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ABSTRACT

We investigate a generalization of the notion of XML security view
introduced by Stoica and Farkas [17] and later refined by Fan et
al. [8]. The model consists of access control policies specified

over DTDs with XPath expression for data-dependent access con-

trol policies. We provide the notion afecurity viewdor charac-
terizing information accessible to authorized users. This is a trans-

formed (sanitized) DTD schema that can be used by users for query

formulation and optimization. Then we show an algorithm to ma-
terialize “authorized” version of the document from the view and
an algorithm to construct the view from an access control specifi-
cation. We also propose a nhumber of generalizations for security
policies?.

Categories and Subject Descriptors

H.2.7 Database Administration]: Security, integrity and protec-
tion—Access control

General Terms
Algorithms, Security

Keywords
XML access control, XML views, XPath

1. INTRODUCTION

XML [3] has become the prime standard for data representation
and exchange on the Web. In light of the sensitive nature of many

2. can be enforced without annotating the entire document;

3. still provide a “sanitized” schema information to users.

While specifications and enforcement of access control are well
understood for traditional databases [7, 13, 15, 16], the study of
security for XML is less established. Although a number of secu-
rity models are proposed for XML [2, 4, 6, 12, 14], these mod-
els do not meet criterion 3 above and, to a lesser extent, crite-
rion 2. More specifically, these proposed models enforce secu-
rity constraints at the document level by fully annotating the entire
XML document/database [4, 2, 6]; these require expensive view
materialization, and complicate the consistency and integrity main-
tenance. To overcome this limitations, the notion of XML security
views was initially proposed by Stoica and Farkas [17] and later
refined by Fan et al. [8].

The most important limitation of the mainstream models is the
lack of support for authorized users to query the data: they either do
not provide schema information of the accessible data, or expose
the entire original DTD (or its loosened variant). In both cases,
the solution is hardly practical for large and complex documents.
Furthermore, fixing the access control policies at the instance level
without providing or computing a schema, makes it difficult for the
security officer to understand how the authorized view of a docu-
ment for a user or a class of users will actually look like.

On the other side, revelation of excessive schema information
might lead to security breaches: an unauthorized user can deduct
or infer confidential information via multiple queries (essentially
if the authorization specifications are not closed under intersection)
and analysis of the schema even if just accessible nodes are queried.

business data applications, this also raises the issue of security inl.1  Our Contribution.

XML and the selective exposure of information to different classes
of users based on their access privileges.

To address this issue we need simple, powerful, fine grained au-
thorization mechanisms that

1. can control access to both content and structure;

!An extended version of this paper can be found at
http://www.dit.unitn.it~rassadko/publications/kupe-mass-rass-
04-long.pdf
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formulate their queries over the view. The functiens withheld
from the users, and is used to extract accessible data from the actual
XML documents to populate a structure conforminge.

Query optimization can then be performed by users (using se-
curity view) and then by the system (by expanding and optimizing



the selection function). Thus, it is no longer necessary to process APPLICATIONS
an entire document and only relevant data is retrieved. Moreover, L

the users can only access data &g, and no information beyond AWCZWN
the view can be inferred from (multiple) queries posedan
More specifically, the main contributions of the paper include: yUDENTM ~a
UNRELIABLE
o A refined version of access policies over XML documents ‘LA\
using conditional annotations at DTD level, RECOMMENDATION-
LETTER REASON
e A notion of security view that enforces the security con- DEPARTMENT DEGREE  yyaier CVALUATOR R
straints at the schema level and provides a view DTD char- y
aCterlzmg them; FAVORABLE ~ UNFAVORABLE
e An efficient algorithm for materializing security views, which
ensures that views conform to view DTDs; TITLE  INSTITUTION  RATING FREETEXT
e An algorithm for deriving a security view from a specifica- mmo mﬁ ;;T
tion of security annotations.
1.2 Plan of the paper Figure 1: The graph representation of the document DTDD

The rest of the paper is organized as follows. First we present
preliminary notions on XML and XPath in Sec. 2. In Sec. 3 we the content of recommendation letters. Application is supported by
provide a motivating example. Next we introduce the notion of se- several letters of recommendatiae¢omm-lettey, some of them
curity specification (Sec. 4) and the notion of view (Sec. 5). We can be classified amreliableunder someeason Each letter has
show how to materialize a view and that using views is equivalent letter body and is provided by a separaealuatorhavingname
to annotating directly the document (Sec. 6). In Sec. 7 we describe title andinstitutionattributes. Evaluator places comments on appli-
classification of security policies with respect to consistency and cant's skills infree-textfield, which is eitheiPDF or TXT file, and
completeness properties. Some extensions of our model are outfates applicant'&nglishproficiency, achievements durimgS pro-
lined in Sec. 8. Next we present implementation issues (Sec. 9).gram and possible contribution FhD program. Letters of recom-

Finally we conclude the paper in Sec. 10. mendation are reviewed by admission committee and are assigned
to a categoryavorableor unfavorabledepending on the context.

2. A PRIMER ON XML AND XPATH The corresponding DTD is depicted on Fig. 1 and we show be-
Lo . _ low some of the rules of this DTD. m
We first review DTDs [3] and XPath [5] queries.

Definition 2.1: ADTD D is a triple (Ele, P, root ), whereEle application — (student-data,

is a finite set oblement typesoot is a distinguished type ifle, recomm-letter*, unreliable)

and P is a function defining element types such that for eddn letter — (favorable|unfavorable)

Ele, P (A) is a regular expression ovéfle U {str}, wherestr unreliable — (recomm-letter, reason)

is a special type denotingCDATA, We usex to denote the empty We consider a class of XPath queries, which corresponds to the
word, and %", ", and “” to denote disjunction, concatenation,  corexpath of Gottlob et al. [11] augmented with the union operator
and the Kleene star, respectively. We referto—~ P (A) as the and atomic tests and which is denoted by Benedict et al. [3].as
productionof A. For all element type® occurring inP (A), we The XPath axes we consider as primitive anild , parent |,

refer to B as asubelement typgr achild type of A and toA as a ancestor-or-self . descendant-or-self Cself . We

generator(or aparent typg of B. 0 denote by) one of those primitive axes and By * its inverse.

We assume that DTD is non-recursive, i.e., that the graph has nopefinition 2.3: An XPath expression it is defined by the follow-
cycles. Sec. 8 discusses this limitation.

ing grammar:
Definition 2.2: An XML tree T' conforms taa DTD D iff o
1. the root ofT is the unique node labelled witoot ; (zpath) = (path) | ‘/‘(path)
2. each node iff" is labelled either with arEle type A, called (path) == (step) (*/* (step))
an A elementor with str , called atext node (step) == | 0 (qual) ‘| | (path) ‘U *{path)
)

0
3. eachA element has a list of children of elements and text ~ (qual A x| opc | (zpath) |
nodes such that their labels form a word in the regular lan- (qual) and {(qual) | (qual) or {qual) |

guage defined by (A); not {(qual) | ‘(‘{qual)‘)‘

4. each text node carriess&r value and is a leaf of the tree. L .
W IT ani fDif T ¢ D a whered stands for an axis; is astr constant,A is a label,op
e callT aninstanceot I I T" conforms tal). stands for one of, <, >, <, >. The result of thgual production

Example 2.1: An XML database consists of a list applications is calledqualifier and is denoted by. We denote byXores: the

for PhD/MS program. Each application is initiated by a student fragment build without thep c test. -
described visstudent-datawith an attributeid uniquely identify- We ignore the difference betweeamath andpath and we de-
ing student and representing student’s login narBéudent-data note both withp, we abbreviateself with ¢, child [A]/p with
is composed ohame desireddegree(PhD or MS)department A/p, descendant-or-self [A]/p with //A/p, qlop c] with

andwaiver. The latter field may take values “true” or “false” and ¢ opc andp = p1/p2, Wherepz is //p5, is writtenp asp1 //p5.
means that student does (does not) waive his/her right to inspectThe ancestor axis is abbreviated.as



S [I/pl] (N) = S [|p|] ({root }) and permissions are assigned to views [13, 15]. A user may be

S— [10q]l] (N) = 6(N) N € [|g]] denied the knowledge of the existence of an attribute of a rela-
S— [16fal/pll (N) = 6(S~ [Ip[] (N)) N E lg]] tional schema. What we need here is a view of the document (at
S— [[pr Upz[] (N) = S [Ip1[} (N) U S~ [[p2[] (N) the schema level) that the user can use for queries, but that hides
S— [I(pr W p2)/p[] (N) = S~ [Ip1/p[] (N) U S~ [lp2/p]] (N) not only data but also structural information.
S [/pl] = {n occursinT} if root € S—{|/pl] We borrow from Stoica and Farkas [17] the notion of access con-
0 otherwise trol model for XML that specifies and enforces security constraints
S [|0[g]I]N = 67" (N N & [lq]]) at theschemdevel. For the actual notation we refine and general-
S [10[q]/pIN = 0~ (S—[Ipll N Elql)) ize the proposal from Fan et al. [8]: authorizations are defined on
S [|p1 Upz|] = S [Ip1[] U S [|p2]] a document DTD by annotating element types Wit or XPath
S [[(p1 Up2)/pll = S [Ip1/pl] U S [|p2/pl] qualifiers, indicating their accessibility.
ENA =T (4) From such a specification we can then infei@wv DTDD,, and a
Ellgandgz|] = E[|q1]] N E [|g2]] selection functiow defined via XPath queries. The view DT,
Ellgror go|] = E[|g1]] U € [|g2]] shows only the data that is accessible according to the specification.
& [|not g|] = {n occursinT} \ & [|gz|] The functione is withheld from the users, and is used to extract
Ellpl] = S—[Ipl] accessible data from the actual XML documents.

4. SECURITY SPECIFICATIONS

Here we present our access-control specification language.

Figure 2: The Semantics of Operators

. ) ) ) Definition 4.1: A authorization specificatiol§ is a pair(D, ann),
The semantics of XPath is obtained by adapting to our frag- \whereD is a DTD, ann is a partial mapping such that, for each
ment theS_., S—, &€ operators proposed by Gottlob et al. [11]  productionA — P (A) and each child element typ@ in P (A),
and is identical to proposal of Benedickt et al. [1]. Intuitively 5nn(4, B), if defined, is an annotation of the form:
S—. [|p|] (N) gives all nodes that are reachable from a nodé&/in

using the patip. TheS— [|p|] functions gives all nodes from which ann(4,B) == Q[¢g] | Y | N
a pathp starts to arrive to queried node. T&¢|q|] function evalu-
ates qualifiers and returns all nodes that satjsfy

The 6-symbol stands for both the semantics and the syntax of

where[g] is a qualifier in our fragment’ of XPath. A special case
is the root ofD, for which we definann(root) = Y by default.0

axes. So given a set of nodadsof a document’, (V) returns the Intuitively, annotating production rul@ (A) of the DTD with
nodes that are reachable according the axis from a nodé iBy an unconditional annotation is a security constraint expressed at
T (A) we denote the set of nodes that have element #pé-or the schema levelY or N indicates that the corresponditig) chil-
the semantics of qualifier see [11]. dren of A elements in an XML document conforming to the DTD
The semantics of the other operators is shown in Fig. 2 will always be accessiblé() or always inaccessiblé), no matter
what the actual values of these elements in the document are. If
ann(A, B) is not explicitly defined, thed® inheritsthe accessibil-
3. AMOTIVATING EXAMPLE ity of A. On the other hand, #nn(A, B) is explicitly defined it
The need to provide users with a schema-level security view is mayoverridethe accessibility of3 obtained via propagation.
illustrated by the access control requirements in Example 3.1. At the data level, the intuition is the following: given an XML

Example 3.1: The applicant can access only his/her own data lo- document’, the document is typed with respect to the DTD, and

cated under fieldtudent-data . Access to fieldgavorable the annotations of the DTD are attached to the corresponding nodes
andunfavorable s forbidden, while visibility ofrating and of the document, resulting ingartially annotatedXML document.
free-text is established according to the accessibility to field The_n we convert the documeift to af_ully annotat_ed_one by la-
letter . The latter is accessible if thewaiver is true (data- belling all of the unlabelled nodes witt or N. This is done by

dependent access). Moreover, the applicant should not be awareevaluating the qualifiers an_d replacing the_m\bpr N annotations,
of reliability of the recommendation letters as the leakage of this and then by a suitable policy for completing the annotation of the

information to recommenders might lead to diplomatic incidents. Y&t labelled nodes of the tree. When everything is labelled we re-
O move allN-labelled nodes frorf.

) ) We should emphasize that semantics of qualifiers presented in
How can such constraints be enforced? Cho et al. [4] and Bertino thjs paper iglifferentfrom that of in [8]. According to [8] a false
et al. [2] enforce these constraints directly on the XML document. evajuation of the qualifier is considered as “no label” and requires
Damiani et al. [6] express their security specifications as sets of the inheritance of an access from ancestors, while we assume that
XPath expressions. However they transform their XPath specifica- gnce evaluated on the document, a qualifier is mapped to aither
tions into an annotation of the entire document. So we have systemsor N, This greatly simplifies the intuition of the annotation for a
that do specify how to restrict access at tlata level security administrator.

An important question remains unanswered: what schema infor- ) . o
b g Example 4.1:In Fig. 3(a) we show an example of security specifi-

mation should be provided to the user? To formulate and process "¢ . )
queries, the user needs a schema describing the accessible dat§ation: Paths to unconditionally allowed (forbidden) element types

One solution, suggested by Damiani et al. [6], is0msenthe orig- rom their corresponding parents are marked Wifi), an'd_ con-

inal DTD (make forbidden nodes optional). In some cases it is d|t|ona||y_acce35|ble e!eme_nt types are mar_ked by qu_alnje,r_qQ

unacceptable to expose even the loosened DTD to final user, sinc@ndq?’ (_F'g' 3(3)()1‘ $Iog|dn IS ﬁ dyna(ljmlc’v?rla.ble that is assigned

highly confidential information, such as “unreliable” letters, can be at run time and depends on the students login name. 0

deduced anyway. The construction of a fully annotated document depends heavily
In traditional relational databases users accadswof the data on the overall security policy that is chosen to get completeness [7].
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(a) Security annotation defined at DTD level

g1 = ancestor::application [./student-data
g2 = ./student-data

g3 = ancestor::application

[@id = $login
[./@id = $login ]
[./student-data

|/waiver /text() —="true’]];

[@id = $login  ];

(b) Meaning of security annotation qualifiers

Figure 3: Security annotation for competing student
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(a) Security DTD view

zp1 = ./student-data  [@id = $login ]
xp2 = ./letter  /(favorable U unfavorable )/rating [q]
xps = ./letter  /(favorable Uunfavorable )/free-text [q]
xps = ./(e Uunreliable )/recomm-letter
whereq = applications /application /student-data  /waiver ="true”

(b) Meaning of XPath expressions

Figure 4: Security view for competing student

The top-down procedure that we describe next is the resutiost-
specific-takes-precedengelicy which simply says that an unla-
belled node takes the security label of its first labelled ancestor.
Damiani et al. [6] use alosedpolicy as default: if a node is not
labelled then label it al. We return to this issue in Sec. 7, where
we extend our model to allow alternate propagation techniques.

Definition 4.2: Let (D, ann) be a authorization specification and
T a XML document conforming t@. Theauthorized versioA’s
of T according the authorization specification is obtained ffBm

as follows:

1. TypeT with respect taD and label nodes withnn values;

2.

4.

Evaluate qualifiers top down starting from the root and re-
place annotations by or N depending on the result;

. For each unlabelled node, label it with the annotation of its

nearest labelled ancestor;

Delete all nodes labelled witN from the result, making all
children of a deleted nodeinto children ofv’s parent.



tAlgorithm:  MATERIALIZE

Input: a documentT conforming to DTD D, a DTD View
(Dv,0)

Example 4.2:Fig. 4(a) shows the security view generated from the Output: a materialized views of T" or L (there is no such view)

security specification in Fig. 3(a). It hides confidential informa-  1: for all nodesn of type A in T do

The annotation of the document, before deleting nodes in the las
step, is called th&ull annotationof 7. |

tion. Fig. 4(b) lists some of the XPath annotations that are used to 2:  letA — P (A) the corresponding rule i,
populate the appropriate element types form the original document 3:  for all B occurring inP (A) do
DTD. O 4: precomputes_., [0 (A — P (A), B)[| ({n})
. . - . 5: assign tdl's the root ofT" and mark it as unprocessed

SinceT is a t_ree (a node_ has only one ancestor) it is not possible 6 while there are unprocessed node§indo

to have a conflict on labelling. : .
. . . T select an unprocessed nadef type A with rule A —
The pruning algorithm is more severe than that used by Damiani :
. P(A)in D,

et al. [6] who delete only subtrees that are entirely labdalednd 8: make the nodes in
delete only the data from nodes labellddvith some descendant '
labelledY. As a consequence, the authorized viw no longer S_[le(A— P(A),B)|]({n})
conforms to the original DTDD, not even to its loosened variant. B OCCUTS iNP(4)

Example 4.3: In example 3.1 sincenreliable is forbidden,
the user should not even know that it exists. So he receives docu- 9:
ments without it. ]

in T as unprocessed childrenofin T's
if a child ofn already occurs as a processed nod€dn

then
More sophisticated ways of annotation are presented in [10, 18]. 10: return_L (invalid view)
In particular, [10] uses XQuery to define derivation access control 11: maken as processed
rules from the existing ones that are organized as XACL privilege
triples <object, subject, access-right[14]. The proposal of [18] Figure 5: Algorithm MATERIALIZE

is based on the conception of Role Graph Model merged with the
conception of RBAC for object-oriented databases.

Not all views are valid: wrong typing, violated cardinality con-
5. SECURITY VIEWS straints, and other problems could be all causes of of a view to be
invalid. However, the views that we construct from an annotated
DTD are valid.
Security specification and views are related as follows.

We now turn to the enforcement of an access specification. To
this end, we introduce the notion sécurity viewwhich consists of
two parts. The first part is a schema that is seen by the user, while
the second part is a function that is hidden from the user, which de- Definition 5.4: Let (D, ann) be an authorization specification, and
scribes how the data in the new schema should be derived from thelet S = (D.,, o) be a security view foD. S is data equivalento
original data. The intuition behind our approach is similar to that of (D, ann) iff for every documenfl’ conforming toD, the material-
security views for relational databases in multi-level security [13] ized versiorls coincides with the authorized versian. O

and the notation is borrowed from [8]. Given a security views = (D,,, o) and documeril’ conforming

Definition 5.1: Let D be a DTD. Asecurity viewfor D is a pair to a DTD D, we show how to constru@s in Fig. 5.
(Dy, o) whereD, is a DTD ando is a function from pairs of el-
ement types such that for each element typim D, and element
type B occurring inP (A), o(A, B) is an expression if’. O

Proposition 5.1: If S = (D, o) is a valid view forD, then the
result of AlgorithmMATERIALIZE is a documenfls that is the
materialized version df. |

Definition 5.2: LetS = (D, o) be a security view. The semantics We now study the complexity of the algorithm. Lgtn,d) be

of S is a mapping from document8 conforming toD to docu- the complexity of evaluating an XPath expression of sizen a
mentsTs such that document of sizé. Let|o| be the size of the largest XPath expres-
sion in the range of. Gottlob et al. [11] have shown that for Cor-
1. Ts conforms toD, eXPath (i.e.X without union and test) itig(|o|, |T]) = |o| x |T.
) We extend their result t& without test and, with an increase in
2. The nodes off’s are a subset of the nodes Bf and their complexity, to the fullt’ fragment.

element type is unchanged. . -
Theorem 5.2: Algorithm MATERIALIZE computes a materialized

3. For any node: of T which is in T, let A be the element ~ View intimeO(f(lo|, [T') x [T']). 0
type ofn, and letB;, ..., By, be the list of element types

that occur inP (A). Then the children of in T's are Lemma 5.3: Every XPath query € Xor.. over a documenil’

r can be evaluated in tim@(|p| x |T). O
S_ [|lo(A, By)|] ({n}) . The naive implementation of unia@\L. [|p1/(p2 U ps)|] (V) would
1<i<m lead to an exponential blow up. To avoid it we use a query DAG

These nodes should be ordered according to the documenthteaoI of aquery tree.

order in the original document. Lemma 5.4: Every XPath query € X over a document’ can be
evaluated in timed(|p| x |T|?). i

The test operation increases slightly the complexity because the
computation of theD (c) operator requires the comparison of the
str valuec with thestr value at every node of the tree.

Ts is called thematerialized versioof 7" w.r.t. the viewsS. ]

Definition 5.3: A valid security view is one for which the seman-
tics are always well-defined, i.e., if for every docum@htits ma-
terialized version conforms to the security view DTD. a Corollary 5.5: Every valid DTD view whose annotations areih



respectively iy, r.s:, can be materialized i®(|o| x |T)?), resp.
O(|o| x |T)?), by AlgorithmM ATERIALIZE. O

1:
6. FROM AUTHORIZATION SPECIFICA- 2:
TIONS TO VIEWS s
Our main result is to show how to construct a security view, given g:
a document DTD and an authorization specification on it. The idea 6:
behind our algorithm is to eliminate qualifiers by expanding each 7:
qualifier into a union of two element types: one is the original el- ’
ement type, which is annotatéd, and the other is a new type,
essentially a copy of the original type, which is annotdie®ince
the tag of an element uniquely determines the type, it follows that
new type names cannot match any nodes in a document that con-llj
forms to the original DTD. This is not a serious problem, as all of 12:

these new type names are deleted in the final security view.

The next step expands the annotation to a “full annotation”. The
notion of a full annotation was defined on annotated documents,
and we showed that every document has a unique full annotation.
At the schema level, however, this is not the case, as there may 7
be several “paths” in the DTD that reach the same element type

each of which results in a different annotation. We use a similar ig
technique to the way we handle qualifiers, i.e., we introduce new 20:
element types, and label the original ovieand the “copy”N. Fi- 21:
nally, we delete all the element types that are labeMlethodifying 22:
the regular expressions and théunctions correspondingly. 23j
We show the algorithn ANNOTATE VIEW in Fig. 6 and algo- 24j
rithm BuiLD VIEW in Fig. 7. 25;

Definition 6.1: Let S = (D, ann) be an authorization specifica-
tion. The DTD constructed bANNOTATE VIEW algorithm is the 26:
fully annotatedDTD corresponding tdD, ann). O 27:
Theorem 6.1: Let (D, ann) be a security specification whefe is gg
non-recursive. AlgorithmsANNOTATE VIEW and BUILD VIEW 30:
terminate and produce a valid security view. O 31:
32:

Theorem 6.2: Let (D, ann) be a authorization specificatiorf)

is non-recursive, letD,,, o) the security view constructed by Algo-
rithmsANNOTATE VIEW and BuILD VIEW. LetT be a document,
T4 the authorized version @ andTs the materialized version of

Algorithm: ANNOTATE VIEW
Input: A authorization specificatiofD, ann)
Output: Fully annotated DTDD

Initialize D, := D whereann is defined onD,, as onD;
for all production rulesA — P (A) in D,, do
for all element types3 occurring inP (A) do
initialize 0 (A — P (A), B) := Ble]
//Below we will eliminate qualifier annotation
for all element types3 with ann(B) = Q[q] do
add toD,, a new element typ&’ and a production rule
B'— P(B')
setP (B') := P (B)
for all element type€ occurring inP (B’) do
o(B'— P(B'),C):=0(B— P(B),C)
setann(B) = Y andann(B’) = N
for all production rulesA — P (A) do
if B occursinP (A) then
o (A— P(A),B) := Blg;
o (A— P(A),B') := Bl~q);
replaceB by B + B’ in P (A)

17: //Below we will get fully annotated DTID

: while ann(B) of some element typeB is undefinedlo
if all generatorsA of B have definednn(A) then
if allann(A) =Y then
setann(B) :=;
else ifall ann(A) = N then
setann(B) := N;
else
add toD,, a new element typ®&’ and a production
rule B" — P (B’)
setP (B') := P(B)
for all element type€ occurring inP (B’) do
c(B'"— P(B),C):=0(B— P(B),C)
setann(B) =Y, ann(B’) = N,
for all generatorsA of B do
if ann(A) = N then
replaceB with B" in P (A)

Figure 6: Algorithm ANNOTATE VIEW

T with respect tq D,,, o). ThenT 4 is isomorphic tdls. |

The proof is done by a top-down induction @h The root ofT"
is clearly in bothT'4 andTs. By induction, assume thatis of type
A, andisin botil’4, andT’s. We must show that each chitdin 7’4
is also a child ofz in T's, and vice versa. The result then follows,
as the order of the children of is the same in both documents.
Note, that it is essential that nodesAnshould be ordered with the
document order.

Let, thereforem be a child ofn in T4, of type B. Assume, first,
thatm is a child ofn in the original documenf’. Consider the
fully annotated DTD(DF, ann’). Sincen isin Ts, ann’(A) =Y.
Sincem is in T4, it follows thatann(B) cannot be equal tl, and
henceann’(B) =Y, and so element typB is in D,,. Furthermore,
if ann(B) = Q|qg], theng must hold atn.

We must show thatn is in S_, [[c (A — P (A), B)|] ({n}).
Letp = o(A, B). The algorithmANNOTATE VIEW initially sets
p = B (step 2), may replaceby BJq] in step 12, and may add ad-
ditional disjuncts in step 2 of algorithBuiLD VIEW. In all cases
m is clearly in the result.

Finally we consider the case whenis a descendant (not a child)
of n in T and show thain is in S—. [|o(A, B)|] ({n}). For the
converse, we consider the case thats a child ofn in Ts and
show thatm is a child ofn in T4. The tricky bit is that at an

Algorithm: BuILD VIEW
Input: Fully annotated DTDD
Output: A security view ., o)
1: for all element typed3 with ann(B) = N do
2 for all production rulesA — P (A) do
3: if B occursinP (A) then
4: for all C that occurs inP (B) do
5 set
oc(A— P(A)
oc(A— P(A)
c(A— P(A)
6: replaceB by P (B) in P (A) if B — P(B) exists
and bye otherwise
7: D, consists of all the element typesfor whichann(A4) =,
with the o function restricted to these types.

,O):
»B) /o (B — P (B),C)uU
70)

Figure 7: Algorithm BuILD VIEW

intermediate step we introduce types (the one annotatedNyith
that have no correspondence with the document. To have them
typed appropriately, we extend the notion of typing so that the new
types will also match the corresponding old type from which they
are generated.



The complexity of the algorithm follows from Theorem 6.3:

Theorem 6.3: Let (D, ann) be a authorization specification for a
non-recursive DTD, leP be size of the largest production rule in
D. Letny be the number of element types annotated Witland

let nowmer the number of element types otherwise annotated or not
annotated. Then the size of the select functiagenerated by the
algorithm is bounded b (n,:ner X |ann|) and the size of the View
DTD D, is bounded by (ny x Pmother+1), O

The above upper bound is tight as the following example shows:

Example 6.1:Consider DTD with the productiomot — A, and
A; — A¢+1Ai+1 forte =0...n—1and Whereann(Ao) = N,
ann(A,) =Y. Then the DTD ViewD, has only one rule

2ntimes
224
root — A,...A

n oy

and the select function is(root , A,) = Ao/ -+ /An.

7. OTHER SECURITY POLICIES

Our model is based on a specific policy, used for determining a

complete authorization specification of a document based on a par-

tial specification. This is thenost-specific-takes-precederpa-
icy [7]. Different applications may have different requirements,
and we now look at alternative approaches:

Local Propagation Policy: “open”, “closed”, or “none”;
Hierarchy Propagation Policy: “topDown”, “bottomUp”, or “none”;

Structural Conflict Resolution: “localFirst”, “hierarchyFirst”, or
“none”;

Value Conflict Resolution: “denialTakesPrecedence”, “permission-
TakesPrecedence”, or “none”.

The Local Propagation Policy is similar to traditional policies
for access control: in the case of “open”, if a node is not labeélled
then itis labelled byy; in the case of “closed”, a node not labelled
Y is labelled byN.

The Hierarchy Propagation Policy specifies node annotation in-
heritance in the tree. In the case of “topDown”, an unlabelled node
with a labelled parent inherits the label of its parent. In the case of
“bottomUp” an unlabelled node inherits the label from a labelled
children. Note that the “bottomUp” case can result in conflicts, and
they should be addressed by the Value Conflict Resolution Policy.

The Structural Conflict Resolution Policy specifies whether the
local or hierarchy rule takes precedence (“localFirst” or “hierar-
chyFirst” respectively); while “none” means that the choice de-
pends on the values and on the Value Conflict Resolution Policy.
The latter specifies how to resolve conflicts for unlabelled nodes
that are assigned different labels by the preceding riNeatways
has precedence ovaf (“denialTakesPrecedenceY; always has
precedence ove (“permissionTakesPrecedence”), and no choice
(“noneTakesPrecedence”).

Definition 7.1: A policy is completeand consistentif every par-
tially annotated tree can be extend to a fully annotated tree.O

A comprehensive analysis of all possible policy combinations
gives the theorem:

Theorem 7.1:In Table 1, where * means “any”, policies following
the conditions of lines 1-7 are sound and complete, policies follow-
ing the conditions of line &re not complete, policies following the
conditions of lines 911 are not consistent. a

8. EXTENSIONS

One restriction in our current proposal is related to nonrecur-
sive DTDs. For authorization specification of recursive DTD it is
possible to derive a fully annotated DTD by modifying step 18 of
the algorithmANNOTATE VIEW, but one cannot construct a select
function in XPath, because XPath lacks the full Kleene-star oper-
ator. Using the present algorithm, we can obtain an approximate
solution: by stopping the modifiedNNOTATE VIEW after a finite
number of iterations of step 1 &uIiLD VIEW we have asecrecy
preservingview.

The second extension is related to policies over XML documents
expressed as XPath queries [6] tagged to principals. If the principal
in the specification is matched to the actual requester then XPath
queries are used to select the subset of nodes that are labelled with
some security attribute. It is possible to translate that security spec-
ification into our framework.

9. IMPLEMENTATION

We have implemented a preliminary version of a Java tool that
outputs a “sanitized” XML document, i.e. document that contains
only permitted nodes and the DTD view.

Firstly, we use Xerces Java DOM paréend Wutka DTD parset.
The latter we modified to distinguish security policy attributes lo-
cated at root element and security annotations over the rest of DTD.

Then partially annotated DTD is extended to a full annotated
one according to the algorithdiNNOTATE VIEW. Next we apply
BuiLD VIEW to produceD, which is used to materialize view of
XML documentTs according to the algorithriM ATERIALIZE.

10. RELATEDWORKAND CONCLUSIONS

A number of security models have been proposed for XML (see
[9] for a recent survey). Specifying security constraints with XPath
on top of document DTDs was discussed in [6]. The semantics of
access control to a user is a specific view of the document deter-
mined by the XPath access-control rules. A view derivation algo-
rithm is based on tree labelling. Issues like granularity of access,
access-control inheritance, overriding, and conflict resolution are
studied in [2, 6].

A different approach is explored in [4]. In a nutshell, access
annotations are explicitly included in the actual element nodes in
XML, whereas DTD nodes specify “coarse” conditions on the exis-
tence of security specifications in corresponding XML nodes. Only
elements with accessible annotations appear in the result of a query.

Stoica and Farkas [17] proposed to produce single-level views
of XML when conforming DTD is annotated by labels of different
confidentiality level. The key idea lies in analyzing semantic cor-
relation between element types, modification of initial structure of
DTD and using cover stories. Altered DTD then undergoes “filter-
ing” when only element types of the confidentiality lever no higher
that the requester’s one are extracted. However, the proposal re-
quires expert’s analysis of semantic meaning of production rules,
and this can be unacceptable if database contains a large amount of
schemas which are changed occasionally.

This paper elaborates on certain issues left open in [8]. In partic-
ular, we studied access control and security specifications defined
over general DTDs in terms of regular expressions rather than nor-
malized DTDs of [8]. Furthermore, we developed a new algorithm
for deriving a security view definition from more intuitive access
control specification (w.r.t. a non-recursive DTD) without introduc-

2http://xml.apache.org/xerces2-j/
3http:/iwww.wutka.com/dtdparser.html



Table 1: Policy conditions

hierarchy | local | structural conflict| value conflict condition

1 | topDown | #none| hierarchyFirst * *

2 | topDown | none * * root is annotated

3 | bottomUp| #none| hierarchyFirst F#nhone *

4 | bottomUp| none * Z£none leaves are annotated

5 * #none localFirst * *

6 none #none * * *

7 #nhone | #none noneFirst Z#none *

8 none none * * *

9 #none | #none none none *

10 | bottomUp * hierarchyFirst none *

11 | bottomUp| none | =#hierarchyFirst none *
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