
A Logical Model for Security of Web Services?

Hristo Koshutanski and Fabio Massacci

Dip. di Informatica e Telecomunicazioni - Univ. di Trento
via Sommarive 14 - 38050 Povo di Trento (ITALY)

{hristo,massacci}@dit.unitn.it

Abstract. Business Processes for Web Services are the new paradigm
for the lightweight integration of business from different enterprises.
Yet, there is not a comprehensive proposal for a logical framework for ac-
cess control for business processes though logics for access control policies
for basic web services are well studied.
In this paper we propose a logical framework for reasoning (deduction,
abduction, consistency checking) about access control for business pro-
cesses for web services.

1 Introduction

In the past millennium the development of middleware connected the IT efforts
to integrate distributed resources of a single enterprise. The new century has seen
the rise of a new IT concept: virtual enterprise. Virtual enterprise is born when a
business process is no longer closed within the boundary of a single corporation.
The business process is thus composed by partners that offer their services on
the web and integrate each other efforts into one (hopefully) coherent process.

The scenario offered by business processes for web services is particularly
challenging for the definition of its security features. Indeed it has some aspects of
trust management systems and some aspects of workflow security management.

From the trust management systems (see e.g. [13, 7]) it takes the credential-
based view: a (web) service is offered on its own and the decision to grant or
deny access can only be made on the basis of the credentials sent by the client.

From workflow authorization systems (see e.g. [2, 9]) we borrow all classical
problems such as dynamic assignment of roles to users, dynamic separation of
duties, and assignment of permission to users according to the least privilege
principles. In contrast with workflow security management schemes a business
process for web services crosses organizational boundaries and is provided by
entities that sees each other as just partners and nothing else. We have something
even more loosely coupled than federated databases.

So, it is not a surprise that there is not a comprehensive proposal for a logical
framework that tackles these aspects, though logics for access control policies for
basic web services, workflows, and distributed systems are well studied.

We identify a number of differences w.r.t. traditional access control:
? This work has been partly supported by the MIUR-FIRB Project “ASTRO” and

EU Project IST-FET “WASP”.

– credential vs user based access control,
– interactive vs one-off evaluation of credentials (i.e., controlled disclosure of

information vs all-or-nothing decision),
– on-line vs off-line analysis of consistency of roles and users assignments (e.g.,

for separation of duties),

In this paper we propose a logical framework for reasoning about access
control for business processes for web services. We identify the different reasoning
tasks (deduction, abduction, consistency checking) that characterize the problem
and clarify the problems of temporal evolution of the logical model (addition and
revocation of credentials).

2 The Formal Framework

Our formal model for reasoning on access control is based variants of Datalog
with the stable model semantics and combines in a novel way a number of
features:

– logics for trust management by Li et al. [11];
– logic for workflow access control by Bertino et al. [2];
– logic for release and access control by Bonatti and Samarati [3].

We consider the view of the single partner, as we cannot assume sharing of
policies between partners. In [10] it is explained how the entire process can be
orchestrated by using “mobile” business processes, while keeping each partner
policy decision process as a black-box.

In our framework each partner has a security policy for access control PA
and a security policy for interaction control PI , whose syntax will be defined
later in §3.

The policy for access control is used for making decision about usage of all
web services offered by the partner. The policy for interaction control is used to
decide which credentials must be additionally provided or must be revoked by
the user if those available are not adequate to obtain the service.

In many workflow authorization schemes, the policy is not sufficient to make
an access control decisions and thus we need to identify the history of the exe-
cution H of the business process as perceived by the current partner, and a set
of active (unrevoked) credentials CA that have been presented by the agent in
past requests to other services comprised in the same business process.

To execute a service of the fragment of business process under the control the
partner the user will submit a set of presented credentials CP , a set of revoked
credential CR and a service request R (.) We assume that CR and CP are disjoint.

To specify how the access control decision is made we now assume the usual
inference capabilities, that is, for any set of formulae (Datalog rules and facts)
F and any formula f :

deduction determines whether f is a logical consequence of F , F |= f ;
consistency determines whether F is consistent, F 6|= ⊥;

abduction given an additional set of atoms A called the abducible atoms, and a
partial order relation ≺ between subsets of A determine a set of atoms E ⊂ A
such that (i) f is a logical consequence of F and E , namely F ∪ E |= f , (ii)
adding E to F does not generate an inconsistency, namely F ∪ E 6|= ⊥, and
finally (iii) E is a ≺-minimal subset of A having this property (See further
Def. 1).

For an introduction to abduction see Shanahan [12], for a survey of complexity
results - Eiter et al. [6]. We shall see later on in section 5 how abduction is used.

3 Logical Syntax

For the syntax we build upon [2, 3, 11]. We have a four disjoint sets of constants,
one for users identifiers denoted by User :U , one for roles Role :R, one for services
WebServ :S, and finally one for keys that are used to certify credentials Key :K.

We assume that we have the following security predicates:

Role :Ri � Role :Rj when role Role : Ri dominates in the global role hierarchy
role Role :Rj .

Role :Ri �WebServ:S Role :Rj when role Role :Ri dominates in the local role hier-
archy for service WebServ :S role Role :Rj .

assign (P,WebServ :S) when an access to the service WebServ :S is granted (as-
signed) to P . Where P can be either a Role :R or User :U .

forced (P,WebServ :S) if the predicate is true then an access right to access the
service WebServ : S must be given (forced) to P . Where P can be either a
Role :R or User :U .

We have three type of predicates for credentials:

declaration (User :U) it is a statement declared by the User :U for its identity.
credentialID (Key :K,User :U,Role :R) it is a statement declared and signed by

Key :K corresponding to some trusted authority that User :U has activated
Role :R.

credentialTask (Key :K,User :U,WebServ :S) it is a statement declared and signed
by Key :K corresponding to some trusted authority that User :U has the right
to access WebServ :S.

Three type of predicates describing the current status of each service:

running (P,WebServ :S, number :N) if it is true then the number :Nth activation
of WebServ :S is executed by P .

abort (P,WebServ :S, number :N) if it is true then the number :Nth activation of
WebServ :S within a workflow aborts.

success (P,WebServ :S, number :N) if it is true then the number :Nth activation
of WebServ :S within a workflow successfully executes.

Furthermore, for some additional workflow constraints we need to have some
meta-level predicates that specify how many statements are true. We use here a
notation borrowed from Niemelä smodels system, but we are substantially using
the count predicates defined by Das [4]:

n ≤ {X. Pr} where n is a positive integer, X is a set of variables, and Pr is a
predicate, so that intuitively n ≤ {X. Pr} is true in a model if at least n
instances of the grounding of X variables in Pr are satisfied by the model.
The {X. Pr} ≤ n is the dual predicate.

4 Formal Rules and Semantics

Normal logic programs [1] are sets of rules of the form:

A← B1, . . . , Bn, not C1, . . . , not Cm (1)

where A, Bi and Ci are (possibly ground) predicates among those listed in Sec.3
A is called the head of the rule, each Bi is called a positive literal and each
not Cj is a negative literal, whereas the conjunction of the Bi and not Cj is

called the body of the rule. A normal logic program is a set of rules.
In our framework, we also need constraints that are rules with an empty head.

← B1, . . . , Bn, not C1, . . . , not Cm (2)

One of the most prominent semantics for normal logic programs is the stable
model semantics proposed by Gelfond and Lifschitz [8] (see also [1] for an intro-
duction). The intuition is to interpret the rules of a program P as constraints on
a solution set S (a set of ground atoms) for the program itself. So, if S is a set
of atoms, a rule 1 is a constraint on S stating that if all Bi are in S and none
of Cj are in it, then A must be in S. A constraint 2 is used to rule out from the
set of acceptable models the situation in which Bi are true and all Cj are false
is not acceptable.

Definition 1 (Abduction). Let P be a logic program, H be a set of predicates
(called hypothesis, or abducibles), L be a (positive or negative) ground literal
(sometimes called the manifestation), and ≺ a p.o. over subsets of H, the cau-
tious solution of the abduction problem is a set of ground atoms E such that

1. E is a set ground instances of predicates in H,
2. P ∪ E |= L
3. P ∪ E 6|= ⊥
4. any set E′ ≺ E does not satisfy all three conditions above

Remark 1. The choice of the partial order has a major impact in presence of
complex role hierarchies. The “intuitive” behavior of the abduction algorithm
for what regards the extraction of the minimal set of security credentials is not
guaranteed by the straightforward interpretation of H as the set of credentials
and by the set cardinality or set containment as minimality orderings.

To understand the problem consider the following logic program:
assign (User :U,WebServ :ws) ←credentialID (Key :k,User :U,Role :R),

Role :R � Role :r1

Role :r2 � Role :r1 ←
The request assign (User :fm, WebServ :ws) has two ⊆-minimal solutions:
{credentialID (Key :k,User :fm, Role :r1)}, {credentialID (Key :k,User :fm, Role :r2)}
Yet, our intuition is that the first should be the minimal one.

So, we need a more sophisticated partial order. For example, if E � E′ is such
that for all credentials c ∈ E there is a credential c′ ∈ E′ where c = c′. We can
revise it so that E ≺ E′ if c ∈ E there is a credential c′ ∈ E′ where c′ is identical
to c except that it contains a role R′ that dominates the corresponding role R
in c. This p.o. generates the “intuitive” behavior of the abduction algorithm.

Definition 2. An access control policy PA is a logic program over the predicates
defined in Sec. 3 in which (i) no credential, no role hierarchy atom, and no exe-
cution atom can occur in the head of a rule and (ii) for every rule containing and
head A which is the (possibly ground instance of) predicate forced (P,WebServ :S)
there is the (possibly ground instance of) rule assign (P,WebServ :S)←
forced (P,WebServ :S).

An access control request is a ground instance of an assign (i,WebServ :k)
predicate.

The request r is a security consequence of a policy PA if (i) the policy is
logically consistent and (ii) the request is a logical consequence of the policy.

Definition 3. An interaction policy PI is a logic program in which no credential
and no role hierarchy atom can occur in the head of a rule.

Definition 4 (Fair Access). Let PA be an access control policy, let CD be
the set of ground instances of credentials occurring in PA, and let ≺ be a p.o.
over subsets of CD. The access control policy guarantees ≺-fair access if for any
ground request r that is an instance of a head of a rule in PA there exists a set
CM ⊆ CD that is a solution of the abduction problem.

Definition 5 (Fair Interaction). Let PA, and PI be, respectively, an access
control policy and an interactive policy, and let CD be the set of ground instances
of credentials occurring in PA, and let ≺ be a p.o. over subsets of CD. The policies
guarantee ≺-fair interaction w.r.t. a set of credentials CI if (i) PA guarantees
≺-fair access and (ii) for any solution of the abduction problem CM ⊆ CD and
any credential c ∈ CM if it PI ∪ CI |= c. If the set of initial credentials CI only
contains declarations then the access control is unlimited.

5 The Formal Framework: Reasoning

To allow for an easier grasp of the problem we start with a basic framework.
Traditional Access Control. This approach is the cornerstone of most logical
formalization [5].

1. verify that the request is a logical consequence of the credentials, namely
PA ∪ CP |= r

2. if the check succeeds then grant access else deny access

A number of works has deemed such blunt denial unsatisfactory and therefore
it has been proposed by Bonatti and Samarati [3] and Yu et al. [14] to send back
to the client some of the rules that are necessary to gain additional access.
Disclosable Access Control. It is revised to allow for the flow of rules and
information to users:

1. verify that the request is a logical consequence of the credentials, namely
PA ∪ CP |= r

2. if the check succeeds then access is granted, otherwise select some rule r ←
p ∈ PA and send the rule back to the client

In many cases, this solution is neither sufficient nor desirable. For instance if
the policy is not flat, it has constraints on the credentials that can be presented
at the same time (e.g., separation of duties) or a more complex role structure
is used, these systems would not be complete. Also repeated queries allow for
the disclosure of the entire policy, which might well be undesirable. In this case
we need the interactive access control solution for Web Services proposed by
Koshutanski and Massacci [10] that is described below.

Interactive Access Control for Stateless WS.

1. verify that the request is a logical consequence of the credentials, namely
PA ∪ CP |= r

2. if the check succeeds then access is granted, otherwise
(a) compute the set of disclosable credentials as
CD = {c|c credential and PI ∪ CP |= c}

(b) use abduction to find a minimal set of missing credentials CM such that
both PA ∪ CP ∪ CM |= r and PA ∪ CP ∪ CM 6|= ⊥

(c) if no such set exists then ⊥ is sent back to the user,
(d) otherwise the set of missing credentials CM is send back to the client

and the process re-iterates.

This type of decision is characteristic of most logical approaches to access control
[11, 2, 3]: we only look at the policy, the request and the set of credentials.

If the authorization decisions of business processes are stateful, and the the
corresponding workflow of the partners has constraints on the execution of future
services on the basis of past services, then even this solution is not adequate
enough. As we already noted, the problems are the following:

– the request may be inconsistent with some role that the user has taken up
in the past;

– the new set of credential may be inconsistent with requirements such as
separation of duties;

So, this means that we must have some roll-back procedure by which, if the user
has by chance sent the “wrong” credentials, he has some revocation mechanism
to drop them.

Access Control for Stateful Business Processes. At this stage, we need
all the policy and set of credentials that we have envisaged and indeed the partner
expects from the client the set of current credentials CP plus the set of revoked
CR. The (logical) access control decision takes the following steps:

1. remove the revoked credentials from the set of active credentials, namely
CA ← CP ∪ CA \ CR,

2. verify the consistency of the request with the active set of credentials and
the history of execution, namely PA ∪H ∪ CA ∪ {r} 6|= ⊥

3. If this check succeeds goes to the next step, otherwise
(a) derive a subset of excessing credentials that must be revoked by the user
CE ⊆ CA such that the set CE is minimal w.r.t. the ≺ partial order and
that by removing it from CA the consistency check would succeed

(b) if no such set exists then ⊥ is sent back to the user
(c) if it exists, this set is send back to the user and the process is re-iterated.

4. verify that the request is a logical consequence of the credentials, namely
PA ∪H ∪ CA |= r,

5. if this check succeeds then access is granted
6. if the step fails

(a) compute the set of disclosable credentials as
CD = {c|c credential and PI ∪H ∪ CA |= c}

(b) use abduction to find a minimal set of missing credentials CM such that
both PA ∪H ∪ CA ∪ CM |= r and PA ∪H ∪ CA ∪ CM 6|= ⊥

(c) if this set exists then CM is send back to the client and the process
re-iterates.

(d) if it does not exists then
i. generalize the set of disclosable credentials to all credentials occur-

ring in PA
ii. use adbuction to find a minimal set of missing credentials CM such

that both PA ∪H ∪ CM |= r and PA ∪H ∪ CM 6|= ⊥
iii. if no such set does exist then ⊥ is sent back to the user,
iv. if such set do exists then compute the set of revocable credentials CE

as the set CA \ CM, return this set to the client and re-iterate the
process

When the request is granted the appropriate grounding of suitable history pred-
icates are added to H.

Remark 2. The step 3a looks the opposite of abduction: rather than adding new
information to derive more things (the request), we drop information to derive
less things (the inconsistency). It is possible to show that by adding a number of
rules linear in the number of potentially revocable credentials the two task are
equivalent.

Theorem 1. If an access control policy guarantees ≺-fair access and H = ∅ the
access control algorithm for stateful business processes never returns ⊥.

Theorem 2. If access and interaction control policies guarantee ≺-fair inter-
action w.r.t. a set of credentials CI and H = ∅ the access control algorithm
for stateful business processes, there exists a sequence of revocable and missing
credentials starting with CI such that the access control algorithm for stateful
business processes eventually grant r.

6 Conclusions

In this paper we proposed a logical framework for reasoning about access con-
trol for business processes for web services. Our formal model for reasoning on
access control is based variants of Datalog with the stable model semantics and
combines in a novel way a number of features: the logic for trust management
by Li et al. [11]; the logic for workflow access control by Bertino et al. [2]; and
the logic for controlling the release of information by Bonatti and Samarati [3].
We identified the different reasoning tasks (deduction, abduction, consistency
checking) that characterize the problem and clarify the problems of temporal
evolution of the logical model (updates and downdates of credentials).

References

1. Apt, K. Logic programming. In Handbook of Theoretical Computer Science, J. van
Leeuwen, Ed. Elsevier, 1990.

2. Bertino, E., Ferrari, E., and Atluri, V. The specification and enforcement
of authorization constraints in workflow management systems. ACM Transactions
on Information and System Security (TISSEC) 2, 1 (1999), 65–104.

3. Bonatti, P., and Samarati, P. A unified framework for regulating access and
information release on the web. Journal of Computer Security 10, 3 (2002), 241–
272.

4. Das, S. Deductive Databases and Logic Programming. Addison-Wesley, Reading,
MA, 1992.

5. di Vimercati, S. D. C., and Samarati, P. Access control in federated systems.
In Proceedings of the 1996 workshop on New security paradigms (1996), ACM
Press, pp. 87–99.

6. Eiter, T., Gottlob, G., and Leone, N. Abduction from logic programs: Se-
mantics and complexity. Theoretical Computer Science 189, 1-2 (1997), 129–177.

7. Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B. M., and
Ylonen, T. SPKI Certificate Theory, September 1999. IETF RFC 2693.

8. Gelfond, M., and Lifschitz, V. The stable model semantics for logic program-
ming. In Proceedings of the Fifth International Conference on Logic Programming
(ICLP’88) (1988), R. Kowalski and K. Bowen, Eds., MIT-Press, pp. 1070–1080.

9. Kang, M. H., Park, J. S., and Froscher, J. N. Access control mechanisms
for inter-organizational workflow. In Proceedings of the Sixth ACM Symposium on
Access control models and technologies (2001), ACM Press, pp. 66–74.

10. Koshutanski, H., and Massacci, F. An access control system for business
processes for Web services. Tech. Rep. DIT-02-102, Department of Information
and Communication Technology, University of Trento, 2002.

11. Li, N., Grosof, B. N., and Feigenbaum, J. Delegation logic: A logic-based
approach to distributed authorization. ACM Transactions on Information and
System Security (TISSEC) 6, 1 (2003), 128–171.

12. Shanahan, M. Prediction is deduction but explanation is abduction. In Proceed-
ings of IJCAI ’89 (1989), Morgan Kaufmann, pp. 1055–1060.

13. Weeks, S. Understanding trust management systems. In IEEE SS&P-2001
(2001), IEEE Press.

14. Yu, T., Winslett, M., and Seamons, K. E. Supporting structured credentials
and sensitive policies through interoperable strategies for automated trust nego-
tiation. ACM Transactions on Information and System Security (TISSEC) 6, 1
(2003), 1–42.

