
A protocol’s life after attacks. . .

Giampaolo Bella1,2, Stefano Bistarelli3,4, and Fabio Massacci5

1 Computer Laboratory, University of Cambridge, UK
2 Dip. di Matematica e Informatica, Università di Catania, Italy

giamp@dmi.unict.it
3 Dip. di Scienze, Università “G. D’annunzio” di Chieti-Pescara, Italy

bista@sci.unich.it
4 Istituto di Informatica e Telematica, CNR, Pisa, Italy

stefano.bistarelli@iit.cnr.it

5 Dip. di Informatica e TLC, Università di Trento (Italy)
massacci@ing.unitn.it

Abstract. In the analysis of security protocols, it is customary to stop
as soon as we find and attack. Tons of ink can be spilled on whether
an “attack” is really an attack, but it goes without saying that there
is no life after that, hence no interest in continuing the analysis. If the
protocol is broken, then we ought to fix it.
Yet, fixing things is expensive and other measures may be more effective.
In the physical world, most ATM safes would not resist heavy shelling
with anti-tank bazookas, but banks don’t worry about that. The attack
will be noisy enough that cops will come within seconds from its start. To
secure ourselves, we rely on mixture of measures including the protection
from attacks but also countermeasures after detection.
In the light of these considerations, the following question becomes of
interest what can happen after an attack? Does the villain leave enough
traces that we can retaliate it on-the-fly? Or, if we can’t or won’t, does
a subsequent forensic analysis allow us to discover who did it (and send
the cops behind him)? If even this is is impossible, can we discover that
we have been hacked by looking at the logs?
To address these issues, we introduce the notions of retaliation, detection,
and suspicion, which can be applied after an attack. These properties
introduce more sophisticated formal relations between traces of actions,
which go beyond the simple existentials that formal methods have made
us used to.
These concepts should allow for a more comprehensive evaluation of se-
curity protocols. A protocol may well be vulnerable to an attack, but if
we can retaliate afterwards, maybe fixing it isn’t that necessary: the con-
crete possibilities of retaliation or detection may be enough to convince
potential hackers to refrain from mounting the attack.

1 Introduction and Motivations

What is a security protocol, if we set technology aside? it is just a social behavior
that principals of a distributed system must follow to obtain some important

collective benefits. For the good guys, we just set up clear, understandable,
and acceptable rules describing this behaviour: execute the security protocol
correctly, namely by the book. Because they are good guys, they will conform
to the rules, and behave as we wanted. The bad guys, by definition, will not
conform to the rules and execute the protocol incorrectly, namely arbitrarily.

Classical research in distributed systems and security starts from the need
to counter the disruptive behavior of the nasty ones. In classical distributed
algorithms, the main focus has been to design the protocol so that if the good
guys outnumber the bad ones, the collective benefits will be achieved, no matter
what the bad guys do1. The security standpoint is finding a design such that,
no matter what the bad guys do and no matter how many are they, they can’t
avoid that the good guys achieve the desired collective benefits.

Each time an attack has been published, the implied corollary is that the
security experts have failed: the protocol has flaws, the good guys cannot achieve
their ultimate goal, and we should go back to the drawing board.

Yet, before abandoning the protocol, it is worth looking at what is left after
the attack. This can lead us to more comprehensive evaluation of security pro-
tocols even if it requires continuation of a protocol analysis after an attack is
found.

1.1 Our Contribution

It has never been considered whether it is at all possible to threaten the bad
guys in case they execute the protocol incorrectly. In the real worl, we impose a
virtuous behavior on people by not letting them sin first (the classical security
approach), and by making them repent of their sins ever since (sending them to
jail). They would therefore weigh up the benefits of an incorrect execution with
the consequent threats, and could choose to execute the protocol correctly if the
threats were heavier.

Let’s consider Lowe’s example in his paper on Needham-Schroeder [5]. After
the end of the attack, the bad guy asks for a transfer of money. Would he steal
1.000 Euro if the threat that 2.000 Euro could be stolen to him on the next day
were significant? Would he trasfer the money if the chances of being caught were
significant?

In this paper, we propose a number of notions for the analysis of protocols
beyond attacks: we introduce the notions of retaliation, detection, and suspicion.
For instance, in a peer-2-peer environment or in network games direct retaliation
can be an effective threat to force the bad guys to play by the rules.

In the next section we show how Lowe’s attack on Needham-Schroeder can
be retaliated. Then we introduce the notion of retaliation, followed by those of
detection and suspicion.

1 Alternatively, prove that the good guys are doomed, no matter how many they are
and how smart they are [3].

2

2 Retaliation in Needham-Schroeder

Let’s start from a classical case: the (in)famous Needham-Schroeder public key
protocol represented in Figure 1. We use the classical notation for security pro-
tocols [1]:

– keys are denoted by K, possibly extended with subscripts expressing the
principals knowing them; the −1 superscript expresses the inverse of a key;

– nonces are denoted by N ;
– concatenation is denoted by a comma;
– encryption is denoted by a pair of curly braces with the key as a subscript;

the type of the key determine the type of encryption.

1. A → B : {|Na, A|}Kb

2. B → A : {|Na,Nb|}Ka

3. A → B : {|Nb|}Kb

Fig. 1. The asymmetric Needham-Schroeder protocol

The goal of the protocol is authentication: at completion of a session initiated
by A with B, A should get evidence to have communicated with B and, likewise,
B should get evidence to have communicated with A. Assuming that encryption
is perfect and that the nonces are truly random, authentication is achieved here
by confidentiality of the nonces. Indeed, upon reception of Na inside message 2,
A would conclude that she is interacting with B, the only principal who could
retrieve Na from message 1. In the same fashion, when B receives Nb inside
message 3, he would conclude that A was at the other end of the network because
Nb must have been obtained from message 2, and no-one but A could perform
this operation.

Lowe discovers [5] that the protocol suffers the “attack” described in Figure 2,
whereby a malicious principal C masquerades as a principal A with a principal
B, after A initiated a session with C. The attack, which sees C interleave two
sessions, indicates failure of the authentication of A with B which follows from
failure of the confidentiality of Nb.

Let’s examine this protocol after the attack have been carried:

– B is the subject of the attack (we will call him the good agent);
– C is the bad guy;
– A is just playing by the rules (we will call him the ugly participant);
– the trace T of the protocol as in Figure 2 describe an attack

The predicate Attack(T,G := {B} ,B := {C} ,U := {A}) can represent the
previous facts with the meaning:

3

1. A → C : {|Na, A|}Kc

1′. C → B : {|Na, A|}Kb

2′. B → A : {|Na,Nb|}Ka

2. C → A : {|Na,Nb|}Ka

3. A → C : {|Nb|}Kc

3′. C → B : {|Nb|}Kb

Fig. 2. Lowe’s attack to the Needham-Schroeder Protocol

– B execute a run of the protocol apparently with A (in fact he receives/sends
the following messages:[{|Na, A|}Kb , {|Na,Nb|}Ka , {|Nb|}Kb] ∈ T);

– C knows the nonce Nb which was meant to be known to A and B only by
receiving the message {|Nb|}Kc ∈ T in step 3 (so he can complete the run
with B and perform the attack).

– A played according the rules and is just a spectator in the battle between B
and C.

By using the authentication attack if B is a bank for example, C can steal
money from A’s account as reported by Lowe [5]:

4. C → B : {|Na,Nb, “Transfer £1000 from A’s account to C’s”|}Kb

The bank B would honour the request believing it came from the account holder
A.

Notice however, that the same predicate Attack also holds if instantiated in
a different way. In fact, we have also Attack(T,G := {A} ,B := {B} ,U := {C}):

– A execute a run of the protocol apparently with C (in fact he receives/sends
the following messages:[{|Na, A|}Kc , {|Na,Nb|}Ka , {|Nb|}Kc] ∈ T);

– B knows the nonce Na which was meant to be known to A and C only, by
receiving the message {|Na, A|}Kb ∈ T in step 1′ (so he can send in step 2
the message {|Na,Nb|}Ka also without having C sending it to A).

– C is in this run just playing according to the rules.

In this case B is the bad guy. As C did previously, B can equally decide to
illegally exploit his knowledge of Na. If A was also a bank, B can rob the robber
as follows:

2′′. B → A : {|Na,Nb|}Ka

4′′ B → A : {|Na,Nb, “Transfer £2000 from C’s account to B’s”|}Ka

The bank A would honour the request believing it came from the account holder
C.

4

After we found the attack Attack(T,G := {B} ,B := {C} ,U := {A}) in the
trace T , we could have continued the analysis and find out that the bad guy
could be easily punished, as in the example given above.

3 Vendetta. . .

To introduce the notion of retaliation we must identify the role played by each
principal in the protocol execution. We are not interested in notions such as re-
sponder or initiator; rather, we intend to provide a behavioural caractherization.

Good principals are denoted by the set G. They currently obey the protocol,
but may change their mind in the future when attacked.

Bad principals are denoted by the set B. They also take part in the protocol,
possibly communicating with friendly and neutral agents but, crucially, they
can as well collaborate with the intruder who runs the network.

Ugly principals are denoted by the set U . Usually they mind their own business
and conform to the protocol. However they can also both collaborate with
corrupt agents or help in future the friendly agent to retaliate.

Informally, we assume that

– a trace T is a protocol run, namely a sequence of sending, receiving and
memorizing actions,

– a protocol P is the set of all traces of the protocol2 (all possible executions),
– a projection T /A of a trace T with respect to a set of agents A is the subse-

quence of the actions in T that are performed3 by an agent in A,
– an attack is a trace T that satisfies some property A(T ,G,B,U , Spy).

We take the following definition of vulnerable protocol:

Definition 1. A protocol P is vulnerable to an attack A for the principals in
G if there exists a trace T ∈ P such that A(T ,G,B,U , Spy).

The property as stated is suited for model checking, whereas people working
with theorem provers will try to prove that there is no such trace.

Definition 2. A protocol P is immune to an attack A for the principals in G if
there exists no trace T ∈ P satisfying A(T ,G,B,U , Spy).

What is the essence of retaliation? Each time you try to cheat, we can hit
you back. So, do you still want to cheat?

This makes sense if hitting you back is a meaningful property in the context
of the protocol. If the corrupted principals B are protocol participants, then
2 This can be defined in the formal model of choice: CSP [9], inductive definitions [7],

strand spaces [11].
3 Note that the action of in which A sends a message to B is included in the projection

over the set {A}, but not in the projection with the set {B}, as B might never receive
that message.

5

we can assume that they want to reap the benefits of the protocol (such as
authentication), plus any additional benefits they may obtain by misbehaving.
These latter benefits should be balanced with the threat of being hit back. So,
we simply need to pay an attacker with the same coin.

Definition 3. A protocol P allows the retaliation of an attack A onto the prin-
cipals in B iff for every trace T ∈ P such that A(T,G,B,U , Spy), there exists a
trace Tr ∈ P extending T such that A(Tr,B′,G′,U ′, Spy).

In particular,

– when we have B′ = G we speak of direct retaliation;
– when B′ ∩ G 6= ∅ we have a combined retaliation;
– lastly, when B′ ⊂ G ∪ U we have an arbitrary retaliation.

This definition follows the intuition that each time there is an attack (a trace
T such that A(T ,G,B,U , Spy) some additional actions (hence Tr extending T)
can be done to retaliate. Who acted initially as friendly is now ready to act as
corrupted (possibly against who was corrupted initially).

The property as stated is useful for theorem proving: this is a positive guar-
antee to make bad guys play by the rules. For model checking, and thus finding
that not only there are attacks but you are even powerless against them, we need
to turn the quantifiers.

Definition 4. A protocol P is vulnerable to an attack A without chance of
retaliation onto B if there exists a trace T ∈ P such that A(T ,G,B,U , Spy)
and no trace Tr ∈ P extending T is such that A(Tr,B′,G′,U ′, Spy) where B′ ∈
G ∪ U ,B ∈ G′ ∪ U ′.

The important caveat here is that we assume that the formerly friendly prin-
cipals will jump side and collaborate with the Spy, owner of the network, to
frame the formely corrupted principals. The spy will act as a devil helping the
current corrupt agent (whoever he/she is). This view may be subject to debate
but the key observation is that we need in any case some collaboration with the
network provider, otherwise after the attack she could simply start killing every
message that is sent on the network.

4 Detection

The notion of detection is more complicated and requires the comparison of
alternative traces. Let’s see the intuition: you look at your logs and spot some
fishy actions (the projection of the full trace with respect to yourself). These
actions are enough to bring the bad guys to trial if you can show that there is
no other full trace which would have left the same marks on your logs and not
included the attack.

In contrast, detection would fail if the bad guys could show in court one
trace, beside yours with the attack, with the same marks on your logs, without
the attack. Indeed, it would have been enough for them to show a trace with an
attack from somebody else. This would have been enough to get acquittal.

6

Definition 5. A protocol P allows the detection of an attack A from B if for
every trace T ∈ P such that A(T ,G,B,U , Spy) then for all traces such that
Tr/G = T /G it is A(Tr,G,B,U , Spy).

The intuition is that each time there is an attack on a trace T , the friendly
agents can check their own logs T /G and pinpoint who acted corruptly, namely
the principals in B. The same logs could not have been created by some other
set B′ of corrupted principals.

The model checking version of the same property, requires two pieces of
evidence: the logs of the good guys and the “plausible” no-attack alternative
concoted by the bad guy’s counsel for the defence.

Definition 6. A protocol P is vulnerable to an attack A without possibility of
detection of B if for every trace T ∈ P such that A(T ,G,B,U , Spy) there exists
a trace Tr ∈ P , Tr 6= T , such that Tr/G = T /G and not A(Tr,G,B,U , Spy).

5 Suspicion

Suspicion is a weaker version of detection: each time there is an attack (a trace T
such that A(T ,G,B,U , Spy)) we can look at the logs (the projection T /G) and
conclude that something fishy happened but we cannot pin-point the villain.

The model checking version of the same property, requires two pieces of
evidence: the logs of the good guys and the “plausible” no-attack alternative
concoted by the bad guy’s counsel for the defence.

Definition 7. A protocol P allows the suspicion of an attack A if for every
trace T ∈ P and set B such that A(T ,G,B,U , Spy) then for all traces Tr ∈ P
such that Tr/G = T /G there are sets U ′ and B′, such that A(Tr,G,B′,U ′, Spy).

In a nutshell: each time the log matches with yous logs, the traces include some
attack by somebody.

The model checking version is by far more complicated:

Definition 8. A protocol P is vulnerable to an attack A without possibility of
suspicion if for every trace T ∈ P and set B such that A(T ,G,B,U , Spy) then
there exists a trace Tr ∈ P such that Tr/G = T /G and for all sets U ′ and B′ it
is not A(Tr,G,B′,U ′, Spy).

6 Implications for Formal Protocol Verification

We have been used to hair-splitting formal analysis of authentication. Can we
formally analyze properties such as retaliation?

From a theoretical standpoint there is not a big difference. We have casted our
properties as properties of traces because almost all research in tool-supported
security verification is based on defining authentication or confidentiality as a
property of traces [4, 5, 9, 7, 8, 6] or fragments thereof [10, 2].

7

The key observation is that the emphasis in the traditional work on security
verification was on finding attacks or showing that no attack existed. This was
reflected on formal models by the nature of the checked properties, which were
essentially of existential nature: is there a trace T in the protocol P such that
A(T) holds? Here, T , P , and A could be complicated at wish. Indeed, A, as a
formally defined property, could be owefully complicated (for instance including
arithmetical constraints on the number of actions and arfbitrarily many quan-
tifiers). However, the trace as such, was only existentially qualified. Theorem
proving fellows whished to prove that no such a trace existed, model checking
guys longed for a witness of its existence.

Here, the properties are more complex: we run at least two quantifiers over
traces. in some cases we have alternation of quantifiers (such as retaliation).
Lifting the theory is simple. Lifting the automatic tool support will be the real
challenge.

References

1. M. Burrows, M. Abadi, and R.M. Needham. A logic for authentication. ACM
Transactions on Computer Systems, 8(1):18–36, 1990.

2. Luigia Carlucci Aiello and Fabio Massacci. Verifying security protocols as planning
in logic programming. ACM Transactions on Computational Logic, 2(4):542–580,
2001.

3. Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning
about Knowledge. The MIT Press, 1995.

4. R. Kemmerer, C. Meadows, and J. Millen. Three system for cryptographic protocol
analysis. Journal of Cryptology, 7(2):79–130, 1994.

5. G. Lowe. An Attack on the Needham-Schroeder Public-Key Authentication Pro-
tocol. Information Processing Letters, 56(3):131–133, 1995.

6. J. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic pro-
tocols using Murphi. In Proceedings of the 16th IEEE Symposium on Security and
Privacy, pages 141–151. IEEE Computer Society Press, 1997.

7. Lawrence C. Paulson. The inductive approach to verifying cryptographic protocols.
Journal of Computer Security, 6:85–128, 1998.

8. Focardi R. and R. Gorrieri. The compositional security checker: A tool for the
verification of information flow security properties. IEEE Transactions on Software
Engineering, 23(9):550–571, 1997.

9. Steve Schneider. Security properties and CSP. In Proceedings of the 15th IEEE
Symposium on Security and Privacy, pages 174–187. IEEE Computer Society Press,
1996.

10. Dawn Song. Athena: An automatic checker for security protocol analysis. In
Proceedings of the 12th IEEE Computer Security Foundations Workshop. IEEE
Computer Society Press, 1999.

11. F. Thayer Fabrega, J. Herzog, and J. Guttman. Honest ideals on strand spaces.
In Proceedings of the 11th IEEE Computer Security Foundations Workshop. IEEE
Computer Society Press, 1998.

8

