
Journal of Network and Systems Management, Vol. 15, No. 1, March 2007 (c© 2007)
DOI: 10.1007/s10922-006-9057-2

A Negotiation Scheme for Access Rights
Establishment in Autonomic Communication

Hristo Koshutanski1 and Fabio Massacci2

Published online: 2 March 2007

Autonomic computing and communication has become a new paradigm for dynamic
service integration and resource sharing in today’s ambient networks. Devices and
systems need to dynamically collaborate and federate with little known or even unknown
parties in order to perform everyday tasks. Those devices and systems act as independent
nodes that autonomously manage and enforce their own security policies.

Thus in autonomic pervasive communications clients may not know a priori what
access rights they need in order to execute a service nor service providers know a priori
what credentials and privacy requirements clients have so that they can take appropriate
access decisions.

To solve this problem we propose a negotiation scheme that protects security and
privacy interests with respect to information disclosure while still providing effective
access control to services. The scheme proposes a negotiation protocol that allows
entities in a network to mutually establish sufficient access rights needed to grant a
service.

KEY WORDS: access control; policy based access management; trust negotiation;
logic reasoning; algorithms; protocols.

1. INTRODUCTION

The last decade has seen an exponentially growth of mobile devices that com-
municate with a variety of sources and infrastructures in order to form coherent
communication networks suitable for their needs and tasks.

A major issue in this scenario is that communications occur between auto-
nomic nodes that have independent management and enforcement of their own

1CREATE-NET, Via Solteri 38, University of Malaga, Trento 38100, Italy. E-mail: hristo@lcc.uma.es.
2Dip. di Informatica e Telecomunicazioni, Univ. di Trento, Via Sommarive 14, 38050 Povo di Trento,
Italy. E-mail: fabio.massacci@unitn.it.

117

1064-7570/07/0300-0117/0 C© 2007 Springer Science+Business Media, LLC

118 Koshutanski and Massacci

security policies. Access requests and access decisions must be taken au-
tonomously with incomplete information about the partners.

In an autonomic communication scenario a client may have all the necessary
credentials to access a service but may simply not know it. Equally, it is unrealistic
to assume that servers will make public available their security policies so that
clients can do a policy evaluation themselves and just come out with just the right
credential for access.

Therefore, autonomic servers should be able to ask clients on-the-fly for ad-
ditional credentials that are sufficient to grant access. On the other side, autonomic
clients, once asked for additional credentials, should be able to evaluate their own
polices and counter-request servers for some evidence in order to establish enough
confidence to disclose the missing credentials.

The usage of security policies has been already a major paradigm shift in
access control to communication services over the last few years. Indeed, one
may speak of policy-based self-management of services (e.g., [1, 2] or the IEEE
Policy Workshop series). The intuition is that access to services and resources
is automatically derived from policies. Devices look at the requested action and
credentials presented to them, evaluate the policy rules according to the new facts
and derive the allowed actions [1, 3]. Autonomic communication brings us beyond
policy based access control. How can partners negotiate access without knowing
each other’s security policies?

1.1 The Contribution of this Paper

This paper shows how one can bootstrap from a simple rule-based policy
framework and using some advanced reasoning services a comprehensive access
negotiation scheme for autonomic communication. The negotiation scheme pro-
tects privacy and security interests with respect to information disclosure and
access control on client and server sides. It allows two entities in a network to
mutually establish access rights agreement needed to proceed with the service
request. It supports hierarchical policies (indeed arbitrary policies for which rea-
soning services exist), non-monotone reasoning, and fine granularity control on
the disclosure of information.

The rest of paper is organized as follows. Section 2 introduces the intuitive de-
scription of interactive access control model and the advanced reasoning services.
Section 3 presents the underlying policy model and formally defines the advanced
reasoning services. The interactive access control protocol is shown in Section 4.
Next, Section 5 outlines the negotiation policy framework. The negotiation pro-
tocol is presented in Section 6 followed by the stepwise disclosure algorithm
described in Section 7. Finally, Section 8 concludes the paper and outlines future
work.

A Negotiation Scheme for Access Rights Establishment in Autonomic Communication 119

Fig. 1. Traditional access control.

2. INTERACTIVE ACCESS CONTROL

We will introduce step-by-step the concept of interactive access control by
“evolving” existing access control frameworks.

Let us start with the traditional access control. A server has a security policy
for access controlPA that is used when taking decisions about the usage of services
offered by a service provider. A user submits a set of credentials CP and a service
request r in order to execute a service. We say that policy PA and credentials
CP entail r meaning that request r should be granted by the policy PA and the
presented credentials CP .

Figure 1 shows the “traditional” access control decision process [4]. Whether
the decision process uses Role-Based Access Controls (RBAC) [5], Simple Public
Key Infrastructure (SPKI) [6], RT role-based trust-management framework [7] or
any other trust management framework it is immaterial at this stage: they can be
captured by suitably defining PA, CP and the entailment operator.

A number of works has deemed such blunt denials unsatisfactory. Bonatti
and Samarati [8] and Yu et al. [9] proposed to send back to clients some of the
rules that are necessary to gain additional access. Figure 2 shows the essence of
the approaches.

Both works impose several syntactical restrictions on the format of the policy
and essentially merge two different security issues: the policy for governing access
to server’s own resources and the policy for governing disclosure of the need, by
the server, of foreign credentials (from the client).

Still, the foremost limitation is that both approaches require policies to be
flat: a policy protecting a resource must contain all credentials needed to allow

Fig. 2. Disclosable access control.

120 Koshutanski and Massacci

access to that resource. As a result, it calls for structuring of policy rules that is
counter-intuitive from the access control point of view. For instance, a policy rule
may say that for access to the full text of an on-line journal article a requester
must satisfy the requirements for browsing the journal’s table of contents plus
some additional credentials. A rule detailing access to the table of contents could
then specify another set of credentials. Even this simple scenario is not allowed in
either formalisms.

Yet, constraints that would make policy reasoning non-monotone (such as
separation of duties) require to look at more than one rule at a time. So, if the
policy is not flat, it has constraints on the credentials that can be presented at the
same time (e.g., separation of duties) or a more complex role hierarchy is used,
these systems would not be complete.

Bonatti and Samarati’s approach has further limitations on the granularity
level of disclosure of information. In their work, governing access to a service is
composed in two parts: a prerequisite rule and a requisite rule. Prerequisite rules
specify the requirements that a client should satisfy before being considered for the
requirements stated by the requisite rules, which in turn grant access to services.
Thus, prerequisite rules play the role of controlling the disclosure of the service
requisite rules. In this way their approach does not decouple policy disclosure
from policy satisfaction, as already noted by Yu and Winslett [10].

The work by Yu and Winslett [10] overcomes this latter limitation and pro-
poses to treat policies as first class resources, i.e., each policy protecting a resource
is considered as a sensitive resource itself whose disclosure is recursively protected
by another policy. Still they have the same flatness, unicity and monotonicity lim-
itations. This happens because the only reasoning service used so far for access
control is deduction – check whether the request follows from the policy and the
presented credentials.

We claim that we need another, less-known, reasoning service abduction –
check what missing credentials are necessary so that the request can follow from
the policy and the presented credentials. Thereupon, we present the basic idea of
interactive access control shown in Fig. 3.

1. check whether PA and Cp entail r,

2. if the check succeeds then access else

(a) compute a set CM such that:
 – PA together with Cp and CM entail r, and
 – PA together with Cp and CM preserve consistency.

(b) if CM exists then ask the client for CM and iterate

(c) else access.

Fig. 3. Basic idea of interactive access control.

A Negotiation Scheme for Access Rights Establishment in Autonomic Communication 121

The “compute a set CM such that. . .” (step 2a) is exactly the operation of
abduction. This solution raises a new challenge: how do we decide the potential set
of missing credentials? It is clearly undesirable to disclose all credentials occurring
in PA and, therefore, we need a way to define how to control the disclosure of
such a set.

In [10] Yu and Winslett addressed partly this issue by protecting policies
within the access policy itself. They argue that policies for protecting resources
should be themselves treated as first class sensitive resources. The authors dis-
tinguish between policy disclosure and policy satisfaction which allows them to
have control on when a policy can be disclosed from when a policy is satisfied.
However, this is not really satisfactory as it does not decouple the decision about
access from the decision about disclosure.

So, we need two policies: one for granting access to one’s own resources and
one for disclosing the need of foreign (someone else’s) credentials. Therefore, we
introduce a security policy for disclosure control PD. The policy for disclosure
control identifies the credentials whose need can be potentially disclosed to a client.
In other words, PA protects partner’s resources by stipulating what credentials a
requestor must satisfy to be authorized for a particular resource while, in contrast,
PD defines which credentials among those occurring in PA are disclosable to (i.e.
can be asked to) the requestor.

Yu and Winslett policies determine whether a client is authorized to be
informed of the need to satisfy a given policy. While, in our case, having a
separate disclosure policy PD allows us to have a finer-grained disclosure control
over the information flow back to a client. Instead of controlling the disclosure of
(entire) policies as a finest-grained unit we are able to control the disclosure of
single credentials, composing those policies, separately and independently from
the disclosure of the policies themselves.

The refined algorithm for interactive access control with controlled disclosure
is in Fig. 4.

1. check whether PA and Cp entail r,

2. if the check succeeds then access else

(a) compute the set of disclosable credentials CD entailed by
PD and Cp,

(b)compute a set CM out of the disclosable ones (CM ⊆CD)
such that

 – PA together with Cp and CM entail r, and
 – PA together with Cp and CM preserve consistency.

(c) if CM exists then ask the client for CM and iterate

(d) else access.

Fig. 4. Interactive access control with controlled disclosure.

122 Koshutanski and Massacci

Example 1. Example [10] formalized as two logic programs:

PD : CAliceID PA : r ← CAliceID

CCSWL ← CMcKinleyEmployee r ← CCSWL, CRoI

CRoI ← CMcKinleyEmployee

PD states that the disclosure of Alice’s ID is not protected and potentially
released to anybody. The need for credentials California social worker license
CCSWL and release-of-information CRoI is disclosed only to users who have already
presented their McKinley employee certificate CMcKinleyEmployee.

PA states that access to r is granted either to Alice or to California social
workers that have a release-of-information credential issued by Alice.

There is still a tricky question to be answered: How do we know that the
algorithm terminates? In other words, how do we know that a client can actually
arrive to a grant? For example, can we assure that the server will not keep asking
Alice for a full professor credential which she does not have, while never asking
for a senior researcher credential, which she has?

We refer the reader to [11–13] for details on the interactive access control
framework and its properties of completeness and correctness.

3. THE UNDERLYING LOGICAL MODEL

Access and disclosure policies are written as normal logic programs [14]. A
normal logic program is a set of rules of the form:

A ← B1, . . . , Bn, not C1, . . . , not Cm (1)

where A, Bi and Ci are (possibly ground) predicates. A is called the head of the
rule, each Bi is called a positive literal and each not Cj is a negative literal, whereas
the conjunction of Bi and not Cj is called the body of the rule. If the body (resp.
head) is empty the rule is a fact (resp. constraint).

The semantics used in the model is the stable model semantics [15] (see also
[14] for an introduction). The intuition is to interpret the rules of a program P as
constraints on a solution set S (a set of ground atoms) for the program itself. So,
if S is a set of atoms, rule (1) is a constraint on S stating that if all Bi are in S and
none of Cj are in it, then A must be in S.

Now we can formally define the reasoning services.

Definition 1. Let P be a policy and L be a ground literal. L is a consequence
of P , P |= L, if L is true in every stable model of P. P is consistent, P |�=⊥, if
there is a stable model for P .

A Negotiation Scheme for Access Rights Establishment in Autonomic Communication 123

Definition 2. A resource r is a security consequence of a policy P if (i) P
is consistent and (ii) r is a consequence of P .

Definition 3. Let P is a policy and r be a resource. A set of credentials CS
is a solution set for r according to P if r is a security consequence of P and CS ,
i.e. P ∪ CS |= r and P ∪ CS �= ⊥ .

Definition 4. A policy P is monotonic if whenever a set of statements CS is
a solution set for r according to P(P ∪ CS |= r) then any superset C ′

S ⊃ CS is also
a solution set for r according to P(P ∪ C ′

S |= r).

Definition 5. Let P be a policy, A be a set of ground atoms (credentials) and
L be a positive literal. L is one-step deducible from (consequence of) A according
to P,A |= P

1 L, if for some literals L1,. . ., Ln holds:

(i) L ← L1, . . . , Ln, is in ground(P ∪ A)3 and
(ii) for all credential literals Lc1, . . . , Lcp, 1 ≤ ci ≤ n, holds: (a) if Lci is a

positive literal then A |= Lci , (b) if Lci is a negative literal then P ∪ A| =
Lci .

Definition 6. Let P be a policy, H a set of ground atoms, L a ground literal,
and ≺ a partial order (p.o.) over subsets of H. A solution of the abduction problem
〈L,H,P〉 is a set of ground atoms E such that: (i) E ⊆ H, (ii) P ∪ E |= L, (iii)
P ∪ E |�=⊥, (iv) any set E ′ ≺ E does not satisfy all conditions above.

Traditional partial orders are subset containment or set cardinality.

4. THE ACCESS CONTROL PROTOCOL

Below we summarize all the information we need to state the protocol.
PA – the policy governing access to resources,
PD – the policy controlling the disclosure of foreign (missing) credentials,
Cp – set of credentials presented by a client in a single interaction,
CP – set of active credentials that have been presented by a client during an

interactive access control process,
CN – set of credentials that a client has declined to present during an interac-

tive access control process.
The set of declined credentials CN assures termination. Figure 5 shows the

interactive access control decision algorithm and protocol.
The intuition behind the algorithm is the following. Once the client has

initiated a service request r, possibly with a set of credentials Cp, the interactive

3Essentially, we take all constants and functions appearing in the program and combine them in all
possible ways. This yields the Herbrand universe. Those terms are then used to replace variables in
all possible ways thus building its ground instantiation [14].

124 Koshutanski and Massacci

Fig. 5. Interactive access control algorithm and protocol.

algorithm updates the client’s profile of CP and CN (lines 1: and 2:). CP is updated
with the newly presented credentials Cp. CN is updated with the set difference of
what the client was asked in the last interaction (CM) minus what he presents in
the current one Cp.

Next, the algorithm takes an access decision (line 3:). The first step of the
access decision function is to check whether the request r is granted by PA
according to the client’s set CP (step 1). If the check fails, the starting point of
the interactive framework, then in step 2a, the algorithm computes all credentials
disclosable fromPD according to CP and from the resulting set removes all already
declined and already presented credentials. The latter is used to avoid repeatedly
asking something already declined or presented. Then, the algorithm computes
(using abduction) all subsets of CD that are consistent with the access policy PA
and grant r. Out of those sets (if any) the algorithm selects the minimal one.

Example 2. (rf. [13] for details) A senior researcher at Fraunhofer institute
FOKUS wants to reconfigure an online service for paper submissions for a work-
shop. The service is part of a big management system of the Planet-Lab network.

A Negotiation Scheme for Access Rights Establishment in Autonomic Communication 125

So, for doing that, at the time of access, she presents her employee certificate,
issued by a Fraunhofer certificate authority, presuming that it is enough as a po-
tential customer, formally speaking credential(aliceMilburk, employee).

According to the access policy the credentials are not enough to get con-
figure access. Then, following the algorithm, abduction reasoning computes the
following sets of credentials that satisfy the request:

{credential(aliceMilburk, juniorResearcher)},

{credential(aliceMilburk, seniorResearcher)},

{credential(aliceMilburk, boardOfDirectors)}.

Then, using role minimality criterion, the algorithm returns back the need for

credential(aliceMilburk, juniorResearcher).

Since Alice is a senior researcher, she declines to present the requested cre-
dential by returning an empty set of presented credentials. The algorithm updates
the client’s profile by marking the requested credential as declined. Next, the
algorithm recomputes the missing sets of credentials:

{credential(aliceMilburk, seniorResearcher)},

{credential(aliceMilburk, boardOfDirectors)}.

and returns the need for credential(aliceMilburk, senior-
Researcher) back to the client. Then on the next interaction Alice presents
her certificate for a senior researcher and the algorithm grants the service request.

5. THE NEGOTIATION SCHEME

Let us consider the following autonomic communication scenario:

1. Alice wants to access some service of Bob.
2. Alice does not know exactly what credentials Bob needs, so (a) Bob must

compute what is missing and ask Alice, (b) Alice must send to Bob all
credentials he requested.

3. In response to (2b), Alice may want to have some credentials from Bob
before sending hers, so (a) she must tell Bob what he needs to provide, (b)
Bob must have a policy to decide how access to his credentials is granted.

4. In response to (2a), Bob may not want to disclose all that is missing at
once but may want to ask Alice first some of the less sensitive credentials,
so Bob must have a way to request in a stepwise fashion the missing
credentials.

126 Koshutanski and Massacci

To combine automated trust negotiation and interactive access control we
assume that clients and servers have the three security policies:

1. PAR: policy for protecting own resources based on foreign credentials
2. PAC : policy for protecting own credentials based on foreign credentials
3. PD: policy for disclosure the need of (missing) foreign credentials

Technically speaking we could merge policies PAR and PAC into a flat policy
for protecting sensitive resources as in [9, 10]. However, the structured approach
is better because the criteria behind and likely the administrator of each policy
are different. Resource access is decided by the business logic whereas credential
access is due to security and privacy considerations.

For example the negotiation of a sensitive credential may require activation
of credentials that are not considered from the business logic for the actual access
control process and even they may be inconsistent with the business logic rules.
Thus, forcing separation between policies PAR and PAC we free the access policy
PAR to be arbitrarily complex with almost everything that is on the (Datalog)
access control market (say with negation as failure, constraints on separation of
duties, or other credentials such as those by Li and Mitchell [7]).

Rather, the policy for access to own credentials we restrict to be monotonic
because of its particular nature: once access to a credential is agreed (granted) it
is agreed! In contrast, a credential for access to resources may come and go due
to separation of duty or other constraints.

6. THE NEGOTIATION PROTOCOL

First, we introduce the notation O denoting a set of own creden-
tials with respect to a negotiation opponent. Now, let us recall the
iAccessControlprotocol, presented in Section 4, adapted to the new con-
vention and with the following modification. Instead of returning the need of
missing credentials we transform CM into a sequence of single requests each ask-
ing for a foreign credential from the missing set. Figure 6 shows the core protocol.

We extend the protocol to work on client and server sides so that they auto-
matically request each other for missing foreign credentials. Step 1 of the protocol
updates the set of foreign presented credentials with those presented at the time
of request. These presented credentials are typically pushed by the opponent
when initiate a service request. After the initial update we go in a loop where
iAccessDecision algorithm is run for an access decision. The purpose of the
loop is to keep asking the opponent new solutions (missing credentials) until a
decision of grant or deny is taken.

The technicality of the protocol is in step 6 where we represent the request for
a missing credential as a remote invocation of the iAccessNegotiation protocol
on the opponent side. In this way, the new protocol has the same functionality as

A Negotiation Scheme for Access Rights Establishment in Autonomic Communication 127

Session vars: CP and CN. Initially CP = CN = ∅.

i (r, Cp)

1: CP = CP ∪Cp;

2: repeat

3: result = i (r, PA, PD, CP, CN);

4: if result == (CM) then

5: for each c ∈ CM do

6: response = i (c, ∅)@ ;

7: if response == then

8: CP = CP ∪{ c };
9: else

10: CN = CN ∪{ c };
11: done

12: until result == or result == .

 13: return result;

Fig. 6. The core of the negotiation protocol.

the iAccessControl protocol if the client just replies whether he has a credential
or not.

Step 6 invokes iAccessNegotiation protocol with an empty set of pre-
sented own credentials. One can modify the protocol by introducing a function
PushedCredentials(c) that decides what own credentials (Opush) an opponent
has to push when requesting for a foreign credential c. This is an issue for practical
implementations and we omit it for the sake of clarity. Details can be found in
[11].

For bilateral negotiation we must consider the following issues:

• each request for a credential spurs a new negotiation thread that negotiates
access to this credential.

• during a negotiation process parties may start to request credentials from
each other that are already in a negotiation. So, the notion of suspended
credential requests must be taken into account.

Figure 7 shows the updated version of the iAccessNegotiation protocol.
With its new version, whenever a request arrives it is run in a new thread

that shares the same session variables CP , CN and Oneg with other threads running
under the same negotiation process. The set Oneg keeps track of the opponent’s
own credentials that have been requested and which are still in a negotiation.

Now, if a request for a credential, which is already in a negotiation, is received
the protocol suspends the new thread until the respective negotiation thread finishes

128 Koshutanski and Massacci

Session vars: CP, CN and Oneg. Initially CP = CN = Oneg = ∅.

i (r, Cp) - runs in a new thread

1: CP = CP ∪Cp;
2: if r∈Oneg then

3: suspend and await for the result on r’s negotiation;

4: return when resumed;

5: else

6: Oneg = Oneg ∪{ r };
7: repeat

8: result = i (r, PA, PD, CP, CN);

9: if result == (CM) then

10: for each c∈CM do

11: response =

12: if response == then

13: CP = CP ∪{ c };
14: else

15: CN = CN ∪{ c };
16: done

17: fi

18: until result == or result == .

19: Oneg = Oneg \ { r };
20: resume all processes awaiting on r with the result of the negotiation;

21: return result;

 22: endelse

Fig. 7. The negotiation protocol with suspended credentials.

(step 3). Then, when the original thread returns an access decision the protocol
resumes all threads awaiting on the requested credential and informs them for the
final decision (step 20).

Figure 8 shows the complete negotiation protocol. Whenever a service request
is received the iAccessDispatcher module runs iAccessNegotiation in a
new session process and initializes CP , CN and Oneg to an empty set (step 2).
Then each counter-request for a credential is run in a new thread under the same
negotiation process (step 4).

On the other hand, whenever an entity requests a service r at the opponent
side, presenting initially some own credentials Op, the iAccessDispatcher
server invokes iAccessNegotiation@Opponent in a new session process so
that any counter-request from the opponent is run in a new thread under the same
negotiation process.

A Negotiation Scheme for Access Rights Establishment in Autonomic Communication 129

Fig. 8. The negotiation protocol.

130 Koshutanski and Massacci

The intuition behind the negotiation protocol is the following:

1. A client, Alice, sends a service request r and (optionally) a set of (new
own) credentials Op to a server, Bob.

2. Bob’s iAccessDispatcher receives the requests and runs
iAccessNegotiation(r, Cp) in a new process (with Cp = Op).

3. Once the protocol is initiated, it updates the over all set of presented
foreign credentials with the newly presented ones and checks whether the
request should be suspended or not (steps 1 and 2).

4. If not suspended, then Bob looks at r and if it is a request for a service he
calls iAccessDecision with his policy for access to resources PAR, his
disclosure policy PD, the set of foreign presented credentials CP and the
set of foreign declined credentials CN (step 9).

5. If r is a request for a credential then he calls iAccessDecision with his
policy for access to own credentials PAC , again his disclosure policy PD,
the sets CP and CN (step 11).

6. In the case of computed missing foreign credentials CM, Bob transforms
CM into requests for credentials and awaits until receives all responses.
At this point Bob acts as a client, requesting Alice the set of credentials
CM. Alice runs the same protocol with swapped roles.

7. When Bob receives all responses he restarts the loop and consults the
iAccessDecision algorithm for a new decision.

8. When a final decision of grant or deny is taken, Bob checks and resumes
all suspended threads awaiting on the current negotiation and then returns
the decision back to Alice.

The distribution and issuance of credentials are second order problems which
can be solved in a number of ways not interesting in this setting. As indicated in
the figure, we use the keyword parfor for representing that the body of the loop
is run each time in a parallel thread. Thus, each missing credential is requested
independently from the requests for the others. At that point of the protocol, it is
important that each of the finished threads updates presented and declined sets of
foreign credentials properly without interfering with the other threads. We point
out that each thread updates the requested credential as declined after a certain
session time expires.

Example 3. Figure 9 shows an example of Alice’s and Bob’s interactions
using the negotiation protocol on both sides. The policies for access to resources
and access to sensitive credentials are in notations like in Yu et al. [9] where
the Alice’s local credentials are marked with subscript “A” and Bob’s with “B,”
respectively. Bob’s access policy PAR says that access to resource r1 is granted if
{CA1,CA2} or, alternatively, if {CA1,CA3} are presented by Alice. To get access to
r2 Alice should satisfy the requirements for access to r1 and present CA4.

A Negotiation Scheme for Access Rights Establishment in Autonomic Communication 131

Fig. 9. Example of interoperability of the negotiation protocol.

We read Bob’s disclosure policy as to disclose the need for a credential CA2

there should be already disclosed a credential CA5, which by default is always
disclosable. Credential CA1 is always disclosable on demand, but in contrast, the
need for CA4 is never disclosed but expected from PAR when r2 is requested. It is
an example of a hidden credential that must be pushed.

Bob’s policy PAC states that access to Bob’s CB1 is granted if Alice has
presented CA5 and that access to Bob’s CB2 if Alice’s CA2.

7. STEPWISE DISCLOSURE OF ACCESS RIGHTS

The intuition here is that Bob may not want to disclose the missing foreign
credentials all at once to Alice but, instead, he may want to ask Alice first some
less sensitive credentials assuring him that Alice is trustworthy enough to dis-
close her more sensitive credentials and so on until all of the missing ones are
disclosed.4 To address this issue we extend the protocol in Section 6 with an al-
gorithm for stepwise disclosure of missing credentials. The basic intuition is that
the logical policy structure itself tells us which credentials must be disclosed to
obtain the information that other credentials are missing. So, we simply need to
extract this information automatically. We perform a step-by-step evaluation on
the policy structure. For that purpose we use the one-step deduction (Definition 5)

4The stepwise approach may require a client to provide credentials that are not directly related to a
specific resource but needed for a fine-grained disclosure control.

132 Koshutanski and Massacci

Fig. 10. The stepwise negotiation protocol.

over the disclosure policy PD to determine the next set of potentially disclosable
credentials.

Essentially, the protocol replaces the AskCredentials function with a new
version of it using the stepwise disclosure algorithm, see Fig. 10. With its new
version the AskCredentials function (Fig. 10) takes as input the set of missing
credentials CM (as the old one) and internally loads the policy for disclosure
control PD (CM was computed from). In a nutshell, the algorithm requests a client
all missing credentials supplied in the input, but with the difference of stepwise
awaiting for each of the computed steps by the StepwiseDisclosure algorithm.
In other words, when a next step of missing credentials is computed (step 2)
the algorithm awaits until the client responds to all current requests. Again here
the client’s profile is updated on each request/response to facilitate other threads’
access decisions. Then the check in step 3 (for CM1) comprises two cases: either
the set of presented foreign credentials CP has been updated (indirectly) by other
running threads such that now CM is satisfied and there is no next step or the client
has declined some credentials that stop his way further to CM.

The task of the StepwiseDisclosure is to determine at each interaction
step exactly the relevant credentials needed to reach at the end the set CM. For
doing so, in step 1, we compute the set of disclosable foreign credentials CD1 by

A Negotiation Scheme for Access Rights Establishment in Autonomic Communication 133

Fig. 11. Example of stepwise negotiation of credentials.

one-step deduction over PD and according to CP . Out of those, we extract only the
minimal set of credentials that is actually necessary to derive CM. To this extent,
we modify policy PD by adding a new atom q that can be derived if all (and
only) credentials in CM are derived (refer to step 3). Additionally, we also change
syntactically the structure of PD rules so that relevant credentials in CD1 must be
abduced and can no longer be derived from chaining other rules in PD (step 2).

We do that by changing a rule of the from c ← c1, . . ., cn into a pair of rules
ĉ ← c1, . . ., cn and c ← ĉ, where ĉ is a new symbol. The informal meaning
of the first rule is that c is disclosable if all ci are. So, we now say that the need
for the fictitious ĉ is disclosable if the need for all ci is disclosable and that the
need for the credential c is disclosable if the need for ĉ is. Then if we remove
c ← ĉ, for all c ∈ CD1 ∪ CN there will be no rule to infer that c is disclosable
so we must abduce it as a primitive atom (if it is actually needed to derive q).
For that purpose we specify in the abduction input CD1 as the set of hypotheses
so that all c ∈ CD1 are potentially abducible but none of the CN are. Thus, for
deriving the next step of foreign missing credentials we invoke the abduction
engine with input 〈q, CD1,PD1 ∪ CP ∪ Q〉 and refer the reader to Definition 6 for
the properties of the abduction computation.

Figure 11 shows an example of how the stepwise disclosure algorithm works,
following the same scenario as in Example 3.

Notice that parties might end in a deadlock when a negotiator requests cre-
dential A in order to give B, while the other party needs B to give A. This is likely

134 Koshutanski and Massacci

possible as the protocol allows multiple sub-negotiations in different threads and
blocks when the requested credential is already in negotiation.

Practically, we have solved the problem with a timeout: if we do not get
an answer from a partner in a reasonable time we assume that the credential is
not available. Notice that this is also necessary to avoid honest partners of being
victims of malicious clients who may simply “forget” to answer and thus saturate
the opponent’s memory with many unfinished threads.

8. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a policy-based negotiation scheme for access rights
establishment. The key idea is that in an autonomic communication a client and a
server have an autonomic view on their access polices and privacy requirements
and, as so, they need a way to reason and negotiate the requirements to access a
resource.

We have proposed a solution to this problem by extending classical access
control models with an advanced reasoning service: abduction. Building on top of
this service, we presented the interactive access control algorithm that computes
on-the-fly missing credentials needed for a client to get access.

The paper contribution is in the way one can bootstrap from the basic access
control algorithm a comprehensive negotiation scheme. The scheme proposes a
model and a protocol that allow entities to bilaterally negotiate access control
requirements. The protocol runs on client and server sides so that they understand
each other and automatically interoperate until an agreement is reached or denied.

We enriched the framework over the existing policy-based negotiation ap-
proaches [7–9] by introducing two different policies: one for protecting resources
and one for protecting sensitive credentials. The distinction extends the negoti-
ation framework on a wider set of policy languages with respect to the existing
approaches.

We extended the negotiation protocol with a stepwise disclosure algorithm
that provides a fine-grained privacy control over the disclosure of missing creden-
tials. The algorithm enforces stepwise sequences of credentials which a foreigner
should follow in order to get access to a resource.

One of the advantages in our approach is that we do not pose any restrictions
on partner’s policies because the basic computations of deduction and abduction
do not require any specific policy structure. Thus, we can support hierarchical poli-
cies (indeed arbitrary policies for which reasoning services exist), non-monotone
policy, and by using one-step deduction also fine granularity control on the infor-
mation disclosure.

An important issue behind the stepwise approach is that it may introduce new
hurdles during a negotiation (and thus failures to access resources). Negotiations
may begin with a partial policy disclosure but may fail eventually because the

A Negotiation Scheme for Access Rights Establishment in Autonomic Communication 135

client cannot fulfill all the requirements to reveal the remaining part of the policy.
In other words, a client might have a credential A needed to get a service, but
without a credential B, possibly not needed for any service but only to disclose
the need for A, he will be denied access. Whether an obstacle or a feature it is
application dependent and as so it can be turned on or off on demand.

Future work is in the direction of proving what guarantees the protocol offers
in terms of interoperability (completeness and correctness) when applied to other
negotiation schemes such as TrustBuilder by Yu et al. [9]. We believe that this is
an important step toward building a secure open computing environment.

ACKNOWLEDGMENTS

This work was partly supported by the projects: 2003-S116-00018
PAT-MOSTRO, 016004 IST-FP6-FET-IP-SENSORIA, 27587 IST-FP6-IP-
SERENITY, 038978 EU-MarieCurie-EIF-iAccess, 034744 EU-INFSO-IST ONE,
034824 EU-INFSO-IST OPAALS.

REFERENCES

1. M. Sloman and E. Lupu, Policy specification for programmable networks. In Proc. of the 1st Intl.
Working Conference on Active Networks, pp. 73–84. Springer-Verlag, 1999.

2. L. Lymberopoulos, E. Lupu, and M. Sloman, An adaptive policy based framework for network
services management, Journal of Network and Systems Management, Vol. 11, No. 3, pp. 277–303,
2003, Plenum Press.

3. M. Smirnov, Rule-based systems security model. In Proc. of MMM-ACNS, pp. 135–146, 2003,
Springer-Verlag Press.

4. S. De Capitani di Vimercati and P. Samarati, Access control: Policies, models, and mechanism.
In R. Focardi and F. Gorrieri (eds.), Foundations of Security Analysis and Design, Vol. 2171 of
LNCS. Springer-Verlag Press, 2001.

5. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, Role-based access control models,
IEEE Computer, Vol. 39, No. 2, pp. 38–47, 1996.

6. SPKI, SPKI certificate theory, 1999. IETF RFC 2693. Available from http://www.ietf.
org/rfc/rfc2693.txt.

7. N. Li and J. C. Mitchell, RT: A role-based trust-management framework. In Proc. of DISCEX III
Conf., pp. 201–212, 2003, IEEE press.

8. P. Bonatti and P. Samarati, A unified framework for regulating access and information release on
the web, Journal of Computer Security, Vol. 10, No. 3, PP. 241–272, 2002.

9. T. Yu, M. Winslett, and K. E. Seamons, Supporting structured credentials and sensitive policies
through interoperable strategies for automated trust negotiation, ACM Transactions on Information
and System Security, Vol. 6, No. 1, pp. 1–42, 2003.

10. T. Yu and M. Winslett, A unified scheme for resource protection in automated trust negotiation.
In Proc. IEEE Symposium on Security and Privacy, pp. 110–122, May 2003 IEEE press.

11. H. Koshutanski and F. Massacci, Interactive access control for Web Services. In Proc. of IFIP
Information Security Conference, pp. 151–166, 2004, Kluwer.

12. H. Koshutanski and F. Massacci, Interactive credential negotiation for stateful business processes.
In Proc. of iTrust Conference, pp. 257–273, 2005, Springer-Verlag Press.

136 Koshutanski and Massacci

13. H. Koshutanski and F. Massacci, Abduction and deduction in logic programming for access
control for autonomic systems. Tech. Report, DIT-05-053, University of Trento, July 2005.
http://eprints.biblio.unitn.it/archive/00000821/01/053.pdf.

14. K. Apt, Logic programming. In J. van Leeuwen (ed.), Handbook of Theoretical Computer Science.
Elsevier, 1990.

15. M. Gelfond and V. Lifschitz, The stable model semantics for logic programming. In Proc. of the
5th International Conference on Logic Programming, pp. 1070–1080, 1988, MIT-Press.

Hristo Koshutanski has a PhD in Computer Science from the University of Trento, Italy.
He holds the SATIN-EDRF award for doctoral research in 2005. In 2006 he won a EU Marie Curie
Fellowship. He is a Research Associate at the University of Malaga, Spain. His research interests include
distributed system security, trust management, access control models and authorization policies.

Fabio Massacci is full professor in Informatics at the University of Trento, Italy, and guest
scientist at SINTEF, Norway. He was a visiting researcher at IRIT—Toulose, France, assistant professor
at the Univ. of Siena, post doctoral fellow and got a PhD at the Univ. of Roma I “La Sapienza” in 1998.
His main research interests are Computer Security, Formal Verification, and Requirements Engineering.
He published a number of articles on international conferences and journals and is responsible for a
number of EU and national research grants. He is rectors’s delegate for ICT procurements and services.
He is member of ACM and IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

