
Theoretical Computer Science 243 (2000) 477–487
www.elsevier.com/locate/tcs

Note

The proof complexity of analytic and clausal tableaux

Fabio Massaccia;b ;∗

aDipartimento di Informatica e Sistemistica, Universit�a di Roma I “La Sapienza”, via Salaria 113,
00198 Roma, Italy

bDipartimento di Ingegneria dell’Informazione, Universit�a di Siena, via Roma 56, 53100 Siena, Italy

Received November 1998; revised February 2000; accepted February 2000

Abstract

It is widely believed that a family �n of unsatis�able formulae proposed by Cook and Reck-
how in their landmark paper (Proc. ACM Symp. on Theory of Computing, 1974) can be used
to give a lower bound of 2
(2

n) on the proof size with analytic tableaux. This claim plays a key
role in the proof that tableaux cannot polynomially simulate tree resolution. We exhibit an ana-
lytic tableau proof for �n for whose size we prove an upper bound of O(2n

2
), which, although

not polynomial in the size O(2n) of the input formula, is exponentially shorter than the claimed
lower bound. An analysis of the proofs published in the literature reveals that the pitfall is the
blurring of n-ary (clausal) and binary versions of tableaux. A consequence of this analysis is
that a second widely held belief falls too: clausal tableaux are not just a more e�cient nota-
tional variant of analytic tableaux for formulae in clausal normal form. Indeed clausal tableaux
(and thus model elimination without lemmaizing) cannot polynomially simulate analytic tableaux.
c© 2000 Elsevier Science B.V. All rights reserved.

Keywords: Analytic tableaux; Automated reasoning; Clausal tableaux; Proof complexity; Tree
resolution

1. Introduction

The study of upper and lower bounds on the proof size of propositional tautologies
using di�erent proof systems has played a major role in computer science since the
ground breaking papers by Cook and Reckhow [4, 5]. This line of research has been
quite fruitful in providing a sound computational basis for ranking variants of proof
systems.

∗ Correspondence address: Dipartimento di Informatica e Sistemistica, Universit�a di Roma I “La Sapienza”,
via Salaria 113, 00198 Roma, Italy.
E-mail address: massacci@dis.uniroma1.it, massacci@dii.unisi.it (F. Massacci).

0304-3975/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00148 -1

478 F. Massacci / Theoretical Computer Science 243 (2000) 477–487

The key tool is polynomial simulation. Informally, a proof system �+ is more
powerful than � if we can map every proof of a formula A in system � into a proof
of A in system �+, using a polynomial function (in the size of the proof with �) but
the converse does not hold. The last step is usually proved by exhibiting a family of
formulae for which there is an exponential lower bound (in the size of the formulae)
on every proof in � whereas there are short polynomial proofs in �+. We refer to
the comprehensive survey by Urquhart [14] for formal de�nitions.
Among the various proof systems which have been ranked, tableaux [12] and reso-

lution [11] have received considerable attention. For instance, the claim that tableaux
cannot polynomially simulate tree-resolution is based on a family of formulae �n pro-
posed by Cook and Reckhow [4, 5] which is claimed to have only exponential size
tableau proofs but a polynomial resolution proof.
Although this claim is widely believed (see e.g. [1, 6, 9, 10, 14]), we show in this

note that there is a tableaux proof for this family of formulae that is exponentially
shorter than the claimed lower bound.
The interest of this result is twofold: �rst it reopens the question of the relative

proof strength of tree-resolution and analytic tableau. The second interesting point is
the nature of the error, which lies in the seemingly trivial generalization of results valid
for clausal tableaux to the class of (binary) analytic tableaux. This is not a simple point:
most research in automatic deduction has focused on clausal normal form and most
provers work with clausal normal form. For instance, the winners of the past automatic
theorem prover competitions at the International Conference on Automated Deduction
work with clauses: one prover uses resolution [13] and the other clausal tableaux [7].
So, it is not a surprise that in the automatic reasoning community it is widely

believed that the clausal version of tableau [7, 3], a variant of model elimination without
lemmaizing [8], is just a notational (possibly more e�cient) variant of the classical
analytic tableaux calculus proposed by Smullyan [12].
In consequence of our analysis, this belief falls too. Combining the result proved in

the literature about Cook and Reckhow family and (clausal) tableaux with the existence
of a quasi-polynomial analytic tableau proof shown here, we can conclude that clausal
tableaux are far from being a notational variant of analytic tableaux: they cannot even
polynomially simulate analytic tableaux.

1.1. Plan of the paper

In the next sections, we recall the Cook and Reckhow class of formulae �n
(Section 2) and the proof theory of analytic and clausal tableaux (Section 3). Next we
show the construction of a particular tableau proof for these formulae
(Section 4) and shows that its size is exponentially shorter than the claimed lower
bound (Section 5).
Then we discuss the nature of the error in the blurring of the clausal and binary ver-

sion of tableaux and show that clausal tableaux cannot polynomially simulate analytic
tableaux (Section 6). A brief discussion concludes the paper (Section 7).

F. Massacci / Theoretical Computer Science 243 (2000) 477–487 479

2. Propositional logic and Cook and Reckhow formulae

Throughout the paper we assume a basic knowledge of propositional logic (for an
introduction, see [12]). Propositional formulae denoted by A, B, X , Y , are formed from
propositional variables p ∈ P as follows:

A; B ::= p|¬A|A ∧ B|A ∨ B:
A literal, denoted by L is either a propositional variable p or a negated propositional

variable ¬p. The sign of a literal is positive if the literal is p and negative if it is ¬p.
A clause is a disjunction of literals which can also be seen as a multiset of literals.
To represent clauses as formulae using binary connectives we follow Urquhart [14]

and assume that ∨ associates to the right, so that the clause L1 ∨L2 · · · ∨Ln−1 ∨Ln is
a shorthand for the formula L1 ∨ (L2 ∨ · · · (Ln−1 ∨Ln) · · ·)).
The family of Cook and Reckhow formulae [4] is constructed by associating a set

of clauses �n to a binary tree of depth n. The construction works as follows:

• the tree with one node is associated to the empty clause;
• each internal node of a tree is associated to a di�erent variable;
• each leaf is associated to a clause whose literals are the atoms of the internal nodes,
considered positive if the path from the root to the leaf continues at the left of the
node and negative if it continues at the right.

In particular, we are interested in sets of clauses corresponding to complete binary
trees of depth n. We represent them as follows [6]:

�n =
⋃

{±A ∨ ±A± ∨ ±A±± ∨ · · · ∨ ±A±〈n−1〉±}; (1)

where the string ± · · ·± is determined by the signs of the previous literals.
For instance, the simple families �1 and �2 are

�1 = {A;¬A};
�2 = {A ∨ A+; A ∨ ¬A+;¬A ∨ A−;¬A ∨ ¬A−}:

Notice that the family �n has size O(2n) (the number of leaves in a complete tree
of depth n) where the size is measured as the number of symbols.

3. Analytic and clausal tableaux

As a preliminary notion we recall the classi�cation of formulae as � and � formulae
[12] in Table 1.
The original de�nition of analytic tableaux as given by Beth and systematized by

Smullyan is very simple and we quote directly from Smullyan’s book [12, pp. 24, 29],
where X is a formula:

An analytic tableau for X is an ordered dyadic tree, whose points are (occurrences
of) formulas, which is constructed as follows. We start by placing X at the origin.

480 F. Massacci / Theoretical Computer Science 243 (2000) 477–487

Table 1
�; � notation

� �1 �2 � �1 �2

X ∧ Y X Y X ∨ Y X Y
¬(X ∨ Y) ¬X ¬Y ¬(X ∧ Y) ¬X ¬Y
¬¬X X

Now suppose T is a tableaux for X which has already been constructed; let Y be
an end point. Then we may extend T by either of the following two operations.
(A) If some � occurs on the path PY , then we may adjoin either �1 or �2 as the

sole successor of Y . (In practice, we usually successively adjoin �1 and then
�2.)

(B) If some � occurs on the path PY , then we may simultaneously adjoin �1 as
the left successor of Y and �2 as the right successor of Y .

[: : :] Tableaux for �nite sets. If S is a �nite set {X1; : : : ; Xn} a tableau for S is
meant a tableau starting with

X1
X2
...
Xn

and then continued using Rules A, B.

We can also construct a clausal tableau TC if the set S of input formulae is only
made of clauses. We replace rule (B) with the following rule (C):
(C) If some clause L1 ∨L2 ∨L3 ∨ · · · ∨Ln occurs on the path PY , then we may si-

multaneously adjoin each Li as the ith successor of Y , for i = 1 : : : n.
Model elimination without lemmaizing, as proposed by Loveland [8], is a notational
variant of clausal tableau.
In a clausal tableau all nodes are labelled by literals, except for the initial nodes

storing the set S of clauses. In an analytic tableau the internal nodes may also be
clauses.
A tableau proof for a �nite set of formulae S is a tableau for S where for every

path from the root to a leaf there is a formula A such that both A and ¬A occur along
the path.
The size of a tableau proof for a set of formulae S is usually the number of internal

nodes of a tableau proof of S.
This measure is su�ciently accurate for both analytic and clausal tableau, if we are

concerned with polynomial simulation. If k is the size of the largest clause in S (hence
k is at worst proportional to S), counting all nodes would increase the measure by
a factor of 2 for analytic tableaux and a factor of k for clausal tableau. A further
re�nement using the number of symbols would increase the measure by a factor of k.

F. Massacci / Theoretical Computer Science 243 (2000) 477–487 481

4. A quasi-polynomial tableau proof for �n

It is believed that tableau proofs for �n have size 2
(2
n). Since �n has size O(2n),

where the size is measured as the number of symbols, all tableau proofs should have
size 2
(|�|), if the claimed upper bounds were true. On the contrary, our tableau proof
has size O(2log

2 |�|).
In the sequel, we use 〈a〉; 〈b〉; 〈c〉 : : : to mark various positions of the tableau proof,

and 〈a− b〉 to denote the fragment of the tableau proof going from 〈a〉 to 〈b〉, etc.
The tableau proof for �n starts with the following initial segment (see Section 3):

〈a〉

P+n

A ∨ A+ ∨ A++ ∨ · · · ∨ A+〈n−1〉+
...
A ∨ ¬A+ ∨ ¬A+− ∨ · · · ∨ ¬A+−〈n−2〉−

P−n

¬A ∨ A− ∨ A−+ ∨ · · · ∨ A−+〈n−2〉+
...
¬A ∨ ¬A− ∨ ¬A−− ∨ · · · ∨ ¬A−〈n−1〉−

〈b〉
We expand the tableau by reducing all formulae in the upper initial pre�x P+n in

sequence, using rule B. We only branch on the �rst literal A, splitting the tree with A
as left successor and A+ ∨A++ ∨ · · · ∨A++〈n−2〉+ as right successor. Then in the right
subtree, that labelled with A+ ∨A++ ∨ · · · ∨A++〈n−2〉+, we split again on the second
formula of P+n obtaining A on the left subtree and ¬A+ ∨A+− ∨ · · · ∨A+−+〈n−3〉+ on
the right. We continue until we have reduced all clauses in P+n .
Notice that we do not reduce A+ ∨ · · · ∨A++〈n−2〉+ in the right subtree before having

reduced all formulae in P+n . As we shall see, this is the key step that explains why
claimed lower bounds on tableau proofs fail (see Section 6). The �nal outcome is
shown in Fig. 1.
We have obtained a sort of comb, with 2n−1 nodes on the left (the “teeth”), each

labelled with A, and a “spine” (the path from 〈b〉 to 〈d〉 whose nodes are labelled
with A+ ∨A++ ∨ · · · ∨A+〈n−1〉+, then ¬A+ ∨A+− ∨ · · · ∨A+−+〈n−2〉+, and so on until
we get ¬A+ ∨¬A+− ∨ · · · ∨¬A+−〈n−1〉−. Observe that the 2n−1 nodes from 〈b〉 to
〈d〉 correspond exactly to the initial segment of the tableau for �n−1 if we replace
systematically A+� by A�.
So, to continue the proof below point 〈d〉, we simply use the recursive construction

of the tableau for n− 1.
Next, we start the construction of the subtrees starting with A (the teeth of the comb)

indicated by 〈ci〉. For each subtree we work as follows: apply rule (B) to the formulae
of P−n in sequence, splitting on ¬A on one side and A− ∨A−+ ∨ · · ·A−+〈n−2〉+ on the
other side and repeat the modus operandi we have followed above for the construction
of the spine 〈b − d〉 until we have exhausted all formulae of P−n . The �nal outcome
is shown in Fig. 2.

482 F. Massacci / Theoretical Computer Science 243 (2000) 477–487

P+n
P−n〈b〉
↙ ↘
A A+ ∨ A++ ∨ · · · ∨ A++〈n−2〉+
〈c1〉 ↙ ↘

A A+ ∨ A++ ∨ · · · ∨¬A++〈n−2〉+
〈c2〉

. . .
. . .

↙ ↘
A ¬A+ ∨¬A+− ∨ · · · ∨¬A+−〈n−2〉−

〈c2n−1 〉 〈d〉

Fig. 1. The �rst step of the tableau proof.

A
〈ci〉
↙ ↘
¬A A− ∨ A−+ ∨ : : : A−+〈n−2〉+
× ↙ ↘

¬A A− ∨ A−+ ∨ : : :¬A−+〈n−2〉+
×

. . .
. . .
↙ ↘
¬A ¬A− ∨¬A−− ∨ : : :¬A−−〈n−2〉−
× 〈ei〉

Fig. 2. The second (repeated) step of the tableau proof.

P+n
P−n↙ ↓ ↘

A · · · A Tn−1 slope 〈b− d〉
↙ ↓ ↘

¬A · · · ¬A Tn−1 (repeated) slope 〈ci − ei〉
× ×

Fig. 3. The structure of the tableau proof.

Again we obtain a comb. Each left subtree contains a pair A, ¬A along the path
from the root to the leaf. The path from 〈ci〉 to 〈ei〉 is again the initial segment of the
tableaux for �n−1 if we replace syntactically A−� with A�.
The general structure of the tableau Tn for �n is summarized in Fig. 3.

5. Complexity analysis

We analyze the proof size in terms of the number of nodes, and include the terminal
nodes to provide a tight upper bound.
Let Tn be the size of the tableaux for �n. At �rst note that T1 = 2 because �1 = {A;

¬A}, so that pasting A and ¬A one below the other already yields a tableau proof. In

F. Massacci / Theoretical Computer Science 243 (2000) 477–487 483

the general case, we have

Tn = 2 · 2n−1 + Tn−1 + 2n−1 · (1 + 2n−1 + Tn−1):
The �rst addendum is the size of the initial segment 〈a− b〉, the second addendum is
the size of the slope 〈b − d〉 which is then completed into a subtree Tn−1. The last
addendum is the overall size of the subtrees 〈ci〉: each subtree includes the root A, the
2n−1 leaves labelled ¬A and the remaining slope 〈ci−ei〉 which is then completed into
a subtree Tn−1.
This equation boils down to the following:

T1 = 2; (2)

Tn = (2n−1 + 1) · Tn−1 + 2n−1 · (2n−1 + 3): (3)

For our purposes, a crude estimate of the proof size is su�cient. Thus, we start by
observing that Tn¿2n, and therefore by some simple algebraic transformation we get
Tn62 · 2n · Tn−1. Then, we proceed by de�ning a recursive function Un which clearly
bounds Tn from above:

U1 = 2; (4)

Un = 2n+1 · Un−1: (5)

A closed-form solution for Un can be easily found:

Un = 2 ·
n∏
i=2

2i+1 = 2n · 2
∑n

i=2
i = 2n · 2(n+2)(n−1)=2

which gives us the desired upper bound

Tn6Un = 2(n
2+3n−2)=2: (6)

Theorem 1. The proof complexity of analytic tableaux for the �n family is bounded
from above by O(2n

2
).

Although this is not a polynomial in |�|, the upper bound O(2log2 |�|) is exponentially
smaller than the claimed lower bound 2
(|�|).

6. On the di�erence between clausal and analytic tableaux

The lower bound of 2
(2
n) has appeared in a number of papers such as Cook and

Reckhow [4, 5], Arai, [1], D’Agostino and Mondadori, [6], Murray and Rosenthal [9],
and Urquhart [14] and we may wonder what went wrong.
A careful analysis reveals that the unsound step is the seemingly trivial extension of

results from clausal tableaux to analytic tableaux.

484 F. Massacci / Theoretical Computer Science 243 (2000) 477–487

In a nutshell, all papers above rely on variants of the following lemma:

Lemma 2. If t(S) is the size of a tableau proof for a �nite set of formulae S then
there is clause A1 ∨ · · · ∨ An ∈ S such that t(S)=

∑n
i=1 t(S ∪ {Ai}\{A1 ∨ · · · ∨ An}).

This is undoubtedly true with a clausal tableau: each time we branch the tree we
add n leaves each containing a literal from the reduced clause (see again rule (C) in
Section 3). One can use this lemma to prove a restricted version of Cook and Reckhow
lower bound (for the proof see [14]).

Theorem 3. The proof complexity of clausal tableaux for the �n family is bounded
from below by 2
(2

n).

The problem is that Lemma 2 no longer holds for analytic tableau, but for a particular
proof search strategy for reducing L1 ∨ L2 ∨ · · · ∨ Ln:

• create a left successor with L1 and a right successor with L2 ∨ · · · ∨ Ln
• continue the reduction focusing on L2 ∨ L3 · · · ∨ Ln and split the tree with L2 and
L3 ∨ · · · ∨Ln, then we move down the tree and split it into L3 and L4 ∨ · · · ∨Ln, etc.

This reduction strategy is not necessary, and indeed we have not used it.
With this reduction strategy we can simulate clausal tableau with analytic tableaux.

Notice that for each reduced clause of length k we must add k nodes in a clausal
tableau and 2k nodes in the corresponding analytic tableau. Using this proof search
strategy, an analytic tableau proof is only twice as big as the corresponding clausal
tableau proof.
Combining this observation with Theorems 1 and 3 we obtain the second surprising

result.

Theorem 4. Analytic tableaux can polynomially simulate clausal tableaux but clausal
tableaux cannot polynomially simulate analytic tableaux.

So, even on sets of clauses, clausal tableaux (and hence model elimination) are far
from being a more e�cient notational variant of analytic tableau.
We can give an intuitive explanation by focusing on the key Lemma 2 and observe

what happens when we pass from S to S ∪{A} in a clausal and in an analytic tableau
proof. Suppose that in S there are m clauses of the form ¬A ∨ L1i ∨ · · ·Lnj. The
most simple way to work with analytic tableau is to “eliminate” ¬A and shorten the
size of a number of clauses in the clause set. The corresponding proof is shown in
Fig. 4. This proof fragment is substantially a linear sequence of length m: we have just
shortened the input clauses and eliminated the literal ¬A from consideration without
further branching.
Consider instead what happens with the corresponding clausal tableau proof in Fig. 5

to eliminate literal ¬A from consideration we must introduce n1 branches each of

F. Massacci / Theoretical Computer Science 243 (2000) 477–487 485

...
¬A ∨ L11 ∨ : : : ∨ Ln1
¬A ∨ L12 ∨ : : : ∨ Ln2

...
¬A ∨ L1m ∨ : : : ∨ Lnm

...
A
↙ ↘

¬A L11 ∨ L21 ∨ : : : Ln1
× ↙ ↘

¬A L12 ∨ : : : Ln2
×

. . .
. . .
↙ ↘

¬A L1m ∨ : : : ∨ Lnm
× etc

Fig. 4. An analytic tableau proof when a literal is present.

...
¬A ∨ L11 ∨ : : : ∨ Ln1
¬A ∨ L12 ∨ : : : ∨ Ln2

...
¬A ∨ L1m ∨ : : : ∨ Lnm

...
←−−−−−−−− A

↙ ↙↘
¬A
×

L11
↙ ↙↘

↙ ↙ ↘
¬A L12 · · · Ln2
× ↙↘ ↙↘

etc etc

· · · Ln1
↙ ↙↘

↙ ↙ ↘
¬A L12 · · · Ln2
× ↙↘ ↙↘

etc etc

Fig. 5. A clausal tableau proof when a unit clause is present.

which must be closed and for this we need n2 branches, etc. To eliminate ¬A from
consideration we must consider a subtree of depth m.
In a nutshell, analytic tableaux can exploit unit clauses in much more e�ective way

than clausal tableaux. A form of unit resolution can be exploited by analytic tableaux
but not by clausal tableaux.

7. Conclusions

In this paper we have shown the following:
• the family of Cook and Reckhow formulae traditionally used to rank analytic
tableaux and tree-resolution admits a quasi-polynomial tableau proof;

• the original exponential tableau proof was only valid for the n-ary (clausal) version
of tableaux;

486 F. Massacci / Theoretical Computer Science 243 (2000) 477–487

• clausal tableaux (and thus model elimination without lemmaizing 1) cannot polyno-
mially simulate analytic tableaux.
Intuitively this result can be explained in two ways: from the point of view of proof

theory, analytic tableaux have one degree of freedom more than clausal tableaux and
therefore their proofs can be shorter. From the point of view of automated reasoning,
analytic tableaux are able to use unit clauses in a more e�ective way than clausal
tableaux, fairly close to unit resolution. In that way they can produce intermediate
clause sets in which the size of a number of clauses is shortened and therefore shorter
proofs can be found.
As a consequence, a number of interesting questions are opened.

Question 1. Can clausal tableaux with (atomic) cut polynomially simulate analytic
tableaux with (atomic) cut?

Question 2. Can analytic tableaux polynomially simulate tree-resolution?

The �rst question is particularly interesting in the light of the result by Arai [1],
showing that admitting cut formulae of di�erent size creates a proper hierarchy (wrt
polynomial simulation) of tableau calculi, and the current implementation techniques
of clausal tableaux which use atomic cut [7].
As for the second question, the author is convinced that the answer is negative,

although we must be careful when looking for new counterexamples. The family of
formulae proposed by D’Agostino and Mondadori [6] to compare the relative e�ciency
of tableaux and truth tables might be a good candidate. Yet, this may lead us to the
same pitfall.
Indeed, a recent result by Arai [2] for resolution and tableau proofs in DAG form 2

shows that there is an upper bound of O(n2+3 log n) for the translation of (DAG) reso-
lution refutation of size n into (DAG) cut-free tableau proofs. It is worth noting that
it is possible to recast our result on the proof size of Cook and Reckhow formulae �n
in the same way: there is a proof of size O(|�n|log |�n|). We can conjecture that the
DAG result might be extended to the tree case:

Conjecture 1. Analytic tableaux quasi-polynomially simulates tree resolution.

We leave both questions open for future investigations.

Acknowledgements

I would like to thank L. Carlucci Aiello for her encouragement and support and
N. Arai, R. Letz, and an anonymous reviewer for useful comments which improved

1 This result can be strengthened by observing that model elimination cannot even polynomially simulate
clausal tableaux with a weak form of cut such as factorization [7].
2 The proof is represented as direct acyclic graph rather than a tree.

F. Massacci / Theoretical Computer Science 243 (2000) 477–487 487

the quality of the paper. This work has been partly supported by MURST and CNR
grants of the Dipartimento of Informatica and Sistemistica at the University of Roma
“La Sapienza” and by a travel grant of ECCAI.

References

[1] N. Arai, A proper hierarchy of propositional sequent calculi, Theoret. Comput. Sci. 159 (2) (1996)
343–354.

[2] N. Arai, Cut-free LK quasi-polynomially simulates resolution, preprint FI-CXT1998-001, The Fields
Institute for Research in Mathematical Sciences, University of Toronto, Canada, 1998.

[3] P. Baumgartner, U. Furbach, I. Niemel�a, Hyper tableaux, in: J. Alferes, L. Pereira, E. Orlowska (Eds.),
Proc. 6th European Workshop on Logics in Arti�cial Intelligence (JELIA-96), Lecture Notes in Arti�cial
Intelligence, vol. 1126, Springer, Berlin, 1996,, pp. 1–17.

[4] S.A. Cook, R. Reckhow, On the lengths of proofs in the propositional calculus, Proc. 6th ACM Symp.
on Theory of Computing (STOC-74), 1974, pp. 135–148. See corrections in SIGACT News, 6 (1974)
15–22. Extended version in [5].

[5] S.A. Cook, R. Reckhow, The relative e�ciency of propositional proof systems, J. Symbolic Logic 44
(1979) 36–50.

[6] M. D’Agostino, M. Mondadori, The taming of the cut, J. Logic Comput. 4 (3) (1994) 285–319.
[7] R. Letz, K. Mayr, C. Goller, Controlled integration of the cut rule into connection tableau calculi, J.

Automat. Reason. 13 (3) (1994) 297–337.
[8] D. Loveland, Mechanical theorem proving by model elimination, J. ACM 15 (2) (1968) 236–251.
[9] N. Murray, E. Rosenthal, On the computational intractability of analytic tableau methods, J. Interest

Group in Pure Appl. Logic 2 (2) (1994) 205–228.
[10] N. Murray, E. Rosenthal, On the relative merits of path dissolution and analytic tableau, Theoret.

Comput. Sci. 131 (1) (1994) 1–28.
[11] J. Robinson, A machine oriented logic based on the resolution principle, J. ACM 12 (1) (1965) 23–41.
[12] R. Smullyan, First Order Logic, Springer, Berlin, 1968. Republished by Dover, New York, 1995.
[13] T. Tammet, Gandalf, J. Automat. Reason. 18 (2) (1997) 199–204.
[14] A. Urquhart, The complexity of propositional proofs, Bull. Symbolic Logic 1 (4) (1995) 425–467.

