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Abstract

Logical cryptanalysis has been introduced by Massacci and Marraro as a general
framework for encoding properties of crypto-algorithms into SAT problems, with
the aim of generating SAT benchmarks that are controllable and that share the
properties of real-world problems and randomly generated problems.

In this paper, spurred by the proposal of Cook and Mitchell to encode the factor-
ization of large integers as a SAT problem, we propose the SAT encoding of another
aspect of RSA, namely finding (i.e. faking) an RSA signature for a given message
without factoring the modulus.

Given a small public exponent e, a modulus n and a message m, we can generate
a SAT formula whose models correspond to the e-th roots of m modulo n, without
encoding the factorization of n or other functions that can be used to factor n. Our
encoding can be used to either generate solved instances for SAT or both satisfiable
and unsatisfiable instances.

We report the experimental results of three solvers, HeerHugo by Groote and
Warners, eqsatz by Li, and smodels by Niemela and Simmons, discuss their perfor-
mances and compare them with standard methods based on factoring.
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1 Introduction

Logical cryptanalysis has been introduced by Massacci and Marraro [28] as a
general framework for reasoning about a cryptographic algorithm via a trans-
lation into a problem of (propositional) satisfiability on which fast SAT-solvers
could be used.

From the viewpoint of automated reasoning, SAT benchmarks based on logical
cryptanalysis have a number of advantages:

• their natural formulation requires a fairly rich set of connectives which
makes it possible to test formulae beyond CNF;

• they are fairly structured, with abbreviations and definitions, as typically
happens for formulae coming from real world applications, such as hardware
verification [8];

• problem instances can be randomly generated in almost inexhaustible num-
bers, by varying either the solution or the instance (while keeping the same
solution);

• we can control the solution of the instance without making it too easy
to solve, in contrast to standard randomly generated problems for 3-SAT
[29,39];

• they are hard to solve and are an excellent test-bed for SAT solvers;
• sometimes they make possible the representation of attacks or properties

that are not expressible by traditional cryptography.

In a nutshell, we can use logical cryptanalysis to generate hard, random, struc-
tured, solved and controllable instances. Few benchmarks have all these fea-
tures at once, and few have such a simple intuitive appeal 3 .

In [28] Massacci and Marraro applied this approach to the US Data Encryp-
tion Standard (DES), a symmetric cipher. Symmetric ciphers seem the natu-
ral problem for logical cryptanalysis as the underlying algorithms are mostly
based on bit-wise operations. Thus, a translation is a matter of patience, toil,
and clever tricks [28].

In constrast, public-key (asymmetric) cryptography is based on number theory
and is fairly remote from bit-wise operations. So one may wonder whether

the observation from a reviewer that the straightforward encoding of RSA is not
suitable for generating unsatisfiable instances. This work is partly supported by the
MURST Project MOSES at the Dipartimento di Informatica e Sistemistica of the
University of Roma “La Sapienza”. Fabio Massacci acknowledges the support of a
CNR STM fellowship at the University of Koblenz-Landau and at IRIT Toulouse.
3 The idea of using automated reasoning for breaking a cipher is easier to grasp
than the idea of generating SAT problems by instrumenting CAD systems.
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it would be possible at all to encode properties of public-key cryptographic
algorithms into satisfiability algorithms.

In this paper we concentrate on a particular algorithm: the well known RSA
algorithm, proposed by Rivest, Shamir and Adleman [35,43,47]. The idea of
using RSA challenges as a test-bed for SAT-solvers was first proposed by Cook
and Mitchell [10] who proposed the factorization of large integers as a SAT
problem:

A SAT instance would be an encoding of a boolean multiplier circuit com-
puting the known product M from unknown inputs P and Q. Variables are
the bits of P and Q (the inputs of the circuit), together with the outputs of
the gates of the circuit. Clauses assert the correct behavior of the gates and
assert that the output of the circuit represent the given value of M .[. . . ]

Part of the challenge is to find a suitable multiplier circuit: not too com-
plex and probably not too deep [. . . ].

The first test of SAT solvers on benchmarks of this kind 4 was done by Groote
and Warners [19] who use their system HeerHugo. As Cook and Mitchell
predicted, SAT-solvers are orders of magnitude slower than ad-hoc factoring
methods.

This was to be expected: research on factoring algorithms has few centuries on
its side (compared to few decades of SAT research) and it has been recently
spurred by the belief that the hardness of factoring is the basis of the security
of the RSA crypto-systems. Recently, the RSA challenge 155 (a number with
512 bits) has been just factored by a massive parallel search using an advanced
factoring algorithm by te Riele, Cavallar and others [34,47].

Still, the problem of encoding factoring as a SAT problem is simple, compared
to the mathematics involved in the RSA crypto-system: the product of two
large primes is just the first step, followed by modular reductions, exponenti-
ations, and computations of inverses modulo a congruence.

Cryptographers have spent most of last twenty years in designing either faster
factoring algorithms or attacks on RSA which were not dependent on factor-
ization (see the excellent survey by Boneh [5]). Indeed, an intriguing problem
for cryptographers is undoubtedly the following: given a message, and a public-
key, is it possible to generate a digital signature without knowing the private
signature key and without factorization?

The heart of the problem is the computation of the e-th root of a number

4 The problem was not exactly identical as formulae were added to rule out the
trivial factorization of M into 1 and M . Thus, if M is prime the corresponding
formula is unsatisfiable.
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modulo n, i.e. given three numbers e, n, and m find a number f < n such
that m = f e mod n. This operation is easy when the factorization of n is
known, or when the Euler function 5 φ(n) is known. If φ(n) is known or easily
computable then we can also easily factor n. So, one is interested in a method
for extracting the e-th root modulo n which do not use the factorization of n
and that cannot be transformed into an efficient algorithm for factoring n.

This problem is open [6,5]. There are efficient algorithm for computing the
e-th root when n is prime but no efficient algorithm has been found when
n is composite. Even the most famous “factoring-free” attacks on RSA by
Hȧstad [21] and Coppersmith [11] do not provide general purpose algorithms
for computing the e-th root.

1.1 The contribution of this paper

Here, we show how to encode the computation of e-th root modulo n of a
number m < n, for a small e into a SAT problem: if the formula we provide
has a model, we can extract from the model a solution of the problem: the
bit-wise representation of the root value f such that m = f e mod n. If the
number we tested for has no e-th root (i.e. m is a e non-residue modulo n in
number theory terminology) then the formula is unsatisfiable.

From the viewpoint of the RSA crypto-system this is equivalent to say that
we have encoded the problem of faking an RSA signature without recourse to
factorization.

To check the effectiveness of SAT techniques on this problem, we have used
state-of-the-art SAT provers on our encoding. In particular we have tested our
system on

• HeerHugo, by Groote and Warners [19], based on the Stȧlmark algorithm
[20],

• eqsatz, by Li [27], a combination of the traditional Davis-Putnam-Longeman-
Loveland (DPLL) procedure [13,14] with equational reasoning for the affine
subpart of the problem.

• smodels, by Niemela and Simmons [30,31], an efficient DPLL implementation
of the stable model semantics of logic programs that has some features in
common with HeerHugo.

Other DPLL implementations have also been tested but the one presented
here seemed the most effective. Other approaches to SAT-solving have been
ruled out for theoretical reasons: we already know they would have a poor

5 Number of positive integers smaller than n and relatively prime to n.
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performance. For instance, BDD have an exponential blow-up on multiplier
circuits [7], and here multiplications are ubiquitous. Local search algorithms
such as Walk-SAT are efficient only on problems having solutions with a robust
backbone 6 [40], whereas these backbones are extremely fragile: by changing
any bit of the solution we do not obtain another solution.

In the experiments on the RSA signature algorithm, we didn’t expect to be
immediately competitive with advanced algorithms based on number theory
and factorization. Still, the result is encouraging: a general purpose search
algorithm running on off-the-shelf hardware can crack limited versions of RSA
and shows the same behavior of a classical algorithm solving the same problem
by factorization (although orders of magnitude slower). Yet, there is a lot of
research work that needs to be done since the state-of-the-art version of RSA
is still out of reach for SAT-based systems 7

Anyhow, we would not like to stress that “SAT-based attack” point beyond
reasonable. Indeed, even if trying to “beat a number theorist at his own game”
is tempting, our main interested is SAT research and not number theory and
we should look to this problem from the standpoint of SAT-research.

In this respect, we have already stressed the motivations behind our advocacy
of logical cryptanalysis as a SAT benchmark: it provides a set of challenging
problems of industrial relevance as asked for in [38], a hierarchical and regular
structure with abbreviations and definitions, and large affine subproblems (i.e.
formulae with exclusive or), gives the possibility of generating as many random
instances as one wants of both satisfiable and unsatisfiable nature 8 .

Benchmarks from logical cryptanalysis stretch system performance. Systems
that performs well on such problems are indeed likely to perform well on
many other real-word problems (as it is indeed the case for eqsatz [27] on the
DIMACS parity bit challenge).

6 Loosely speaking, the backbone of a satisfiable formula is the set of variables
having the same truth-value in all solutions (satisfying assignments) of the formula.
7 To be precise it is also out of reach for number theoretic algorithms as all known
factoring algorithms are sub-exponential [9,47] and require massive parallelization
to be effective.
8 Strictly speaking, encoding the falsification of RSA signatures can only generate
satisfiable instances, but we show that with minor modifications also unsatisfiable
instances can be generated.
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1.2 Plan of the paper

In the rest of the paper we briefly introduce RSA (§2). then we present the
basic ideas behind logical cryptanalysis of RSA by encoding cubic root ex-
traction as a SAT problem (§3) and give the detail of the encoding (§4). We
explain how to generate satisfiable and unsatisfiable instances (§5) and report
of our experimental analysis (§6). Brief conclusions (§7) end the paper.

2 A Primer on RSA

RSA is a public-key crypto-system developed in 1977 by Ron Rivest, Adi
Shamir and Leonard Adleman [35]. It is a widely used algorithm for providing
privacy and ensuring authenticity of digital data. The RSA system uses modu-
lar arithmetic to transform a message (represented as a number or a sequence
of numbers) into unreadable ciphertext.

Here we give the essential mathematical features of the algorithm and refer
to the PKCS#1 standard by RSA Security [36] or to general books on com-
puter security [37,43,47] for the technical complications arising in practical
implementations such as padding messages with random strings, using hash
functions, etc.

Definition 1 Let n = p · q be the product of two large primes. Let e be an
integer co-prime with φ(n) = (p− 1)(q − 1), the Euler function of n. Let d be
the integer solution of the equation ed = 1 mod φ(n). We call n the modulus,
e the public exponent and d the private exponent. The pair 〈e, n〉 is called
public key and the pair 〈d, n〉 is the corresponding private key.

The public key is widely distributed whereas the private key must be kept
secret.

Definition 2 (Message Signature and Verification) Let 〈e, n〉 be a pub-
lic key and m < n be a message. To sign 9 m, the agent holding the correspond-
ing private key pair 〈d, n〉 computes the integer f such that f = md mod n.
To verify that f is the signature of a message m one computes m′ = f e mod n
where 〈e, n〉 is the public key, and accepts f as valid only if m′ = m.

The intuition is that we can be sure that the signature is authentic because
only the holder of the private key could have generated it, though everybody
can verify it by using the public key.

9 In the sequel we use the letter f for the italian word “firma” for signature.
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In practical applications, a typical size for n is 1024 bits, so each factor is
about 512 bits long. As for the sizes of e and d, it is common to choose a small
public exponent for the public key, to make verification faster than signing.
For instance, several security standards [24,3,36] recommend either 3 or 65537
(corresponding to 216 + 1), without significantly degrading the RSA security
level.

For a “total break” of the RSA crypto-system an attacker needs an algorithm
for recovering the private exponent d from a public key 〈e, n〉: this would
enable him to forge signatures at wish. For a “local deduction”, it is sufficient
to recover the signature f of a given message m using only the knowledge of
m and the public key 〈e, n〉.

A total break can be obtained only by finding an efficient algorithm for fac-
toring the modulus n into its two prime factors p and q: from p, q and e it’s
easy to get d, the private exponent using Euclid’s greatest common divisor
algorithm. The converse is also true: from d one can efficiently recover the
factorization of n [5,9,47].

We cannot discuss here the various flavours of factoring algorithms and refer
to [25,9,47] for details. We just note that the best general-purpose factor-
ing algorithm today is the probabilistic Number Field Sieve, which runs in
expected time O(e1.9223(ln n)1/3(ln ln n)2/3

). Older methods are usually faster on
“small” numbers: for instance, Pollard’s ρ method is better for numbers hav-
ing small factors (say up to 10 decimal digits) and the Elliptic curve method
works well for finding factors up to 30-40 digits [26].

The most important observation about factoring is that all known algorithms
require at least a sub-exponential amount of time in the number of bits of
the modulus and the most effective ones also sub-exponential space [9,47,41].
The last RSA Challenge that was factored is a 512-bit modulus [34]. The
total amount of computer time spent using the Number Field Sieve factoring
algorithm was estimated to be the equivalent of 8000 MIPS-years. So, the
state of the art in factoring is still far from posing a threat when RSA is used
properly [41].

Thus, a number of researchers have worked on methods that try to decrypt
messages or obtain signatures of messages without factoring the RSA mod-
ulus n. Some of these attacks, most notably those due to Hȧstad [21] and
Coppersmith [11], make it possible to fake signature or to decrypt particular
messages without factoring the modulus under certain circumstances.

The Common Modulus Attack on RSA is an example of a local deduction: a
possible RSA implementation gives everyone the same n, but different values
for the exponents e and d. However, if the same message is ever encrypted with
two different exponents with same modulus, then the plaintext can be recov-
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ered without either of the decryption exponents. This and similar attacks can
be thwarted by suitably padding messages with independent random values.

Yet, there is no algorithm for performing local deductions in the general case:
given an arbitrary (small) public exponent e, a modulus n, and a message
m, compute a signature f such that f would pass the verification test m =
f e mod n, without the preliminary factorization of n.

If we “invert” the m = f e mod n equation, into e
√

m mod n = f , we can see
that we just need an algorithm to extract the e-th root modulo n of an integer
m < n. If n is prime, many efficient algorithms are known, either using direct
methods or based on the index calculus [9,47, Sec. 1.6]. For instance, if e = 2
and n is prime we can compute square roots in time O(log4 n). However, when
n is composite, and even if e is a small number such as 3, there is no general
method for finding e-th roots which does not use the factorization of n (or
something that can be used for efficiently factoring n). See [5,6] for a more
comprehensive discussion.

3 Logical Cryptanalysis of RSA

The main intuition behind logical cryptanalysis as introduced in [28] is that
we should represent a cryptographic transformation C = EK(P ), where P is
the plaintext, C is the ciphertext, and K is the key, with a suitable logical
formula.

If we choose propositional logic, then we must encode each bit sequence P , C,
K as a sequence of propositional variables P, C, K, in which every variable
is true when the corresponding bit is 1 and false when it is 0. Then the
properties of the transformation are encoded with a logical formula E(P,C,K)
which is true if and only if the cryptographic transformation holds for the
corresponding bit sequences.

For a symmetric cipher such as DES, the choice of the cryptographic trans-
formation is almost obvious (the encryption or decryption algorithm) and the
difficult part is just the translation.

For RSA, the situation is not so simple: we have three known values e, n and
m, and a number of equations to choose from.

If we choose n = p·q, we can represent factoring as a SAT problem as suggested
by Cook and Mitchell [10]. The hardness of this SAT problem have been
already investigated by Groote and Warner [19].

Since a “total break” of the algorithm is unlikely, we might prefer to encode
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the computation, via a SAT encoding, of the e-th root modulo n of m. In this
case we have two options:

f = md mod n holds ⇔ RSA(m,d, f ,n) is true (1)

m = f e mod n holds ⇔ RSA(f , e,m,n) is true (2)

The first choice seems to be preferable as a model of the formula yields a value
for the private key. Unfortunately, it has too many unknowns and therefore
too many solutions which would not pass the verification test m = f e mod n.
For instance, if we set 〈3, 55〉 as the public key and 9 as the message, we
could find 16 = 94 mod 55 as a solution of the equation f = md mod n but
unfortunately 9 6= 163 mod 55 = 26.

Thus, the solution seems just picking up a combinatorial circuit that takes
e, f and n as inputs and has m = f e mod m as output. Then, we could just
“update” Cook and Mitchell’s idea: “variables are the bits of e, f , and n (the
inputs of the circuit), together with the outputs of the gates of the circuit.
Clauses assert the correct behavior of the gates and assert that the outputs
of the circuit represent the given value of m.”

This simple idea turns out to be unfeasible: there is no combinatorial circuit
for modular exponentiation. The algorithms used in practice reduce it to a
sequence of modular multiplications based on the principle of “square-and-
multiply” [9,47]. Loosely speaking we may represent this procedure as follows:

m0 = 1

mi+1 = (m2
i + ei · f) mod n

where ei is 0 (resp. 1) if the corresponding i-th bit of the binary representation
of e has the value 0 (resp. 1). The desired value m is obtained at mblog ec+1.

If we assume that e can be arbitrary, our encoding into satisfiability must take
into account the largest possible value of e (that is log e ∼ log n). Then, we
must encode log n modular multiplications most of which will turn out to be
just useless as they would not be activated.

If we are just worried about correctness, this problem is immaterial. The frag-
ment of the formula corresponding to the inactivated modular multiplication
steps will not change the solutions of the problem: any model of the formula
would still yield an e-th root of m modulo n. When ve is replaced for e in the
formula, unit propagation will set the appropriate values of the inputs of each
mi.

The major problem is that, from the viewpoint of the SAT solver this would be
a disaster. The solver has no way to know that we do not care of the values of
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variables corresponding to inactivated modular multiplication steps. Syntactic
analysis would not help it, since one of the operands of the multiplication is
the signature f . The solver will have to search in that subspace too and we
have no guarantee that the search heuristics will recognize that this search is
actually pointless.

Moreover, the size of the problem would become huge even for small n. If
we assume that the square-and-multiply step can be encoded using the best
possible multipliers and only O(log n log log n) gates, the encoding of the RSA
signature algorithm for a modulus of 100 bits would require over 100.000
formulae. If we use standard parallel multipliers we would need over 1.000.000
formulae.

So a smarter encoding is needed. At first, it should be possible to introduce
more variables in RSA(f , e,m,n) besides m, f , e, and n, and make use of
abbreviations and definitions. Still, if the encoding is well designed, then m,
f , e, and n should be the only control variables of the problem, i.e. fixing their
values should determine the values of all other variables. Thus, if we replace
the variables m, e, and n with their respective 0/1 values vm,ve, and vn the
control variables in RSA(f ,ve,vm,vn) should be only f .

Another desirable property of the encoding is that it should be possible to use
RSA(vf ,ve,m,vn) and unit propagation to directly compute vm.

Our solution is to use the same trick used for the encoding of DES with a
variable number of rounds [28]: given e, run the algorithm at the meta-level
and encode only the modular multiplications which actually take place.

Rather than using the correspondence set in (2) we must use the following one

m = f e mod n holds ⇔ RSAe(f ,m,n) is true (3)

where the value of e is a parameter of the encoding.

4 Encoding Modular Exponentiation into SAT

So far, we have reduced ourselves to the problem of representing in logic the
modular congruence in (2), where the value of e is handled differently from
the values of m, f and n in the encoding.

As we have already noted, the public exponent e does not need to be a very
large number, and security standards [24,3,36] recommend a value such as
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3 or 65537 (corresponding to 216 + 1), thus limiting the number of modular
multiplications to respectively 2 or 17.

For sake of simplicity, and since the particular problem is as hard as the general
one [5,9,47], in this work we choose the value e = 3 and consequently equation
(2) can be rewritten in the form

m = ((f · f) mod n · f) mod n (4)

According to (4), the exponentiation can be plainly carried out by iterating a
modular multiplication twice.

At first, emphasis should be on efficient implementations of modular multi-
pliers. If we look at modular multipliers, many designs have been proposed in
the literature, ranging from look-up table based structures for small moduli
[42,23,32,15], to devices restricted to specific moduli [33,44,22], to architec-
tures suitable for medium and large moduli and using only arithmetic and
logic components [16,1,45,2,22].

Also in this case, just picking up a multiplier would not do the job:

• f and the factors p and q of the modulus n are unknown in our setting and
this makes solutions in which they are hardwired in the implementation
impossible to use;

• we must use a purely combinatorial multiplier since sequential operations 10

are not readily representable in propositional logic;
• the implementation must reduce the use of number theoretic features as

much as possible (relatively simple number theoretic operations like the
Euclid greatest common divisor algorithm are difficult to encode into propo-
sitional logics).

The constraints rule out many of the recent algorithms for modular multipli-
cation published in the literature.

Thus, we singled out the multiplication structure described in [1], since it
features a simple purely combinatorial formulation.

The basic intuition behind the method is the following: given two integers x
and y represented in the range [0, n) by b = log n bits, the multiplication of x
times y modulo n yields a non negative integer π such that

π = (x · y) mod n = x · y − k · n

10 A sequential implementation of modular exponentiation repeatedly applies the
combinatorial algorithm until some condition is reached.
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where k = b(x · y)/nc. Note that x · y requires 2b bits for representation, while
π is still represented on b bits.

We can see that the computation can be reduced to compute the integer k.
Once we get the value of k right, the rest are just the standard operations of
addition, subtraction and multiplication between integers.

However, division is a complex operation and it is simpler to compute an ap-
proximate value of k and then subtract the error. So, we split the computation
of k into the product of (x ·y) · (1/n) and approximate the computation of 1/n
by a fraction t having as many digits as required to evaluate k by a number kap

differing from the true value by at most 1. Namely, if t is the number obtained
limiting 1/n at the first r fractional bits, the following inequalities hold:

t ≤ 1/n < t + 2−r

and multiplying both sides by x · y

x · y · t ≤ (x · y)/n < x · y · t + x · y · 2−r

From the latter inequalities it is immediate to see that replacing b(x · y)/nc
by (x ·y) · t the maximum error is bounded by E = x ·y ·2−r and imposing the
constraint E < 1, it must be r ≥ 2b. Indeed, under this assumption, we have

E < 22b · 2−r ≤ 1.

Denoting the value bx · y · tc by kap, we can write:

k = bx·y
n
c = bx · y · t + Ec = bkap + Fract(x · y · t) + Ec =

= kap + bFract(x · y · t) + Ec = kap + E ′

Since 0 ≤ Fract(x · y · t) + E < 2, E ′ must be 0 or 1.

Finally, the modular product π is expressed by the relation

π = x · y − kap · n− E ′ · n

To obtain π, the expression x ·y−kap ·n must be computed and tested against
n: if it is less than n, it is correct (E ′ = 0); otherwise n must be further
subtracted. Note that always 0 < x · y − kap · n < 2n, that is this value
is correctly represented by means of b + 1 bits and thus only the b + 1 less
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significant bits of x · y and of x · y− kap · n are necessary for the computation,
reducing the formula complexity.

The structure that implements the described algorithm is shown in Fig. 1: it
mainly consists of three binary multipliers and two binary adders. Multiplier
MUL1 produces x ·y, that in turn is multiplied by constant t through a 2b×2b
multiplier MUL2. The 4b-bits MUL2 output contains the representation of kap

in the interval from bit position 2b− 1 to bit position 3b. This representation
is multiplied by constant −n by multiplier MUL3 to produce x · y − kap · n.
Finally, values x · y− kap ·n and x · y− kap ·n−n are yielded by adders ADD1
and ADD2, and the final result π is chosen, depending on the sign of the latter
value.

The algorithmic structure of Fig. 1 can be easily expressed in the notation of
proposition logic, joining sub-expressions drawn for single components.

As for adders and multipliers, the former are modeled by ripple-carry adders.
At first, this choice may appear rather inefficient in respect of faster solutions,
like carry look-ahead adders or carry-save adders (CLA or CSA), but our
preliminary experiments showed that the superior circuit performance does
not guarantee a similar efficiency of SAT solvers on the encoding. This phe-
nomenon is also frequent in hardware verification [8]: simpler and unoptimized
circuits are easier to analyze than optimized ones because the latter use com-
plex boolean functions. A b-bit ripple carry adder is described in Fig 2 joining
the bit-wise equations of a full adder cell, where Ai, Bi are the i-th bits of
operands and Ci, Ci+1 are the i-th and the next carry bits.

Array multiplying structures were chosen for multiplication. The multiplica-
tion of two b-bits numbers can be easily implemented by an array with b rows
and 2b − 1 columns of full/half adders, as shown in Fig. 3 in the case b = 3.
Generalizing the structure of Fig. 3, it is easy to derive the set of boolean
expressions for an n× n array multiplier shown in Fig. 4.

As for multipliers, one may again argue that one could have used Wallace
multipliers or the recursive construction due to Karatsuba. We ruled them
out for the same reasons that led us to prefer ripple carry adders to carry-
lookahead adders.

Finally, the expressions in (2) and (4) are combined to produce the logical
description of the operation Π(π,x,y,n) representing the modular product
π = (x · y) mod n. Iterating the process twice, the final result is

m = f 3 mod n holds ⇔ RSA3(f ,m,n) is true ⇔

⇔ Π(m′, f , f ,n) ∧ Π(m, f ,m′,n) is true
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Si ↔ Ai ⊕Bi ⊕ Ci i = 0 . . . b− 1

Ci+1 ↔ ((Ai ∧Bi) ∨ (Ai ∧ Ci) ∨ (Bi ∧ Ci)) i = 0 . . . b− 1

∼ C0

Fig. 2. Boolean equations of a ripple-carry adder for b-bits

x0 y0x0 y1 x1 y0x0 y2 x2 y0

x1 y1x1 y2

x2 y1x2 y2
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? ??

? ? ?

?

??

?

??? ?

???

?

?

?

p0p1p2p3p4p5

HAHA

FAFA

HAFA

Fig. 3. An b× b array multiplier for b = 3

where m′ is just the result of f 2 mod n.

5 Generating Satisfiable and Unsatisfiable Instances

This encoding makes it possible to generate both satisfiable and unsatisfiable
SAT instances.

The simplest way to generate solved satisfiable instances is to use the SAT
solver to search for fake RSA signatures according the following procedure:

(1) randomly generate a public key 〈e, n〉;
(a) randomly generate a signature f ;
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Ii,j ↔ Xi ∧ Yj i, j = 0 . . . b− 1

S0,j ↔ I0,j+1 ⊕ Ij+1,0 j = 0 . . . b− 2

Si+1,j ↔ Ci,j ⊕ Si,j+1 ⊕ Ij+1,i+1 i, j = 0 . . . b− 2

C0,j ↔ I0,j+1 ∧ Ij+1,0 j = 0 . . . b− 2

Ci+1,j ↔ ((Ij+1,i+1 ∧ Ci,j) ∨ (Ij+1,i+1 ∧ Si,j+1) ∨ (Ci,j ∧ Si,j+1)) i, j = 0 . . . b− 2

P0 ↔ I0,0

Pi ↔ Si−1,0 i = 1 . . . b− 1

Pi+b ↔ Sb−1,i i = 0 . . . b− 2

P2b−1 ↔ Cb−1,b−2

Fig. 4. Boolean equations of an array multiplier

(b) compute m = f e mod n;
(c) transform the numbers m, f , and n into the corresponding boolean

values vm, vf ve, vn;
(d) substitute in RSAe(f ,m,n) the corresponding boolean values that

we have so far generated but for f .

The pair 〈vf ,RSAe(f ,vm,vn)〉 gives a solved instance of the satisfiability
problem. Since RSA was designed to be hard to break, this will provide us
with the hard solved instances asked for by Cook and Mitchell [10].

If we want to generate just satisfiable instances we skip step 1a and replace
step 1b with the following:

1b’ randomly generate a message m;

The formula RSAe(f ,vm,vn) is a satisfiable instance of the satisfiability prob-
lem. If we fix also n, then we can generate an inexaustible number of similar
instances just by concatenating the randomly generated unit clauses corre-
sponding to the description of vm with the (constant) formulaRSAe(f ,m,vn).

However, there is no way to generate an unsatisfiable formula by just changing
f and m if e and n are chosen according Definition 1. Indeed, the condition
that e is co-prime with φ(n) ensures that the equation m = f e mod n always
has a solution. Whereas this is desired for the RSA cryptosystem 11 , it is a
bit annoying if we are interested in the use of RSA to generate hard SAT
benchmarks.

However, we do not need any modification to the encoding to generate both

11 This properties simply guarantees that every message can be decrypted.
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satisfiable and unsatisfiable instances. We simply need to change the bench-
mark generation as follows:

(1) randomly generate a public key 〈e, n〉 where e violates Definition 1 and
divides φ(n), i.e. e divides either p− 1 or q − 1 if n = pq;
(a) randomly generate a message m;
(b) transform the numbers m, f , and n into the corresponding boolean

values vm, vf ve, vn;
(c) substitute in RSAe(f ,m,n) the corresponding boolean values that

we have so far generated but for f .

If e divides φ(n) the equation m = f e mod n may not have a solution, i.e.
the formula RSAe(f ,vm,vn) is satisfiable iff m is an e-th residue modulo n.
This problem is also hard, and substantially equivalent to the original RSA
problem, and thus we have a general way to generate both satisfiable and
unsatisfiable numbers.

An intriguing observation is that in number theory there is no way to show
a proof that a number m is not an e-th residue 12 modulo n: we can only
show a proof that a number is a residue by exhibiting the solution f . Here,
a resolution proof of the unsatisfiability of RSAe(f ,vm,vn) gives the desired
proof that m is not an e-th residue.

6 Experimental Analysis

To automate the benchmark generation, we have designed and implemented
a program to generate the encoding RSAe(f ,m,vn) where the modulus n
can be a number of arbitrary size (i.e. possibly larger than the current C
implementation of integers using 32/64 bits).

6.1 The Experimental Setting

For our experiments we have generated both solved instances and sat/unsat
instances, according the methodology that we have presented in Section 5.
The building blocks shared by both methods are schematized in Fig. 5.

The elements represented in figure 5 are the followings:

the random generator generates the pair of prime numbers p and q, factors
of the modulus n, and possibly the signature f ;

12 In constrast we can exhibit a short proof that a number is prime [9].
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Fig. 6. Transformation of the scheme

the preprocessor processes the input data (p, q and f) in order to calculate
the binary output data where −n is the opposite in two-complement of the
modulus, t is approximated value of 1/n, m is the message obtained from
the modular product f 3 mod n (if solved instances are sought);

the encoder encodes the input data in the format of the system and sends
them in output with b, that symbolizes the number of bits of n;

the system uses the formula RSA3(f ,vm,vn) and the other input data to
search a model that satisfies the input formula.

We slightly modified the above schema to make experiments reproducible i.e.
we have stored at least some of the moduli and some of the signatures. Thus,
figure 6 shows the transformation of the scheme in figure 5.

For the “random generator” and the “preprocessor”, we have used the software
package LIP by A. Lenstra [26], containing a variety of functions for arithmetic
on arbitrarily large integers.

The word “Solver” denotes eqsatz [27], HeerHugo [19], smodels [31] and other
systems we have tested. HeerHugo is a saturation base procedure which uses
a variant of the Stȧlmark algorithm based on clauses, and eqsatz is a variant
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Let Σ be a set of clauses using variables in V and k an integer
• Apply some clause-based simplification rules to Σ (unit, sub-

sumption, restricted resolution etc.);
• If Σ contains an empty clause return UNSAT;
• If Σ contains only literals return SAT;
• If k = 0 return Σ;
• (Branch Rule) Select a variable v in V ,
· assign v a truth value and call recursively HeerHugo on the

simplified set of clauses with k−1 and let Σ1 be the result;
· Assign v the opposite truth value and call recursively Heer-

Hugo on the simplified set of clauses with k− 1 and let Σ2

be the result;
· (Merge Rule) If either of Σi is SAT then set Σ = Σi, else

if either of Σi is UNSAT then set Σ = Σj with j 6= i,
otherwise put Σ = Σ1 ∩ Σ2 and restart.

Fig. 7. The Saturation Method by HeerHugo

of DPLL which include equational reasoning for dealing with exclusive or,
smodels is an efficient DPLL implementation of the stable model semantics of
logic programs that has some features in common with HeerHugo.

The core algorithm for HeerHugo is sketched in Fig. 7. For any given formula,
there is a value of k for which the formula is either proved unsatisfiable or
satisfiable. Thus search is simply a form of iterative deepening in which the
algorithm is called with increasing values of k until a solution is found. For
further details see [19].

The core algorithm for eqsatz is sketched in Fig. 8. It is a fast implementation of
the classical DPLL branching algorithm [14] enhanced with a special subroutine
that recognizes subset of clauses representing affine formulae (i.e. formulae
representable with exclusive or as the only connective) and applies specialized
rules to that subset. For further details see [27].

The core algorithm for smodels is sketched in Fig. 9. It applies the classical
DPLL branching algorithm [14] to logic programs with negation as failure and
the stable model semantics. The advantage of logic programs is that we must
only specify positive rules, i.e. rules to make variables true, since everything
else is false by default. As a result, the size of the input problem halves wrt a
clausal representation. The program also has a lookahead step which is fairly
similar to the merge rule of HeerHugo. For further details see [30,31].

On top of smodels we have added a preprocessing step that is already incor-
porated in HeerHugoand eqsatz: substantially we apply various forms of unit
propagation and simplification to make the formula smaller before doing any
actual search. For further details on the simplifier see [17].
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Let Σ be a set of clauses using variables in V .
• if Σ is empty return SAT;
• if Σ contains an empty clause return UNSAT;
• (Unit Propagation) while Σ contains a unit clause {l} then

assign l the value true and simplify Σ;
• (Equivalency Reasoning) Simplify Σ with the ad-hoc rules

for reasoning about clauses corresponding to formulae with
exclusive or;

• (Splitting Rule) Select a variable v in V , assign v a truth
value and call recursively eqsatz on the simplified set of
clauses. If eqsatz returns SAT then return SAT, otherwise
assign v the opposite truth value and return the result of
eqsatz on the simplified set of clauses.

Fig. 8. The DPLL Method by eqsatz

Let Π be a set of logic programming rules representing the
clauses in Σ using variables in V .
• if Π is empty return SAT;
• if Π contains an empty clause return UNSAT;
• (Unit Propagation) while Π contains a unit clause {l} (a

fact) then assign l the value true and simplify Π;
• (Lookahead) For all variables v in V ,
· assign v a truth value and apply Unit Propagation on the

simplified logic program, if the result is UNSAT, assign v
the opposite truth value;

· assign v the opposite truth value and apply Unit Prop-
agation on the simplified logic program, if the result is
UNSAT, assign v the first truth value;

• (Splitting Rule) Select a variable v in V , assign v a truth
value and call recursively smodels on the simplified logic pro-
gram. If smodels returns SAT then return SAT, otherwise
assign v the opposite truth value and return the result of
smodels on the simplified logic program.

Fig. 9. The DPLL Method by smodels

To check how SAT algorithm scaled wrt classical algorithm for computing cube
roots we have also run a parallel test using Pollard-ρ method as the underlying
factorization method. This control algorithm is sketched in Fig. 10. We have
not used more advanced algorithms (such as the Elliptic Curves Method or
the General Number Field Sieve) because they are competitive only when the
number of decimal digits of the modulus n is over 10, far too large a number
for our limited hardware and for our SAT Solvers.
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Let m and n be integer with m < n
• factor n into its factors p and q using Pollard-ρ method.
• compute φ(n) = (p− 1) · (q − 1)
• compute d such that 3 · d = 1 mod φ(n) using Euclid’s algo-

rithm
• compute f = md mod n using a standard algorithm for mod-

ular exponentiation.

Fig. 10. The Reference Pollard-ρ Method

The experiments were run on an Alpha with 256 MB of memory, a Pentium II
with 64 MB of memory, and a Pentium III with 512 MB of memory. All
computers run Linux as the operating system. No run was timed-out.

We have not reported the sizes of the instances in a table since they can be
exactly calculated from the structure shown in Fig. 1 and they are around
O(6 log2 n). To give a feeling of the orders of magnitude, the encoding for a
22-bits modulus, after compacting, unit propagation and applying the unary
failed-literal rule [12] has 40.016 clauses and over 7.000 variables. The RSA-
129 challenge given by Martin Gardner in Scientific American in 1977 (see
[47, pag.320] for a more recent reference) is encoded with 6.604.076 formulae
(before preprocessing).

In contrast with the encoding of the state-of-the-art version of DES, which
takes a “paltry” 60.000 clauses and nonetheless is hard to solve [28] , the
number of clauses is much bigger in this case.

6.2 Generation of Solved Instances (Faking RSA Signature)

For solved instances the generation of the benchmark suite worked as follows:

(1) fix the number of bits of the RSA modulus we are interested in;
(2) randomly generate a modulus n as the product of two random primes;
(3) randomly generate 50 signatures
(4) for each generated signature f do

(a) apply the modular exponentiation algorithm using the RSA public
key 〈e, n〉 and generate the message m = f e mod n (here e = 3);

(b) encode the modular exponentiation algorithm as RSAe(f ,m,n) and
substitute the values of the message vm and the modulus vn;

(c) search for a model of the formula using a SAT solver.

If at step 2 we do not check whether e = 3 divides φ(n), the message m must
be computed as the e-th power of a given f . Otherwise the formula may not
be satisfiable. To test for correctness we always check that what we found out
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Table 1
Sample of Results of the Faking RSA signature experiments

MOD. BIT SIGN. SMODELS HEER. SATZ POL.

6 3 4 0.02s 2.00s 0.11s 0.01s

6 3 5 0.00s 2.00s 0.09s 0.01s

49 6 9 0.42s 45.00s 0.44 0.02s

49 6 48 0.23s 45.00s 0.44 0.01s

143 8 104 0.71s 2915s 2.06s 0.07s

143 8 123 1.57s 3321s 2.07s 0.07s

667 10 128 0.89s 5h 2012s 19.12s 0.09s

667 10 276 5.43s 1d 20h 3207s 19.13s 0.09s

2,501 12 96 30.09s 3h 3090s 2.48s 0.13s

2,501 12 1,259 21.11s 3d 04h 2943s 2.45s 0.13s

7,597 13 497 229.80s 4d 01h 3090s 5.89 0.16s

7,597 13 7,258 190.37s 3d 16h 2002s 7.00 0.16s

29,213 15 8,304 20.67s 11d 04h 0620s 4.92s 0.19s

29,213 15 27,704 491.65s 5d 07h 2291s 31.39s 0.19s

156,263 18 80,465 1189s 7d 10h 3388s 8.32s 0.21s

156,263 18 53,477 1h 2699s 6d 13h 1099s 11.05s 0.21s

455,369 19 84,882 8h 3578s 10d 16h 2118s 1204s 0.23s

455,369 19 405,346 1h 1948s 10d 05h 3482s 923s 0.23s

2,923,801 22 1,847,296 20h 0311s – 1423s 0.25s

2,923,801 22 1,983,121 11h 3500s – 2d 11h 2708s 0.25s

13,340,267 24 3,958,651 14h 0598s – – –

13,340,267 24 11,376,425 7h 0467s – – –

28,049,353 25 18,67,233 1d 03h 1744s – – –

28,049,353 25 20,910,282 19h 1934s – – –

183,681,697 28 92,751,060 17h 2721s – – –

183,681,697 28 114,808,473 1d 12h 0077s – – –

504,475,141 29 301,368,039 1d 03h 1346s – – –

504,475,141 29 273,472,864 2d 08h 2055s – – –

was indeed a correct signature.

If a model exists we have found a cubic root of m modulo n, i.e. we have been
able to fake the RSA signature of message m for the public key 〈3, n〉.

In Table 1 we show a sample of the results, to give a feeling of the orders of
magnitudes of running times of different solvers. We report

• the modulus,
• the number of bits of the modulus,
• the signature,
• and for each system the running time (in seconds, hours and days).
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HeerHugo showed the worst performance and we had to stop the experiments
when they required more than 10 days to solve one instance. eqsatz was by
far the fastest, if the formula is sufficiently small to fit into the processor’s
cache 13 . As soon as the size of the problem increases beyond that point its
performance is no longer predictable. Thus we decided to use smodels which
offered a good compromise between speed and stability of performance for
larger moduli.

To measure the scalability of the SAT-solvers we have used the methodology
proposed by Fleming and Wallace [18], as we have run the experiments on
different machines and at different times. This means that for every size of the
modulus (in bits) we compute the geometric mean of the running time and
then divide that mean time by the geometric mean time that the system has
taken on the smallest modulus.

In a nutshell, the time for computing a cube root modulo a 3-bit number is
the reference problem and all other values are normalized by that number. For
instance, using the data in Table 1 for HeerHugo we would have:

t3bits =
√

2.00s · 2.00s = 2.00s

t6bits =
√

45.00s · 45.00s = 45.00s

t8bits =
√

2915s · 3321s = 3111.38s

Nt3bits = t3bits

t3bits
= 2.00s

2.00s
= 1.00

Nt6bits = t6bits

t3bits
= 45.00s

2.00s
= 22.50

Nt8bits = t8bits

t3bits
= 3111.38s

2.00s
= 1555.69

Notice that the final value is not a dimensional measure (i.e. seconds, hours
etc.) but just a comparative indication. In other words, Nt8bits = 1555.69
means that HeerHugo runs 1555 times slower on moduli of 8 bits than it runs
on moduli of 3 bits.

The results are reported in Fig. 11.

The flattening of the curves on the logarithmic scale shown by smodels, Heer-
Hugo, and Pollard (a factoring algorithm), is consistent with the worst case
complexity of factoring algorithms, namely a subexponential 14 algorithm in

13 Retrospectively, this was to be expected as satz, the core of eqsatz without rules
for exclusive or, has been optimized for running on randomly generated CNF at
the cross-over point and thus for around few hundred variables and around few
thousand clauses.
14 Recall that on a logarithmic scale an exponential algorithm is mapped into a
straight line.
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Fig. 11. Comparison of Heerhugo-SATZ-Pollard Normalized Running Times

the number of bits of the modulus.

6.3 Generation of Sat/Unsat Instances (Solving Cubic Residuosity)

To analyze the relative hardness of satisfiable/unsatisfiable instances, we fol-
lowed the systematic approach used in the analysis of Random-CNF [39]. In
our setting, this boils down to the following algorithm:

(1) fix the number of bits of the RSA modulus we are interested in;
(2) generate randomly a modulus n as the product of two random primes

of the appropriate size such that e = 3 divides φ(n) is we want both
satisfiable and unsatisfiable instances;

(3) for all possible values of m = 0 . . . n− 1 do
(a) encode the modular exponentiation algorithm as RSAe(f ,m,n) and

substitute the values of the message vm and the modulus vn;
(b) search for a model of the formula using a SAT solver.

If a model exists we have found a cubic root of the value m modulo n. If the
formula is unsatisfiable we showed that m is a cubic non-residue modulo n.
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Table 2
Sample of Results for Solving Cubic Residuosity

MOD. MSG SIGN. CHOICE TIME

35 0 0 0 0.170

35 1 16 0 0.200

35 2 n.r. 14 0.690

35 3 n.r. 22 0.840

35 4 n.r. 19 0.840

35 5 n.r. 21 0.720

35 6 26 1 0.270

35 7 28 5 0.370

35 8 32 0 0.180

35 9 n.r. 18 0.750

35 10 n.r. 14 0.700

35 11 n.r. 20 0.820

35 12 n.r. 22 0.880

35 13 17 0 0.310

35 14 14 7 0.500

35 15 25 1 0.260

35 16 n.r. 18 0.780

35 17 n.r. 20 0.790

MOD. MSG SIGN. CHOICE TIME

35 18 n.r. 14 0.660

35 19 n.r. 21 0.820

35 20 20 1 0.230

35 21 21 2 0.240

35 22 18 0 0.210

35 23 n.r. 20 0.880

35 24 n.r. 19 0.840

35 25 n.r. 18 0.880

35 26 n.r. 14 0.690

35 27 13 1 0.220

35 28 7 5 0.390

35 29 4 2 0.210

35 30 n.r. 14 0.680

35 31 n.r. 20 0.870

35 32 n.r. 14 0.710

35 33 n.r. 14 0.690

35 34 24 0 0.220

Note that a systematic approach is necessary because we want an indication of
the relative difficulty of the sat/unsat cases and there is no general (and effi-
cient) algorithm to provably generate residue and non-residues modulo n. The
same procedure is followed by Selman et al. [39] to explore the hardness of the
Random-CNF SAT benchmark. Clearly, to determine whether a particular m
is a cubic non-residue there is no need of generating all possible values from 1
to n: it is enough to test the satisfiability of the single formula RSAe(f ,m,n)
with the values of the message vm and the modulus vn. To generate bench-
marks with larger formulae, when a systematic sweep of the search space is
no longer possible, the messages m can be generated at random.

On this benchmark we have run only the smodels system because it offered
the best compromise between speed and predictability of running time (i.e.
for the same modulus we have not found an instance requiring 2 days and
another requiring 30 minutes as we had with eqsatz).

In Table 2 we show a sample of the results, to give an indication of the order
of magnitude of running times on the entire search space for a small modulus
35 = 5 · 7. Here, we also indicate the number of choice points and the running
time in seconds. ”n.r” means that the number in the column MSG is a non-
residue modulo 35.

Notice how satisfiable and unsatifiable instances are well distributed and that
satisfiable instances require practically no choices. The solver is sufficiently
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Table 3
Quantitative Results for Solving Cubic Residuosity

Results when the modulus is a small prime

All instances SAT instances UNSAT instances

Bits Instances %SAT %UNSAT Choices Time Choices Time

3 12 67% 33% 1 0.04 2 0.04

4 24 67% 33% 2 0.08 5 0.13

5 119 73% 27% 4 0.19 9 0.23

6 37 35% 65% 5 0.27 21 0.79

Results when the modulus is the product of two small primes

All instances SAT instances UNSAT instances

Bits Instances %SAT %UNSAT Choices Time Choices Time

6 90 78% 22% 9 0.43 18 0.78

7 815 50% 50% 14 0.96 40 1.99

8 2242 51% 49% 25 2.59 75 5.57

9 4271 50% 50% 50 6.09 153 15.66

10 2999 26% 74% 65 12.49 297 49.02

smart to find the solution without substantial search.

In Table 3 we show more quantitative data, namely average running time for
satisfiable and unsatisfiable instances. The first table shows the result when
the modulus n is a prime of size up to 6 bits (an easy problem in number
theory) and the second table shows the results when n is composite, i.e. the
product of two such primes.

In the table we report:

• the number of bits of the modulus,
• the number of tested instances for all moduli with that size,
• the relative percentage of SAT/UNSAT instances
• and for each type of instances (SAT/UNSAT) the average number of choice

points and the average running time in seconds.

We have not given the overall average running time as the data can be sub-
stantially bi-partite in two regions, one for unsatisfiable formulae and one for
satisfiable formulae.
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In contrast with Random-CNF benchmarks [39], in this benchmark the hard-
ness of the problem is unrelated to phenomena like phase transitions in the
satisfiablity/unsatisfiability ratio of instances.

6.4 What the benchmark tells on different systems

The difference in performance between HeerHugo and eqsatz is significant be-
cause both systems have reduction rules beyond unit propagation that are
able to cope with affine subformulae in quite effective ways and that are fairly
similar. For instance both systems have rules to derive p ↔ q and then replace
q with p everywhere in the formula.

Apparently HeerHugo breadth first search system is not very effective unless
a proof of unsatisfiability can be easily found. In all other cases, the memory
requirement of the procedure and the necessity of a substantially exhaustive
case analysis of many control variables (the branch-merge phase for larger k)
before a solution is found makes the procedure not suitable. In contrast eqsatz,
even if its underlying proof system is less strong than the proof system of Heer-
Hugo, can relatively quickly head for a solution. An (expected) consequence of
this difference in the search procedure is that HeerHugo is much more reliable
than eqsatz for what regard the variance of running times.

The benchmark was also good in pointing the “short-lived” nature of the op-
timized coding of the data structures of eqsatz: on larger benchmarks, when
the problem instance could no longer fit into the processor’s cache, the perfor-
mance of the solver becomes unpredictable. Most likely, this large variance in
performance can be explained by the need of swapping data to-and-from the
main memory.

What is more significant is the relatively good performance of smodels whose
proof system is definitely weaker than both HeerHugoand eqsatz. Apparently,
only the unsatisfiable part of the merge rules in HeerHugo seems to pay off in
these examples.

7 Conclusions

In this paper, we have shown how to encode the problem of finding (i.e. faking)
an RSA signature for a given message without factoring the modulus. This
corresponds to computing the e-th root modulo n (e-residuosity modulo n).
In the number theory field no solution to this problem is known, when n is
not a prime, without a preliminary step equivalent to factoring n.
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We have shown how the encoding of the e-th residuosity modulo n problem
can be used for generating solved instances and satisfiable and unsatisfiable
instances. Our encoding extends the set of number theoretic problem that can
be used to generate SAT-benchmarks over the initial proposal by Cook and
Mitchell [10]: factoring large integers by encoding the problem into SAT and
using SAT-Solvers.

We believe that using such cryptographic benchmark can be beneficial for SAT
Research as they combine into one framework the properties of structured
problems and randomly generated problems and namely:

• they require a rich set of connectives which makes it possible to test formulae
beyond CNF;

• they are structured as typically happens for formulae coming from real world
applications;

• problem instances can be randomly generated in almost inexhaustible num-
bers, by varying either the solution or the instance (while keeping the same
solution) or both;

• we can control the nature of the instance (satisfiable or unsatisfiable) with-
out making it too easy to solve;

• last but not least they are interesting problems on their own (and whose
importance is much easier to grasp for the layman than the n-queen puzzle
or the DIMACS parity problem).

The experiments on SAT provers, HeerHugo by Groote and Warners [19],
eqsatz by Li [27], and smodels by Niemela and Simmons [30] shows that SAT
Solvers are well behind number theoretic algorithms which solve the same
problem using factoring but are not totally hopeless.

The first avenue of future research is the testing of other algorithms which are
able to exploit the presence of affine subproblems even more than HeerHugo
and eqsatz. Indeed, in contrast with the encoding of DES reported in [28],
here the affine subproblem is almost 50% of the whole formula. A possible
approach is to apply algorithms such as those by Warners and Van Maaren
[46] as a pre-processing phase, another approach is to test the effectiveness of
specialized calculi which integrate more closely affine and clausal logic such as
those by Baumgartner and Massacci [4].

Finally, an intriguing path suggested by an anonymous reviewer is representing
integers with Gray codes such that the bitwise representions of n and n+1 also
differ by one bit. This might give SAT-solvers with lemmaizing a competitive
edge on this kind of problems: lemmas could more easily cut off a large portion
of the search space. However, the design of combinatorial arithmetic circuits
(addition, multiplication and two-complement substraction) for these codes is
a research problem in itself.
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We leave these issues open for future investigations.
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