
Simulating Midlet’s Security Claims with Automata Modulo
Theory

Fabio Massacci Ida S.R. Siahaan
Department of Information Engineering and Computer Science (DISI), University of Trento - Italy

name.surname@disi.unitn.it

Abstract
Model-carrying code and security-by-contract have proposed to
augment mobile code with a claim on its security behavior that
could be matched against a mobile platform policy before down-
loading the code. In order to capture realistic scenarios with poten-
tially infinite transitions (e.g. “only connections to urls starting with
https”) we have proposed to represent those policies with the no-
tion of Automata Modulo Theory (AMT), an extension of Büchi
Automata (BA), with edges labeled by expressions in a decidable
theory.

Our objective is the run-time matching of the mobile’s platform
policy against the midlet’s security claims expressed as AMT . To
this extent the use of on-the-fly product and emptiness test from
automata theory may not be effective. In this paper we present an
algorithm extending fair simulation between Büchi automata that
can be more efficiently implemented.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; I.1.2 [Symbolic and Al-
gebraic Manipulation]: Algorithms

General Terms Security, Theory, Verification

Keywords automata, security policy, mobile code

1. Introduction
Pervasive services (Bacon 2002) envisions a nomadic user travers-
ing a variety of environments and seamlessly and constantly receiv-
ing services from other portables, handhelds, embedded or wear-
able computers. The nomadic user does not only invoke services
in push or pull mode but also download new applications that are
locally available. These pervasive client downloads will appear be-
cause service providers will try to exploit the computational power
of the nomadic devices to make a better use of the services available
in the environment (Dragoni et al. 2007b).

Managing security of services in this scenario is a major chal-
lenge as the current security model adopted for mobile phones (the
JAVA MIDP 2.0) is the exact negation of this business idea: mobile
code is run if its origin is trusted (i.e. digitally signed by a trusted
party). The level of trust of determines the privileges of the code
and untrusted code is forbidden to have any interaction with the
environment.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLAS’08, June 8, 2008, Tucson, Arizona, USA.
Copyright c 2008 ACM 978-1-59593-936-4/08/06. . . $5.00

Even if we accept the signature, we still have another problem:
there is no semantics attached to the signature. This is a problem
for both code producers and consumers. From the point of view
of mobile code consumers they must essentially accept the code
as-is without the possibility of making informed decisions, while
from code producer they produce code with unbounded liability.
They cannot declare which security actions the code will do, be-
cause by signing the code they essentially declare that they did it.
Consequently, injecting an application in the mobile market is a
time consuming operation as developers must convince the opera-
tors that their code is not harmful.

We can apply a security reference monitor which observes exe-
cution of a target system and halts that system whenever it is about
to violate some security policy of concern (Schneider et al. 2001;
Erlingsson 2003). While security monitors remains the bottom-line
action, we could be more effective if we start asking some questions
about the code.

The first question is whether the code satisfies some pre-defined
policy. The Bytecode verifier in Java does exactly this first prelim-
inary check. More advanced techniques based on Proof-Carrying
Code (Necula and Lee 1996; Necula 1997) extend the scope of
what can be actually checked. One of the limitation of the ap-
proaches based on language-based security is that the policy is tied
to the programming language, therefore it is difficult to customize
the policy on a per-user base.

We need to lift the question to a more flexible one: does the code
satisfy a user-defined policy? In general case this is equivalent to
arbitrary software verification which is not practical for pervasive
downloads. However the idea behind model-carrying code (Sekar
et al. 2003) and security by contract (Dragoni et al. 2007a) is that
code should come accompanied with a ”digest” (a security model
or a security contract) that represents its essential security behavior.
Then one only needs to check the latter against the user predefined
security policies.

The interesting problem which is the focus of our research it
matching the security claims of the code with the security desires
of the platform. Matching can be done off-line (e.g. a developer
checking its claims on a variety of Vodafone’s default policies) or
on-line (e.g. a user who downloads a midlet and runs it).

In this paper we build on the concept of Automata Mod-
ulo Theory (AMT) proposed in (Massacci and Siahaan. 2007).
AMT generalize the finite state automata of model-carrying code
(Sekar et al. 2003) and extends Büchi Automata (BA). It is suit-
able for formalizing systems with finitely many states but infi-
nitely many transitions by leveraging on the power of satisfiability-
modulo-theory (SMT for short) decision procedures. AMT en-
ables us to define very expressive and customizable policies as a
model for security-by-contract as in (Dragoni et al. 2007a) and
model-carrying code (Venkatakrishnan et al. 2002) by capturing

the infinite transition into finite transitions labeled as expressions
in defined theories.

Since our goal is to provide this midlet-contract vs platform-
policy matching on-the-fly (during the actual download of the mi-
dlet) issues like small memory footprint, and effective computa-
tions play a key role. In (Massacci and Siahaan. 2007) we showed
that the tractability limit is the complexity of the satisfiability pro-
cedure for the underlying theories used to describe labels: we use
NLOGSPACE and linear time algorithms for the automata theoretic
part (Holzmann 2004) with oracle queries to a decision procedure
solver1.

This however requires to complement the policy of the mobile
platform and if we assume a general non-deterministic automaton
this complementation might lead to an exponential blow-up. A
second problem is that in this way we need two representations
of the policy: a direct representation of the policy as an automata
that we can use for run-time monitor (Vanoverberghe et al. 2007)
and the complemented representation that we use for matching.

1.1 The contribution of this paper
We propose to use the notion of simulation for matching the secu-
rity policy of the platform against the security claims of the midlet.
Simulation is stronger than language inclusion (i.e. less midlets will
obtain a green light) but they coincide for deterministic policies.

In the next section we present an overview of security-by-
contract framework providing a description of the overall life-cycle
of mobile code in this setting and we also describe mobile appli-
cations security requirements and contract specification as motiva-
tions forAMT . Then, we introduceAMT and the corresponding
automata operation (x3) and some specific issues to be considered
in AMT . We describe simulation, symbolic simulation and fair
simulation for AMT (x4). Finally, we present algorithm for lift-
ing finite state tools to AMT simulation (x5).

2. Intuitions and Motivations
To understand better the motivation behind this work we consider
how a midlet-life cycle would be in the security-by-contract (SxC
for short) paradigm (Dragoni et al. 2007a).

After, or better during the application development, the mobile
code developers are responsible to provide a description of the se-
curity behavior that their code finally provides. Such a code can
then undergo a formal certification process which can be done by
the developer’s own company, the mobile operator or any other
third party for which the application has been developed. By using
suitable techniques such as static analysis or monitor in-lining or
proof carrying code the code is certified to comply with the devel-
oper’s contract. Subsequently the code and the security claims are
sealed together with a digital signature and shipped for deployment
as shown on Fig.1.

EXAMPLE 2.1. The Personal Information Management (PIM)
system on the phone has the ability to manage appointment
books, contact directories, etc. in electronic form. A privacy con-
scious user may restrict network connectivity by stating a policy
rule: “After PIM was opened no connections are allowed”. This
contract permits executing Connector.open() method only if
PIM.openPIMList() method was never called before. This is only
a toy example to illustrate a security policy.

1 In a nutshellAMT makes reasoning about infinite state systems possible
without symbolic manipulation procedures of zones and regions or finite
representation by equivalence classes (Henzinger et al. 2005) which would
not be suitable for our intended application i.e. checking security claims
before a pervasive download on a mobile phone.

REMARK 2.1. We use the word policy for a platform security pol-
icy. We use the word contract for security claims made by a midlet.

At deployment time the target platform will follow the workflow
that we have sketched in Fig.2 (see also (Vanoverberghe et al.
2007). At first it checks that the evidence is correct. Such evidence
could be a trusted signature as in standard mobile applications
(Yee 1999). An alternative evidence could be a proof that the code
satisfies the contract (and then one could use PCC techniques to
check it (Necula 1997)).

Once we have evidence that the contract is trustworthy the
platform will check that the claimed policy is actually compliant
with the policy that our platform would like to be enforced. If this is
the case, then the application can be run without further ado Fig.2.
This might be a significant saving from in-lining a security monitor.

EXAMPLE 2.2. The policy of an operator may only require that
“After PIM was accessed only secure connections can be opened”.
This policy permits executing
Connector.open(string url) method only if the started con-
nection is a secure one i.e. url starts with “https://”.

Matching should succeed if and only if by executing an applica-
tion on the platform every behavior of the application that satisfies
its contract also satisfies the platform’s policy. If matching fails but
we still want to run the application, then we use either a security
monitor in-lining into the code or run-time enforcement of the pol-
icy by running the application in parallel with a reference monitor
that intercepts all security relevant actions. However with a con-
strained device where CPU cycles means also battery consumption,
we need to minimize the run-time overheads as much as possible.

Typically the policy will cover a number of issues such as file
access, network connectivity, access to critical resources or secure
storage. A single contract can be seen as a list of disjoint claims
(for instance rules for connections). An example of rule for sessions
regarding PIM and connection is shown in Ex. 2.1, it could be one
of the rules of a contract. Another example is a rule for methods
invocation of a Java object as shown in Ex. 2.2. This example
can be one of the rules of a policy. Both examples describe safety
properties, which are the common properties we want to verify.

Although most properties are safety properties, liveness proper-
ties also exist as shown in Ex. 2.3.

EXAMPLE 2.3. If the application should use all the permissions
it requests then for each permission p at least one reachable
invocation of a method permitted by p must exist in the code.
For example if p is io.Connector.http then a call to method
Connector.open() must exist in the code and the url argument
must start with “http”. If p is io.Connector.https then a call
to method Connector.open() must exist in the code and the url
argument must start with “https” and so on for other constraints
e.g. permission for sending SMS.

The security behaviors provided by the contract and desired by
the policy can be represented as automata where transitions corre-
sponds to invocation of APIs as suggested by Erlingsson (Erlings-
son 2003, p.59) and Sekar et al. (Sekar et al. 2003). Then the op-
eration of matching the midlet’s claim with platform policy can be
mapped into classical problems in automata theory.

One possible alternative is language inclusion: given two au-
tomata AutC and AutP representing respectively the formal spec-
ification of a contract and of a policy, we have a match when the
execution traces of the midlet described by AutC is a subset of the
acceptable traces for AutP . To check this property we can comple-
ment the automaton of the policy, thus obtaining the set of traces
disallowed by the policy and check its intersection with the traces
of the contract. If the intersection is not empty, any behavior in it

Figure 1. Mobile Code Components with Security-by-Contract

Figure 2. SxC Workflow

corresponds to a security violation. We have pursued this avenue in
(Massacci and Siahaan. 2007).

The other alternative is the notion of simulation: we have a
match when every APIs invoked by AutC can also be invoked by
AutP . In other words, every behavior of AutC is also behavior
of AutP . Simulation is usually a stronger notion than language
inclusion as it requires that the policy allows the actions of the
midlet’s contract in a ”step-by-step” fashion, whereas language
inclusion looks at an execution trace as a whole.

While this idea of the security-digest is almost a decade old
(Sekar et al. 2003; Erlingsson 2003) the practical realization has
been hindered by a significant technical hurdle: we cannot use the
naive encoding into automata for practical policies. Even the basic
policies in Ex. 2.1 and Ex. 2.2 will lead to automata with infinitely
many transitions.

Fig.3(a) represents an automaton for Ex. 2.2. Starting from state
p0, we stay in this state while PIM is not accessed (jop). As PIM
is accessed we move to state p1 and we stay in state p1 only
if the started connection Connector.open(string url) method is

a secure one i.e. url starts with “https://” or we keep accessing
PIM (jop). We enter state ep if we start an unsecure connection
Connector.open(string url) e.g. url starts with “http://”or “sms://”
etc. These examples are from a Java VM. Since we do not con-
sider useful to invent our own names for API calls we use the
javax.microedition APIs (though a bit verbose) for the nota-
tion that is shown in Fig.3(b).

3. Automata Modulo Theory
The theory of Automata Modulo Theory (AMT for short) is a
combination of the formal notion of Büchi Automata (BA) with
the notion of Satisfiability Modulo Theories (SMT).

The intuition is that we represent a security policy as BA au-
tomaton where edges are not labeled by atomic actions but rather
by expressions in a suitable theory. We prefer to use BA, rather
than classical security automata, as there are some liveness proper-
ties which have to be verified, e.g. Ex 2.3.

(a) Infinite Transitions Security Policies

joc(vjoc;1)
:
= io.Connector.open(url)

jop
:
= pim.PIM.openPIMList(: : :)

q
:
= io.Connector.type

is protocol type e.g. “http”

pr(q) = type
:
= permission qis for protocol type

p(url) = type
:
= url:startsWith(type)

(b) Abbreviations for Java APIs

Figure 3. Infinite Transitions Example

The real scientific trick is the use of satisfiability modulo theory
for reasoning about allowed APIs.

EXAMPLE 3.1. When comparing a policy asking that
protocol(url)=``https'' and port(url)=``8080'' with a
contract claiming to use only connections where
protocol(url)=''https'' or protocol(url)=``http'' we
do not need to extract a protocol from the url. It is enough that we
deal with protocol and port as uninterpreted functions and apply
the theory of equality and uninterpreted functions EUF .

Return to our examples Ex. 2.1 and Ex. 2.2. Figure4(b) shows
an automaton modulo theory corresponding to policy of Ex. 2.2
and the automaton with infinitely many transitions from Fig.3(a).
Fig. 4(a) corresponds to the contract from Ex. 2.1. The notation is
the same from Fig.3(b).

EXAMPLE 3.2. We can use the quantifier-free fragment of Linear
Arithmetic over the integers LA(Z) when the actions of the policy
or the contract sets limits on resources such as downloading a file
of at most 50KB as opposed to to 100KB.

Some theories of interest are the theory of difference logic DL
the theory EUF of equality and uninterpreted functions, LA(Q)
and the integersLA(Z). As in (Bozzano et al. 2005) we are particu-
larly interested in the combination of two or more simpler theories.
While this is a not complete list, our only requirement for a theory
T is that the T -satisfiability of conjunctions of ground literals is
decidable by a T -solver (Nieuwenhuis et al. 2006).

We assume the usual notion of signature � with variables V =
fx; y; z; v; :::g, function symbols F = fc; d; f; g; :::g and predi-
cate symbols P = fp; q; :::g. Terms and formulas are defined in
the usual way over the boolean connectives :;_;^. A first-order
�-structure A consists of a set A of elements as domain, a map-
ping of each n-ary function symbol f 2 � to a total function
fA : An ! A, a mapping of each n-ary predicate symbol p 2 �
to a relation pA � An.

Let A denote a structure, � a formula, and T a theory, all of
signature �. We use the notation (A; �) j= � when � evaluates to
true in A under the variable assignment � : V ! A. We say that �
is satisfiable in A if there exists some � such that (A; �) j= �. We
denote by E as a set of formulas.

DEFINITION 3.1 (Automaton Modulo Theory). A tuple A =
hE;S; q0;�T ; F i is an automaton modulo theory T where E is a
set of formulas in the language of the theory T , S is a finite set of
states, q0 2 S is the initial state, �T : S � E ! 2S is labeled
transition function, and F � S is a set of accepting states.

We say that (s; e; t) 2 �T when t 2 �T (s; e). The intuition
is that variables represent parameters over invoked methods. For
example a guard x < 3 where x is some external parameter of a
Java method means that this edge will be taken each time the Java
method is invoked with a value of x smaller than 3. This is different
from traditional state variables in classical hybrid automata for state
variable x where the ”same” guard means that after taking the
transition x must be smaller than 3.

The runs of the system are the traces of actual values of invoked
APIs, represented by assignments.

DEFINITION 3.2 (AMT concrete run). LetA = hE;S; q0;�T ; F i
be an automaton modulo theory T . A concrete run modulo T
of A is a sequence of states alternating with assignments =
hs0�0s1�1s2�2; : : :i, such that:

1. s0 = q0
2. there exists expressions ei 2 E such that si+1 2 �T (si; ei)

and (A; �i) j= ei holds for all i 2 [0 : : : jwj] (resp. i 2 N).

The trace associated with is sequence of assignments w =
h�0; �1; �2; : : :i. A finite run is accepting if sjwj goes through some
accepting states. An infinite run is accepting if the automaton goes
through some accepting states infinitely often as in BA.

We use definition of run as in (Etessami et al. 2005) which is
slightly different from the one we use in (Massacci and Siahaan.
2007), where we use only states, in order to accommodate simula-
tion.

The notion of symbolic run is what would correspond to the
traditional notion of run in automata.

DEFINITION 3.3 (AMT symbolic run). LetA = hE;S; q0;�T ; F i
be an automaton modulo theory T . A symbolic run modulo
T of A is a sequence of states alternating with expressions
� = hs0e0s1e1s2e2; : : :i, such that:

1. s0 = q0
2. hsi; ei; si+1i 2 �T and A; �j j= ei holds for some j

(a) AMT rule of a contract from Ex. 2.1 (b) AMT rule of a policy from Ex. 2.2

Figure 4. AMT Examples

The trace associated with � is sequence of assignments w =
he0; e1; e2; : : :i.

REMARK 3.1. The condition that A; �j j= ei holds for some j
implies that every expression in the trace must be satisfiable and
is necessary to guarantee that symbolic traces correspond to at at
least one real, concrete execution.

In order to understand better the semantics of an automaton
modulo theory we can consider the corresponding concrete au-
tomaton which is constructed by replacing each transition labeled
with an expression from the theory with the infinitely many tran-
sitions labeled by the corresponding satisfying assignments. Au-
tomata that are different at the theory level might have the same
concrete representation.

For example the two automata modulo theory from Fig.5(a)
have the same concrete model Fig.5(b).

Such equivalence is obvious because at the concrete level if the
assignment �1i is such that (A; �1i) j= joc ^ protocol(url) =
\http00 or (A; �2i) j= joc^protocol(url) = \https00 then clearly
(A; �i) j= joc ^ (protocol(url) = \http00 _ protocol(url) =
\https00). In other words, _ has the maximal model and thus in the
transitions corresponding to the disjunction in the theory it is the
union of all assignments in the concrete automaton.

4. Simulation
At first we introduce the notion of simulation at the concrete level,
among assignments i.e. API calls and then we give the notion of
symbolic simulation as in (Hennessy and Lin 1995). The actual
notion of fair simulation is adapted from (Etessami et al. 2005;
Gurumurthy et al. 2002; Henzinger et al. 1997).

In the sequel we will use s to denote states of the application’s
contract and t to denote state of the platform’s policy.

DEFINITION 4.1 (Concrete Fair Compliance Game). Let Ac and
Ap be AMT with initial states s0 and t0 respectively. A Concrete
Fair Compliance Game GC

Ac;Ap(s0; t0) is played by two players,
Contract and Policy, in rounds.

1. In the first round Contract is on the initial state s0 2 Sc and
Policy is on the initial state t0 2 Sp.

2. Contract chooses a transition hsi; eci ; si+1i 2 �c
T and an

assignment �i such that (A; �i) j= eci) and moves to si+1.
3. Policy responds by a transition hti; epi ; ti+1i 2 �p

T such that
(A; �i) j= epi) and moves to ti+1.

The winner of the game is determined by the following rules:

� If the Contract cannot move then Policy wins.

� If the Policy cannot move then Contract wins.
� Otherwise there are two infinite concrete runs
!
s= hs0�0s1�1s2�2; : : :i and

!

t= ht0�0t1�1t2�2; : : :i re-
spectively of Ac and Ap. If

!
s= hs0�0s1�1s2�2; : : :i is an

accepting concrete run for Ac and
!

t= ht0�0t1�1t2�2; : : :i is
not an accepting concrete run for Ap then Contract wins. In
other cases, Policy wins.

Intuitively in the compliance game, the Contract tries to make a
concrete move and the Policy follows accordingly to show that
the Contract move is allowed. If the Policy cannot move then
Contract is not compliant: there is a move that the Policy could
not do, i.e. that particular action is a violation.

EXAMPLE 4.1. In a game between the Contract from Fig.4(a)
and the Policy from Fig.4(b), the Contract can choose to invoke
the url http: // www. google. com and the Policy can respond
by selecting the appropriate expression which is also satisfied by
the same assignment.

A more complex situation presents itself in the infinite case.
Infinite runs correspond to liveness properties, e.g. something
good happens infinitely often, for example Ex. 2.3. Therefore, the
Contract only wins (i.e. it breaks the Policy) when according to
its view of the world there are infinitely many good things but not
for the Policy which after some initial good things is trapped in
an endless sequence of unsatisfactory states.

EXAMPLE 4.2. In a game between the Contract and Policy

from Ex.2.3, the Contract can choose to invoke the url https:
// sourceforge. net in a certain step after in some previous
steps it invokes permission io.Connector.https. The Policy

can respond by selecting the appropriate expression which is also
satisfied by the same assignment, which is possible in the game if
Policy has requested permission io.Connector.https in some
previous steps.

Now we can introduce the notion of concrete strategy for
Policy in game GC

Ac;Ap(s0; t0) which is just a partial function
which determines the next move of Policy given the history of the
concrete game up to a certain point.

DEFINITION 4.2 (Concrete Strategy). A partial function f : Sc �
(Sp � � � Sc)� ! Sp is a concrete strategy if for any sequence
hs0�0s1�1 : : : si�isi+1i which is a valid concrete run for Ac

� f(s0) = t0
� f(hs0t0�0s1 : : : siti�isi+1i) = ti+1 such that hti; epi ; ti+1i 2
�p
T and (A; �i) j= epi .

(a) Splitting Edges (b) Disjuncting Expressions

Figure 5. Symbolic vs Concrete Automaton

A concrete strategy f of the game is a Policy winning strategy
if and only if whenever a Policy select the moves of game defined
in Definition 4.1 according to f then Policy wins the game.

DEFINITION 4.3 (AMT Concrete Fair Simulation Relation). An
automaton Ap concretely fair simulates an automaton Ac if and
only if there is a concrete winning strategy for Ap we denote as
Ac v Ap. We also say that Ac complies with Ap.

We have now the machinery to generalize the notion of simula-
tion to symbolic level, among expressions.

DEFINITION 4.4 (AMT Fair Compliance Game). A Fair Com-
pliance Game GAc;Ap(s0; t0) is played by two players, Contract
and Policy, in rounds.

1. In the first round Contract is on the initial state s0 2 Sc and
Policy is on the initial state t0 2 Sp.

2. Contract chooses a transition hsi; eci ; si+1i 2 �c
T such that

eci is satisfiable and moves to si+1.
3. Policy responds by a transition �p

T (ti; e
p
i ; ti+1) such that

eci ! epi is valid and moves to ti+1.

The winner of the game is determined by the rules as in Definition
4.1 with the difference in run where we define run over expressions
instead of assignments.

The intuition is similar to concrete game: Contract tries to
make a symbolic move and the Policy follows suit in order to
show that the Contract move is allowed. If the Policy cannot
move this means that the Contract may not be compliant because
there is a symbolic move that the Policy could not do. However,
as we shall see this might not imply that at the concrete level the
Contract is really non-compliant.

DEFINITION 4.5 (Strategy). A partial function f : Sc�(Sp�E�
Sc)� ! Sp is a symbolic strategy if and only if for any sequence
hs0e

c
0s1e

c
1 : : : sie

c
isi+1i which is a valid symbolic run for Ac

� f(s0) = t0
� f(hs0t0e

c
0s1t1e

c
1 : : : sitie

c
isi+1i) = ti+1 such that

�p
T (ti; e

p
i ; ti+1) and eci ! epi is valid.

A strategy f of the game is a Policy winning strategy if and
only if whenever a Policy select the moves of game defined in
Definition 4.4 according to f then Policy wins the game.

DEFINITION 4.6 (AMT Fair Simulation Relation). An automa-
ton Ap fair simulates an automaton Ac if and only if there is a
winning strategy for Ap we denote as Ac � Ap. We also say that
Ac complies with Ap.

THEOREM 4.1. If Ac � Ap is an AMT fair simulation relation
then Ac v Ap is a concrete fair simulation relation.

Proof. We sketch a proof of Prop. 4.1 by showing the correct-
ness of our construction. In order to show the correctness of our
construction, we first assume Ac � Ap is an AMT fair simula-
tion relation. By Definition 4.6 there is a winning strategy for Ap,
such that whenever a Policy select the moves of game defined in
Definition 4.4 according to strategy f then Policy wins the game.
By Definition 4.4 there are two cases where Policy wins the game:

� Finite game: If the Contract cannot move then Policy wins.
Contract moves by choosing a transition hsi; eci ; si+1i 2 �c

T

such that eci is satisfiable. Contract cannot move means that
there exists no assignments and by Definition 4.1 in concrete
game Contract cannot move either.

� Infinite game: There are infinitely many j such that tj 2 F p or
there are only finitely many i such that si 2 F c.
The compliance game has infinitely many j such that tj 2 F p

when Policy is able to respond infinitely often by a transition
�p
T (tj ; e

p
j ; tj+1) such that ecj ! epj is valid, meaning for all

�j , (A; �j) j= ecj ! epj and by Definition 4.1 with (A; �j) j=

epj), Policy can respond by a transition

tj ; e

p
j ; tj+1

�
2 �p

T .
Furthermore, finitely many i such that si 2 F c occurs when
there is some k such that 8i > k; si =2 F c, meaning Contract

moves by choosing a transition hsi; eci ; si+1i 2 �c
T such that

eci is satisfiable, i.e. there exist �i where (A; �i) j= eci) and by
Definition 4.1 Contract can also move in concrete game.

The concrete strategy f 0 constructed is a winning strategy for Ap

in concrete compliance game, hence by Definition 4.3 Ac v Ap.
�

In contrast to the simulation notions of (Hennessy and Lin 1995)
the converse of Theorem 4.1 does not hold in general.

PROPOSITION 4.1. AMT fair simulation is stronger thanAMT
language inclusion.

The pair of automata in Figure5(b) and Fig.5(a) is a simple counter
example. We can see this from concrete automata in Fig.5(a) and
Fig.5(b) where both are the same thus having not just simulation but
also bi-simulation. However, the AMT on Fig.5(a) cannot simu-
late the AMT on Fig.5(b). The second consequence of this max-
imal model is that in AMT simulation is stronger than language
inclusion. For example if we have policy represented as Fig. 5(b)
and contract represented as Fig. 5(a), where both automata accept
the same language but according to simulation V ALID(e1 ! e2)
does not hold, thus we do not have simulation. Technically this is a
consequence of the maximal model for _.

In order to show thatAMT simulation coincides with concrete
simulation we must impose some additional syntactic constraints
on the automaton.

DEFINITION 4.7 (Normalized AMT). A = hE;S; q0;�T ; F i
is a normalized automaton modulo theory T if and only if for
every q; q1 2 S there is at most one expression e1 2 E such that
q1 2 �T (q; e1).

For example Fig. 5(a) is a normalized automaton while Fig. 5(b) is
not normalized.

We cannot always normalize an automaton by considering the
disjunction of all expressions going to the same state as it may
change nondeterministic automata into deterministic automata (see
Fig. 6). However, if automata are in normalized form then we have
the following theorem:

THEOREM 4.2. For normalized AMT Ac � Ap is a AMT fair
simulation if and only if Ac v Ap is a concrete fair simulation.

Proof. The first direction of Theorem 4.2 follows from Proof 4.
We sketch proof for the second direction by first assuming Ac v
Ap is a concrete fair simulation relation. We have to show that
for every step in the game where Policy in concrete game moves
according to a transition hti; epi ; ti+1i 2 �p

T such that (A; �i) j=
epi) and moves to ti+1, then in symbolic level V ALID(ec ! ep)
holds. This follows as for normalizedAMT by Definition4.7 there
is at most one expression e1 2 E such that q1 2 �T (q; e1), such
that concrete level represents maximal model for _. �

5. A Decision Procedure for Run-Time
Simulation

In order to check the compliance of the policy on the actual device
as defined on Fig.2 a number of preliminary steps is necessary:
we must check the digital signature on the device, compare the
various security rules of the contract and the policy in order to
identify the correct pair of AMT that need to be matched. We
refer to (Dragoni et al. 2007a) for the overall algorithm and to
(Massacci and Siahaan. 2007; Bielova et al. 2008) for the matching
implementation using language inclusion.

However, the procedure for matching using language inclusion
among AMT proposed in (Massacci and Siahaan. 2007) limited
the generality of the policy in order to avoid the exponential blow-
up that occurs when one complements a BA.

So here we propose a different algorithm that uses the concepts
of fair simulation for matching and adapts the Jurdzinski’s algo-
rithm on parity games (Jurdzinski 2000).

DEFINITION 5.1 (Compliance Graph). Let V0 and V1 be two dis-
joint sets, a compliance graph G is a tuple hV1; V0; E; li, where

Algorithm 1 Simulation Algorithm
Require: two AMT automata (contract Contract, policy

Policy)
1: Create compliance game graph G = hV1; V0; E; li
2: �(v) := 0 for all v 2 V
3: while �(v) 6= �new(�; v) for some v 2 V do
4: � := �new(�; v)
5: if � <1 then
6: Simulation exists

� V = V0 [V1
� E � V � V
� l : V ! f0; 1; 2g

where l is the compliance level of the game.

Intuitively the compliance level lv is 0 when Policy accepts, 1
when Contract accepts (but Policy have not accepted yet) and 2
when neither of them accepts.

A compliance game P (G; v0) on G starting at v0 2 V is
played by two players Policy and Contract. The game starts
by placing pebble on v0. At round i with pebble on vi, vi 2
V0(V1), Policy (Contract resp.) plays and moves the pebble
to vi+1 such that (vi; vi+1) 2 E. The player who cannot move
loses. For infinite play � = v0v1v2 : : :, the winner defined as
the minimum compliance level that occurs infinitely often, namely
if the minimum compliance level is 0 or 2 then Policy wins,
otherwise Contract wins.

We apply this compliance game to AMT such that given an
AMT hE;Sc; qc0;�

c
T ; F

ci and an AMT hE;Sp; qp0 ;�
p
T ; F

pi,
we construct a hV1; V0; E; li as follows:

� V1= fv(qc;qp;ec;c)jqc 2 Sc; qp 2 Sp;9q00c:qc 2 �c
T (q

00c; ec)g

� V0= fv(qc;qp;ep;p)jqc 2 Sc; qp 2 Sp;9q00p:qp 2 �p
T (q

00p; ep)g

� E= f(v(qc;qp;ep;p); v(qc;q0p;ec;c))jq0p 2 �p
T (q

p; ep) ^
V ALID(ec ! ep)g [
f(v(qc;qp;ec;c); v(q0c;qp;ep;p))jq

0c 2 �c
T (q

c; ec)g

�

l(v) =

(
0 if v = v(qc;qp;ec;c) and qp 2 F p

1 if v = v(qc;qp;ec;c) and qc 2 F c and qp =2 F p

2 otherwise

Next, we define a compliance value as MG = fxjx � jV1jg [
f1g and a compliance measure � : V ! MG. We use ordering
relation > that depends on l of the current vertex v. If l(v) = 1
then �(v) > �(w). If l(v) = 2 or l(v) = 0 then �(v) � �(w).

The update procedure �new(�; v)(u) is defined as follows:

� �(u) if u 6= v

� �(v) if u = v and l(v) = 0

� maxf�(v);maxf�(u)� 1gg if u = v and l(v) = 1

� maxf�(v);minf�(u)gg if u = v and l(v) = 2

where i� 1 = i+ 1 if i < jV1j and 1 otherwise.
We are now in the position to state our algorithmic results:

THEOREM 5.1. Let the theory T be decidable with an oracle for
the SMT problem in the complexity class C then Alg.1 decides
fair simulation for AMT in time POL � TIMEC and in space
O(jScj : jSpj : j�p

T +�c
T j)

C .

(a) Nondeterministic Automaton (b) Deterministic Automaton af-
ter Normalization

Figure 6. Normalization changes Determinism of an Automaton

6. Conclusion and Related Work
Model-carrying code (Sekar et al. 2003) and security-by-contract
(Dragoni et al. 2007a) proposed to augment mobile code with a
claim on its security behavior that can be matched against a mobile
platform policy before code downloading. In (Sekar et al. 2003) and
in other companion papers only finite automata have been proposed
and they are too simple to express even the most basic security
requirement occurring in practice: a basic security policy such as
only allows connections starting with “https://” already generates
an infinite automaton.

Automata Modulo Theory (AMT) (Massacci and Siahaan.
2007) enables systems formalization with finitely many states but
infinitely many transitions. As we already showed in (Massacci and
Siahaan. 2007), it is possible to define very expressive (essentially
infinite) policies that can capture realistic scenarios while keep-
ing the task of matching computationally tractable. AMT maps
the problem into a variant of on-the-fly product and emptiness
test from automata theory, without symbolic manipulation proce-
dures of zones and regions nor finite representation of equivalence
classes. The tractability limit is essentially the complexity of the
satisfiability procedure for the theories, called as subroutines. The
prototype for matching policies with security claims of mobile ap-
plications using AMT appeared in (Bielova et al. 2008).

Matching using language inclusion as in (Massacci and Sia-
haan. 2007) has a limitation in the structure of the policy automa-
ton, i.e. only deterministic automaton. The constraint arises from
the AMT complementation, where as BA complementation, the
nondeterminic complementation is complicated and exponentially
blow-up in the state space (Büchi 1962). Safra in (Safra 1988),
gives a better lower bound (2O(n log n)) for nondeterministic BA
complementation, however it is still exponential(see (Vardi 2006)).
This limitation does not evolve in matching using simulation as
presented in this paper, because using simulation approach we can
also deal with nondeterministic automata.

Infinite numbers of transitions in security policies by labeling
each transition with a computable predicate instead of an atomic
symbol has been studied in (Schneider 2000). Security automata
á la Schneider can also be mapped to a particular form of AMT
(with all accepting states and an error absorbing state) for which
particular optimizations are possible. Security automata specified
transitions as a function of the input symbols which can be the en-
tire system state. However, AMT differs from security automata
in transitions which are environmental parameters rather than sys-
tem states.

Security monitors were implemented in several systems for
example PoET/PSLang toolkit (Erlingsson and Schneider 2000),
which can enforce security policies whose transitions pattern-
match event symbols using regular expressions. Edit automata

(Bauer et al. 2002) are another model for achieving this. Edit
automata was implemented in the Polymer system (Bauer et al.
2005) to dynamically compose security automata. Most recently,
the Mobile system (Hamlen et al. 2006) implements a linear deci-
sion algorithm that verifies that annotated .NET binaries satisfy a
class of policies that includes security automata and edit automata.
All mentioned approaches focus on the relations between code and
security claims on the code (which we call contract), while AMT
focuses between the security claims of the code and the platform
desired security behavior. Other works fit into in-lining and run-
time monitoring in our workflow while AMT falls into matching
contract and policies.

A theory of symbolic bi-simulation for the �-calculus was
proposed in (Hennessy and Lin 1995) which has the advantage
of expressing the operational semantics of many value-passing
processes in terms of finite symbolic transition graphs despite the
infinite underlying labeled transitions graph.

A new view of fair simulation by extending the local defini-
tion of simulation to account for fairness (Henzinger et al. 1997)
proposed the notion of simulation game. A system fairly simulates
another system if and only if in the simulation game, there is a
strategy that matches with each fair computation of the simulated
system a fair computation of the simulating system. Efficient algo-
rithms for computing a variety of simulation relations on the state
space of a Büchi automaton were proposed in (Etessami et al. 2005)
using parity game framework, based on solving parity games using
small progress measures as appeared in (Jurdzinski 2000). An al-
gorithm based on the notion of fair simulation was presented in
(Gurumurthy et al. 2002) applied for the minimization of Büchi
automata.

In order to capture realistic scenarios with potentially infinite
transitions (e.g.“only connections to urls starting with https”) we
have proposed to represent those policies with the notion of Au-
tomata Modulo Theory (AMT), an extension of Büchi Automata
(BA), with edges labeled by expressions in a decidable theory and
defined the theory and algorithm for extending simulation results
to AMT .

Our final objective is do the run-time matching of the mobile’s
platform policy against the midlet’s security claims expressed as
AMT . We have already done this for the matching with language
inclusion (we have a working .NET prototype working on a PDA
HTC P3600 the algorithm extending fair simulation between Büchi
automata that we have presented in the paper.

Acknowledgments
Research partly supported by the Projects EU-FP6-IST-STREP-
S3MS, EU-FP6-IP-SENSORIA, and EU-FP7-IP-MASTER

References
J. Bacon. Toward pervasive computing. IEEE Pervasive Comp. Magazine,

1(2):84, 2002. ISSN 1536-1268.
L. Bauer, J. Ligatti, and D. Walker. More enforceable security policies. In

Found. of Comp. Security, 2002.
L. Bauer, J. Ligatti, and D. Walker. Composing security policies with

polymer. In Proc. of the ACM SIGPLAN 2005 Conf. on Prog. Lang.
Design and Implementation, pages 305–314. ACM Press, 2005. ISBN
1-59593-056-6.

N. Bielova, M. Dalla Torre, N. Dragoni, and I. Siahaan. Matching policies
with security claims of mobile applications. In Proc. of the 3rd Int. Conf.
on Availability, Reliability and Security (ARES’08). IEEE Press, 2008.

M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, S. Ranise, P.v.
Rossum, and R. Sebastiani. Efficient satisfiability modulo theories via
delayed theory combination. In K. Etessami and S.K. Rajamani, edi-
tors, Proc. of CAV’05, volume 3576 of LNCS, pages 335–349. Springer-
Verlag, 2005.

J.R. Büchi. On a decision method in restricted second-order arithmetic. In
E. Nagel et al., editor, Int. Cong. on Logic, Methodology and Philosophy
of Science, pages 1–11. Stanford University Press, 1962.

N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan. Security-by-Contract:
Toward a Semantics for Digital Signatures on Mobile Code. In Proc. of
EuroPKI’07. Springer-Verlag, 2007a.

N. Dragoni, F. Massacci, C. Schaefer, T. Walter, and E. Vetillard. A security-
by-contracts architecture for pervasive services. In Proc. of the 3rd Int.
Workshop on Security, Privacy and Trust in Pervasive and Ubiquitous
Computing. IEEE Press, 2007b.

U. Erlingsson. The Inlined Reference Monitor Approach to Security Policy
Enforcement. Technical report 2003-1916, Department of Computer
Science, Cornell University, 2003.

U. Erlingsson and F.B. Schneider. Irm enforcement of java stack inspection.
In Proc. of Symp. on Sec. and Privacy, page 246. IEEE Press, 2000.
ISBN 0-7695-0665-8.

K. Etessami, T. Wilke, and R. Schuller. Fair simulation relations, parity
games, and state space reduction for büchi automata. SIAM J. on Comp.,
34(5):1159–1175, 2005. ISSN 0097-5397.

S. Gurumurthy, R. Bloem, and F. Somenzi. Fair simulation minimization.
In Proc. of CAV’02, pages 610–624. Springer-Verlag, 2002. ISBN 3-
540-43997-8.

K.W. Hamlen, G. Morrisett, and F.B. Schneider. Certified in-lined reference
monitoring on .net. In Proc. of the 2006 workshop on Prog. Lang. and
analysis for security, pages 7–16. ACM Press, 2006.

M. Hennessy and H. Lin. Symbolic bisimulations. In MFPS’92: Selected
papers of the meeting on Math. Foundations of Programming Semantics,
pages 353–389. Elsevier Sci. Publishers B. V., 1995.

T.A. Henzinger, O. Kupferman, and S.K. Rajamani. Fair simulation. In
Proc. of of the 8th Int. Conf. on Concurrency Theory, pages 273–287.
Springer-Verlag, 1997.

T.A. Henzinger, R. Majumdar, and J.F. Raskin. A classification of symbolic
transition systems. ACM Trans. Comput. Logic, 6(1):1–32, 2005. ISSN
1529-3785.

G.J. Holzmann. The Spin Model Checker: Primer and Reference Manual.
Addison-Wesley Professional, 2004.

M. Jurdzinski. Small progress measures for solving parity games. In STACS
’00: Proc. of the 17th Annual Symposium on Theoretical Aspects of
Computer Science, pages 290–301. Springer-Verlag, 2000. ISBN 3-540-
67141-2.

F. Massacci and I. Siahaan. Matching midlet’s security claims with a
platform security policy using automata modulo theory. In Proc. of The
12th Nordic Workshop on Secure IT Systems (NordSec’07), 2007.

G.C. Necula. Proof-carrying code. In Proc. of the 24th ACM SIGPLAN-
SIGACT Symp. on Princ. of Prog. Lang., pages 106–119. ACM Press,
1997. ISBN 0-89791-853-3.

G.C. Necula and P. Lee. Safe kernel extensions without run-time checking.
In Proc. of the 7th USENIX symposium on Operating systems design and
implementation, pages 229–243. ACM Press, 1996. ISBN 1-880446-82-
0.

R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo
Theories: from an Abstract Davis-Putnam-Logemann-Loveland Proce-
dure to DPLL(T). J. of the ACM, 53(6):937–977, 2006.

S. Safra. On the Complexity of omega-Automata. In IEEE Symp. on Found.
Comp. Science (FOCS’88), pages 319–327. IEEE Press, 1988.

F.B. Schneider. Enforceable security policies. TISSEC, 3(1):30–50, 2000.
F.B. Schneider, J.G. Morrisett, and R. Harper. A language-based approach

to security. In Informatics - 10 Years Back. 10 Years Ahead., pages 86–
101. Springer-Verlag, 2001. ISBN 3-540-41635-8.

R. Sekar, V.N. Venkatakrishnan, S. Basu, S. Bhatkar, and D.C. DuVar-
ney. Model-carrying code: a practical approach for safe execution of
untrusted applications. In Proc. of the 19th ACM Symp. on Operating
Sys. Princ., pages 15–28. ACM Press, 2003. ISBN 1-58113-757-5.

D. Vanoverberghe, P. Philippaerts, L. Desmet, W. Joosen, F. Piessens,
K. Naliuka, and F. Massacci. A flexible security architecture to sup-
port third-party applications on mobile devices. In Proc. of the 1st ACM
Comp. Sec. Arch. Workshop, 2007.

M.Y. Vardi. Büchi complementation a 40-year saga. March 2006.
V. N. Venkatakrishnan, Ram Peri, and R. Sekar. Empowering mobile code

using expressive security policies. In Proc. of The 10th New Security
Paradigms Workshop, 2002.

B.S. Yee. A sanctuary for mobile agents. In J. Vitek and C.D. Jensen,
editors, Secure Internet Programming, pages 261–273. Springer-Verlag,
1999.

