or cooperative
client always gets grant r with the algorithm in Fig. 4.

Of course the whole business of the stateful systems requires non-monotonic
policies, so this result is not enough. Here we relax the policy access P4 from
the assumption of monotonicity and consider it as an arbitrary non-monotonic
policy. So, from now on we assume that P 4 is non-monotonic and Pp monotonic
unless explicitly specified otherwise.

In the same context, without loss of generality, we assume that whenever a
client initially requests a service he submits C, = C,, = () and if hidden credentials
Cy needed then C,, = Cy and C, = 0.

Theorem 4 (Completeness for a Powerful and Compliant Client). Let
P4 be an access policy, Pp be a disclosure policy, H be history of executions
and r a request. If P4 UH? and Pp guarantee fair access and interaction then a
powerful and compliant client always gets grant r with the algorithm in Fig. 4.

Here the properties for fair access and interaction guarantee that it exists a
solution Cs for r that is disclosable by the disclosure policy and so the abduction
reasoning potentially can find it in step 7b in Figure 4. If it fails then in the next
step 7(c)ii because of the existence of such solution and since it is contained in
the set of disclosable credentials Cp follows that abduction at least finds this
solution together with the set of excessing credentials which is returned back to
the client. Then because the client is a powerful one he presents and revokes
what he was asked and on the next interaction gets grant.

Theorem 5 (Completeness for a Cooperative and Compliant Client).
Let P4 be an access policy, Pp be a disclosure policy, H be history of executions
and r a request. If P4 UH and Pp guarantee fair access and interaction then
if a cooperative and compliant client has a set of credentials Cs that unlocks r
according to P then the client always gets grant r with the algorithm in Fig. 4.

We prove it in two parts. First part showing that if a client does not get grant he
gets <ask(Caq), revoke(Cg)>, i.e. he never gets deny. Second, we use Theorem
2 (for termination) and conclude that in a bounded number of interaction a
cooperative client always gets grant.

3 It is important to pose the property of fair access over P4 U H because it guar-
antees fairness wrt other (possibly) environment constraints like limited number of
executions on a service, limited number of users accessing a service and so on.

12

Global Vars: Cp, H;
Initially: Cp = () and H = 0;

ServiceRequest(r, Cp, C-){ // starts a new thread

resultaccess = InteractiveAccessControl(r, Cp, Cr);
Update(H, resultaccess, T);
ﬁ Tesu“access - gmnt thﬁ
resultservice = InvokeService(r);
Update(H, resultservice, T);
endif

OOt W

Fig. 5. Global Initialization and Management of Services

6 Initialization and Service Management

Figure 5 gives the intuition of possible management of services wrt the access
control decision process and its relevant data sets. The algorithm shown in Figure
5 works like web servers. A main web server listens to service requests and
whenever a request is detected the server runs the algorithm in a new thread and
initializes the global variables H and Cp to empty sets. Of course here it should
distinguish between the very first initialization and any further loading of those
data sets simply because we do not want to loose any data from past interactions.
For further loadings we keep a profile for each client with the respective data set
Cp so that when the client accesses again a service we just load Cp.

Both Cp and H are local to a service provider and are managed and initialized
independently. The history of execution H is set up to the empty set at the
start when a particular business process is started*. Even a business partner
may decide to have for each running business process separate histories H. To
this extend we assume that H is mapped to those business process(es) that are
relevant to the authorization logic and is released when those processes complete
their executions.

Another session profile is the set of active user’s access rights Cp available
to the partner’s application domain. Each session is associated with a single
user and each user is associated with a single session. This session profile is
created® when the user for the first time requests a service under the partner’s
domain. In contrast to the history profile, the set of user’s access rights is valid
until a certain time slot expires. Even more, it is valid across multiple runnings
of business processes within the entire scope of the partner’s domain and it
eventual deactivation depends on the partner’s authorization logic.

4 Tt entirely depends on the provider’s business logic and whenever an application
business process is started we refer to it as an initial point to set up H = 0

® The set Cp is strictly time-dependent and must be periodically cleared up from
already expired credentials.

13

The third session profile kept in the model is for the service level negotiation.
Here, each session is associated with a single user but each user is associated with
one or more negotiation sessions. Whenever a user requests a service (ref. Ser-
viceRequest(. . .) in Figure 5) it is created a session within which the interactive
access control algorithm is running. Once the session is created the user interacts
with the system until a final decision of grant or deny is taken. Within these
interactions a user (de)activates some subset of roles (C Cp) that he or she is
assigned.

In comparison with RBAC model, the service level agreement session corre-
sponds to the user_sessions(u:USERS) function as introduced by Ferraiolo et al.
[8], which is the mapping of a user u onto a set of active sessions. The user session
of active rights corresponds to avail_session_perms(user_sessions(u:USERS)) in-
troduced in [8]. Where avail_session_perms(s:SESSIONS) returns the permis-
sions available to a user in a session. We note that the user’s session of active
access rights in our framework extends Ferraiolo et al. [8] because in Cp one can
also find access credentials from already concluded service level sessions but with
still valid expiration dates.

To keep the history of execution H up-to-date, after each interaction step
appropriate predicates should be added indicating what has been done by the
system. This is done by the function Update shown in Figure 5. The table below
summarizes the possible updates of H.

Algorithm output Status Predicates
grant grant (User:U, Service: S, Number: N),
running (User: U, Service: S, Number: N)
deny deny (User: U, Service: S, Number: V)
Service Execution Status Predicates
accomplished |success (User:U, Service: S, Number: N)
failed abort (User: U, Service: S, Number: N)

The temporal evolution of the access rights wrt the history of execution H
can be complex because even the most simple constraint on executed actions
may block a request. Indeed, the set of requests that must be grantable by the
policy may change with the services that we have used. As intuitively expected,
we may have access to less services if we have limitations on their usage. For
instance the following constraint specifies that the service reviewSellBids cannot
be executed more than three times in a workflow session:

«— assign (User: U, Service : reviewSell Bids),
4 < {N.success (User:U, Service: reviewSell Bids, Number: N)} .

7 Related Work and Conclusions

Access control for business processes borrows some aspect of trust management
and some aspects of workflow security. Among these models we find a number
of relevant works: for workflows [4], web services [9], role based access control

14

on the web [10,11], tasks [12] and DRM [9], possibly coupled by sophisticated
policy combination algorithms. However, they have mostly remained within the
classical framework — all decisions of grant/deny are based on checking that
request would follow from the policy and the presented set of credentials.

The work on trust negotiations [13,1] focuses on communication and infras-
tructure and assumes that requests and counter requests have been somehow
calculated from the access policy. Also the formal models on credential-based
access control and policy combination [4,14-16] do not treat the problem of
inferring missing credentials from failed requests.

Also the proposal by Bonatti and Samarati [2] that has the explicit focus
on access and release control is not fully on target. In a nutshell, the request is
received, the policy rules are filtered for relevance, the relevant rules are partially
evaluated and sent to the client. The client will have to figure out which are the
credentials and then will evaluate these credentials according its release policy.

The other key proposal on trust negotiation by Yu et al. [1], offers a dual view
w.r.t Bonatti and Samarati [2]. Loosely speaking, each credential is associated
to a policy (a boolean expression) denoting the credentials that a client must
have already provided for its safe disclosure. By a step wise process the parties
can exchange credentials or policy rules until the desired resource is released.
The paper provides safe sequences of disclosure building upon trees rather than
logical formalization. As a consequence they can only treat monotone policies
and it is not possible to define notions of consistency of policies and disclosure of
policies in presence of constraints (e.g. separation of duty). Another limitation
of the paper is that it interlocks the access and the release policy into one. So,
as the authors acknowledge [1, page 21], it is impossible to access resources if
some of the needed credentials cannot be disclosed at some point.

In this paper we have presented a framework for interactive access control
for stateful systems. The work is the continuation of [3] and goes beyond the
model for stateless services. With the extended framework a service provider
is able to reason of not only finding the missing credentials that compliment
client’s access rights to unlock the resource but also to resolve conflicts occurring
in its security policy. The last thing is in the context of reasoning about the
excessing credentials, among the client’s ones, that make the provider’s policy
inconsistent. Even more, the proposed access control algorithm breaks off the
monotonic policy paradigm so that now a service provider can control access to
its resources written in an arbitrary non-monotonic policy language.

The work models two types of clients, a powerful and a cooperative, and
together with the definitions for fair access and interaction they are stated the-
orems for soundness and completeness for the two clients.

Finally, we refer the reader to [17,7] for an architectural approach and imple-
mentation of the interactive access control framework and to [18] for an extension
of it that copes with bilateral negotiation of credentials.

15

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

Yu, T., Winslett, M., Seamons, K.E.: Supporting structured credentials and sen-
sitive policies through interoperable strategies for automated trust negotiation.
ACM Transactions on Information and System Security (TISSEC) 6 (2003) 1-42

. Bonatti, P., Samarati, P.: A unified framework for regulating access and informa-

tion release on the web. Journal of Computer Security 10 (2002) 241-272
Koshutanski, H., Massacci, F.: Interactive access control for Web Services. In: Pro-
ceedings of the 19th IFIP Information Security Conference (SEC 2004), Toulouse,
France, Kluwer Press (2004) 151-166

Bertino, E., Ferrari, E., Atluri, V.: The specification and enforcement of autho-
rization constraints in workflow management systems. ACM Transactions on In-
formation and System Security (TISSEC) 2 (1999) 65-104

Apt, K.: Logic programming. In van Leeuwen, J., ed.: Handbook of Theoretical
Computer Science. Elsevier (1990)

De Capitani di Vimercati, S., Samarati, P.: Access control: Policies, models, and
mechanism. In Focardi, R., Gorrieri, F., eds.: Foundations of Security Analysis and
Design - Tutorial Lectures. Volume 2171 of LNCS. Springer Verlag Press (2001)
Koshutanski, H., Massacci, F.: Interactive access control for stateful web services
business processes. Technical Report DIT-05-002, Department of Information and
Communication Technology, University of Trento (2005)

Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST standard for role-based access control. ACM TISSEC 4 (2001) 224-274
Park, J., Sandhu, R.: Towards usage control models: beyond traditional access
control. In: Seventh ACM SACMAT, ACM Press (2002) 57-64

Giuri, L.: Role-based access control on the web. ACM Transactions on Information
and System Security (TISSEC) 4 (2001) 37-71

Park, J.S., Sandhu, R.: RBAC on the Web by smart certificates. In: Proceedings
of the fourth ACM workshop on Role-based access control, ACM Press (1999) 1-9
Joshi, J.B.D., Aref, W.G., Ghafoor, A., Spafford, E.H.: Security models for web-
based applications. Communications of the ACM 44 (2001) 38-44

Roscheisen, M., Winograd, T.: A communication agreement framework for ac-
cess/action control. In: Proceedings of the Symposium on Security and Privacy,
IEEE Press (1996) 154-163

Li, N., Grosof, B.N., Feigenbaum, J.: Delegation logic: A logic-based approach to
distributed authorization. ACM Transactions on Information and System Security
(TISSEC) 6 (2003) 128-171

Jajodia, S., Samarati, P., Subrahmanian, V.S., Bertino, E.: A unified framework
for enforcing multiple access control policies. In: Proceedings of the 1997 ACM
SIGMOD conference on Management of data, ACM Press (1997) 474-485
Wijesekera, D., Jajodia, S.: Policy algebras for access control the predicate case.
In: Proceedings of the 9th ACM conference on Computer and Communications
Security, ACM Press (2002) 171-180

Koshutanski, H., Massacci, F.: An access control framework for business processes
for Web services. In: Proceedings of the 2003 ACM workshop on XML security,
Fairfax, VA, ACM Press (2003) 15-24

Koshutanski, H., Massacci, F.: An interactive trust management and negotiation
scheme. In: Proceedings of the 2nd International Workshop on Formal Aspects in
Security and Trust (FAST), Toulouse, France, Kluwer Press (2004) 139-152

16

