
Journal of Logic and Computation, 8(3), 1998. c©Oxford University Press.
Preprint from Dip. Informatica e Sistemistica. Univ. of Rome “La Sapienza”.

Tableau Methods for Formal Verification of

Multi-Agent Distributed Systems

Fabio Massacci
Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”
via Salaria 133, I-00198 Roma
email:massacci@dis.uniroma1.it

Abstract

Formal verification is a key step in the development of trusted and reliable multi-agent
distributed systems. This is particularly relevant when security concerns such as privacy,
integrity and availability impose limitations on the operations that can be performed on
sensitive data. The aim of access control is to limit what agents (humans, programs, softbots,
etc.) of distributed systems can do directly or indirectly by delegating their powers and tasks.
As the size of the systems and the sensitivity of data increase, the availability of automated
reasoning methods becomes essential for logical analysis of access control.

This paper presents a prefixed tableau method for the calculus of access control devel-

oped at the Digital System Research Center by Abadi, Lampson et. al. This calculus is

particularly interesting for a number of reasons. At first it was the basis for the development

and the verification of an implemented system. Second, it poses many technical challenges

for classical modal tableaux: it lacks the tree-model property, has some features of the uni-

versal modality, and can introduce delegation certificates between agents “on-the-fly” not

compilable into axiom schemata.

1 Introduction

Formal verification is a major issue in the development of trusted and reliable com-
puter systems1. The need of logical analysis and formal proofs is particularly im-
portant in large-scale multi-agent systems where agents (humans, programs, softbots,
etc.) can make autonomous decisions and where sensitive data and operations are at
stake. Key security concerns such as privacy, confidentiality and integrity may impose
severe limitations on what an agent should be allowed to do.

Thus, access control plays a key role in the verification multi-agent distributed
systems (see the review of Sandhu & Samarati [34] for an introduction). Its main
purpose is to restrain the actions which legitimate or malicious agents may perform,
either directly or indirectly (via other agents). It should be clearly distinguished from

1Formal (logical) analysis and verification are also required by the U.S. government [10] and the
E.U. Commission [11] for systems to be legally labelled as “trusted”.

1

other aspects of multi-agent distributed systems such as concurrency and coordina-
tion. These try to maximize the proper use of (public) resources while access control
is focussed on the minimization of the improper use of (private or sensitive) resources.

Loosely speaking we may say that access control is the distributed systems coun-
terpart of some aspects of human normative systems: “who can do what”. A human
logging on a workstation, or a web-spider asking for permission to visit a restricted
Internet site can be easily compared with a human crossing the passport control in
an airport. In all cases, an access control decision is made by the agent in charge of
the area. The verification of access control privileges and security policies is just a
problem of jurisdiction in distributed systems where many agents have different goals
and are able to make autonomous (but not necessarily sensible) decisions.

Different access control policies may be devised to answer the needs of different
systems, such as those used by the military [4], by banks and commercial organizations
[7] or by health care services [2]. A comprehensive field study of the policies employed
in different (human) organizations in the U.S. can be found in the paper by Ferraiolo
et al. [14].

Distributed systems face additional challenges (e.g. large scale, insecure communi-
cations, delegation of management etc.) which make the access control decision more
complex and require additional tools. For instance we may decide to combine ac-
cess control with authentication [40], or use formal methods to refine general security
policies at various levels of management [32].

It is also important to notice that relations between agents in a “real” distributed
system are seldom flat (all agents being equal). On the contrary, agents may be
members of different groups or play different roles [14, 13]; the privileges of an agents
usually depend on the groups they are members of; groups and roles are organized
along hierarchies. Access control systems and policies become more complex and
sophisticated [31, 5, 17, 35].

A very simple example is shown in Fig. 1. The right-hand side is the text of an
information leaflet distributed to the users of the Computer Laboratory at the univer-
sity of Cambridge (UK). It describes roles, privileges and tasks of various principals
(in this case humans but they need not to be) of the laboratory computer system. On
the left side we show a pictorial representation of the same structure. We represent
roles as boxes and the hierarchies of privileges by straight line arrows. Principals
having those roles are represented as ovals and the ”has role” relation is represented
by a dashed arrow. Here we have only the major roles of a local computer system and
yet we have already to consider hierarchies, membership relations and other issues
such as delegation.

Above all, as the size and the degree of automation of a system increase, a number
of tasks is delegated to sophisticate software agents, which must be able to take
autonomous decisions in a sensible way. The corresponding increase in complexity
makes infeasible the human (and informal) verification of the system.

Hence formal methods, logics and automated reasoning techniques can be useful
tools for the verification of security policies and access control procedures.

Our goal is to design and use tableau methods as an automated reasoning tool for
access control in multi-agent distributed systems.

2

........
..........
..
.........
......gt

........
..........
..
.........
......pb

................
.........
........
...........

........................
...

maj

fm205
.............

..
............
.......

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

........
.......................

..................................
..................................

..................................
..................................

..................................
....

.................
.....................

........
........
......................

.................
.................

.................
.................

.................
.................

.................
.................

............................
..........................

.....................
.....................

.....................
.....................

.....................
.....................

.....................
.....................

.........

........
........
......................

Sw-admin

System-admin

Postmaster

Deputy Post-m.

User

Remote-User

..............
...
...........
...
...........
...
...........
...
...........
..

.........
.........
....................

..............
............................
..............

..........
..................................
....

..............

...

...........
...

...........
...

............
....

...........
...
..

.........
.........
....................

..............
..... maj: Titan Room Manager, knows

about UNIX, DEC stations,

Alphas, Ethernet, ATM,

printer systems, backup

systems and TEX.

gt: Knows about UNIX, Suns, HP

bobcats and snakes, GNU

emacs, X, Ethernet, Lisp

and similar languages.

Deputy Postmaster.

pb: Postmaster, knows about

UNIX, Suns, X, mail, news,

and wide area

communications.

[...] If you anticipate a need

to login from outside Cambridge,

you should consult maj or pb.

Figure 1: From “Computing Facilities at the Computer Laboratory”

1.1 Plan of the paper

In the rest of the paper we present the basic principles of access control (§2), review
the use of logic for reasoning about obligations and permissions in multi-agent systems
(§3.1) and discuss the reasoning services we would like with such formalizations (§3.2).

After a brief discussion of the motivations behind the choice of the DEC-SRC
calculus (§4), we discuss its notation and the corresponding intuitions, its formal
syntax, the Kripke semantics and the computational characteristics (§5). Then we
give some examples of problems that can be formulated with the calculus (§6).

Next, we present the tableau calculus (§7) and some examples of deduction (§8)
for the sample problems we have seen in §6. Then we prove the soundness and the
(partial) completeness of the calculus (§9).

Last we discuss some tricky aspects for the integration of roles in our formalism
(§10) and conclude by pointing to future works (§11).

2 The Basic Principles of Access Control

The principles of access control in distributed systems can be described with few ab-
stractions: subjects (humans, programs etc.), objects (data, other programs etc.) and
privileges which subjects detain on objects (e.g. read, write and execute in UNIX). The
use of these abstractions is the basis of most formal models proposed in the litera-
ture, starting from the traditional access matrix developed by Lampson for operating
systems [27, 33] to more advanced methods [13, 26, 32, 35].

Using an access matrix is relatively simple: we put subjects along the rows, objects
along the columns and privileges in the cells. Then checking what a subjects can do
is just a table look-up2.

2This may be technically complicated by the fact that the matrix is usually represented in compact
form by lists along rows (capabilities) or along columns (access control lists) [34].

3

The problem becomes more complicated if we admit operations over such a ma-
trix and are interested in transition analysis [22, 33]. In other words, we study the
evolution of the system and its safety properties: given some privileges and some
operations to change them, prove that the system will not evolve in an undesirable
state.

In the verification of multi-agent distributed systems we are also interested also in
policy analysis: do the actual low level access control procedures (and the decisions
of agents based on them) respect the overall policies of the organization?

With an access matrix this is immediate: all privileges of every agents are explicitly
written down. We can just check them one by one.

The problem is that the high-level security policies of an organization are seldom
represented (let alone understood) at this level of details. For instance, an extensive
field study by Ferraiolo et al. [14] pointed out that permissions are assigned to
(human) users according their roles in the organization. How do we know that the
low-level privileges assigned to an agent are really the logical consequence of the
high-level policy based on roles and groups defined in our organization? From this
perspective, the access matrix is extremely poor and it does not capture explicitly
the richness of the underlying security policies. A key feature of the new approaches
[5, 13, 17, 35] is the attempt to model more closely the (hierarchical) relationships
between the various subjects, such as those described in Fig. 1.

We can revise the abstractions in use, consider agents (or principals) and oper-
ations over objects as primitives, and use a logic able of expressing the following
properties:

• complex agents which could be users or software agents but also groups, roles,
and agents using roles3 or acting as delegates of other agents;

• membership relations between agents and groups or roles; agents must be able
to belong to different groups and to play different roles;

• hierarchies between groups and roles, where permissions are inherited (the more
powerful has at least all privileges of the less powerful);

• delegation certificates so that agents may pass their privileges to other agents
on-the-fly;

• privilege attributions which link agents with the operations that they can ac-
complish.

• imperative statements, representing requests coming from other agents, and
which must be considered by the agent making the access control decision.

• indirect requests by an agent on behalf of somebody else (for instance A must
be able to say that B made a request).

3For instance the principals Alice and Alice as professor are not the “same agent” for the prin-
cipal Bob as student.

4

3 Logics for Reasoning About Access Control

The abstractions we just introduced lead naturally towards a formalization of the
problem with multi modal logics (alternative approaches can be found in [22, 33, 32,
17]). The requests, actions and obligations of agents can be mapped into modalities,
atomic imperative or objective statements into propositions; other modal operators
can be used to represent hierarchies, knowledge, permission etc.

The use of modal logics for modeling the obligations or the jurisdiction of agents
has a long tradition (for instance see the work of Kanger [24]) and this research area
is still very active [8, 18, 25, 39]. Traditional logics of knowledge and belief have also
been extended to deal with security problems [6, 18, 37] and to incorporate desires
and intentions [16].

3.1 Logics for ability versus logics for obligations

In systems for reasoning about knowledge and obligations (for instance in Cuppens &
Demolombe [8] or Glasgow et al. [18]), atomic propositions represent state of affairs
and the main concern is confidentiality. We usually look for properties like

“P knows ϕ” ⊃ “P is allowed to know ϕ” (1)

With a theory of ability, focusing on actions and obligations (for instance in Kanger
[24] or Krogh [25] or van der Meyden [39]), we may be more interested in other
properties:

“P sees to it that ϕ” ⊃ “ϕ is permitted” (2)

If atomic propositions are imperative statements (as in Abadi et al. [1]) we may
look for something like

“P says ϕ” ∧ “P controls ϕ” ⊃ ϕ (3)

In logics for authentication (for instance the BAN logic [6] or its extension by Syverson
& van Oorschot [37]) a formula like P controlsϕ is usually called the jurisdiction
of a principal4. Loosely speaking we may say that if P controls ϕ (or equally P has
privileges or jurisdiction over ϕ) then P can (is allowed to) make ϕ happen.

Still, if ϕ is an imperative sentence, we may wonder what it means to say that ϕ is
true. The intuition is that ϕ is a request directed to the agent in charge of the access
control decision. With this provision, we can interpret it as a propositional letter
which can be true in a particular state (granted by the agent) or false (not granted).

To visualize the intuition behind the formulae we may compare a request such
as fm205 says rm(test.c) to a command typed by the user on a Unix terminal:
fm205@ely: rm test.c. As we press enter, our imperative statement is evaluated
by the agent in charge (in this case the operating system) according our access privi-
leges and either executed or not (i.e. rm(test.c) may be true or false).

Thus, the modal operator P saysϕ is closer to the Do operator or the “P sees to
it that ϕ” operator of Kanger [24]. When ϕ is not anymore a sentence describing a
state of affairs but rather an imperative statement, we need to revise such definition.

4We refer to the BAN paper [6] or the work of Syverson & van Oorschot [37] for a discussion of
the tricky notion of jurisdiction in computer security.

5

The key observation, from the viewpoint of access control, is that we should rather
use an operator for “P tries ϕ”, since P may not be allowed to do ϕ.

Another issue is the relations between agents, since most logics for obligations and
multi-agent systems are flat: agents are on equal footing. This may be acceptable for
modeling laws (in front of which we are supposed to be equal), but it is not so for an
access control policy.

Hence our aim is to replace the reasoning based on schema (3) by the following
one (more complex yet more realistic):

“P says ϕ” ∧ “Q controls ϕ” ∧ “P is at least as powerful as Q” ⊃ ϕ (4)

where the relation between P and Q is specified by an access control policy.

3.2 The Reasoning Services

Once we have formalized the information needed by an agent for an access control
decision (e.g. group hierarchies, privileges, etc.) we also want to “do something” with
it. In a nutshell we expect a number of reasoning services:

Consistency Check: check whether the assumptions have a model. Typically verify
the compatibility of role hierarchies, users attributions etc. with the constraints.

Logical Consequence: decide whether a property ϕ logically follows from the as-
sumptions. It could be used to decide whether a request should be granted or
whether some delegation certificate is entailed even if is not explicitly written.

Model Generation: if a property ϕ does not follows from the assumptions, derive
a counter model for it.

Compatibility: liberal systems may decide to grant a request provided that it is
simply compatible (i.e. not inconsistent) with their security policies.

From this perspective tableau methods are extremely suitable since they provide
a deductive machinery where all these services are available.

Axiom systems alone are inadequate for formal verification, because Hilbert sys-
tems require people to be good logicians and cannot be automated at all. The exclu-
sive focus on axiomatization, without calculi for automated reasoning, may condemn
logics for practical reasoning to be unused in practice and therefore fail in their very
first aim.

4 The choice of the DEC-SRC logic

Among the various proposals, we focus on the expressive calculus developed at the
Digital System Research Center (DEC-SRC) by Abadi, Lampson et al. [1] for a num-
ber of reasons:

• it provides a uniform and expressive framework for reasoning about access con-
trol in presence of delegation and hierarchies between agents;

• it has a simple and natural semantics based on Kripke models;

6

• it constitutes the basis of a real system [26, 40] whose properties have been
checked (by hand) using the calculus;

• its features pose interesting technical challenges for deduction.

One of the characteristics which challenge “standard” tableau calculi is the pres-
ence of formulae used for modeling delegation certificates and hierarchical relation-
ships between subjects (i.e. modalities). Those formulae have the same force of axiom
schemata and are close to role-value-map constructs of AI languages [36].

The key difficulty is that we cannot “compile” them into tableau rules (nor axiom
schemata) since their presence depends on the particular non logical axioms and the
particular theorem we want to prove. Different axioms correspond to different security
policies and we may not want to hardwire the policy in the logic. Moreover, access
privileges may be passed on-the-fly by the agents. Thus a formula may contain a
delegation of certain privileges from A to B (and thus be a valid request) another
may not (and thus be invalid). Again we don’t want to fix which delegation certificate
are possible.

In a nutshell, some global properties of the underlying Kripke models can be
discovered only on-line during the deduction process.

Another characteristic is the absence of the tree model property which also hinders
a straightforward extension of tableau calculi. Finally it shares some properties of
the universal modality [19, 20] which is not fully axiomatizable5.

5 The DEC-SRC Calculus

To make the paper self-contained we present the major intuitions, the syntax and the
semantics of the calculus and refer to Abadi et al. [1] for further discussions and to
Lampson et al. [26, 40] for its applications. We only clarify some of its semantical
features not discussed in [1].

5.1 Notation and Intuitions

The two building blocks of the calculus are operations and agents.
Operations over objects are represented by atomic imperative statements denoted

by r (for request). Once again, they are propositional letters which can be true in
a particular state of the system (request granted) or false (not granted). Complex
statements are built with boolean connectives ∧,¬,⊃ etc.: for instance login(telnet) ⊃
login(ftp) whose intuitive interpretation is “if telnet access has been granted so has
ftp access”.

The names of agents, groups and cryptographic keys are represented by atomic
principals, and denoted by a, b, Ka etc. Complex principals (P or Q) are built by
conjunction “&” and quoting “|”. The intuition is that P&Q is a principal with the
privileges of both P and Q, whereas P | Q corresponds to the principal P claiming
to quote a request from Q. Notice that P may claim to quote Q even when Q never
said anything.

5This may also explain why only a sound axiomatization has been devised in [1].

7

An example may better clarify the quoting construct. Suppose we received an
email from fm205 asking for a request r. We often react as r had come directly from
fm205 but, in reality, the request came from the mail agent sendmail which claimed
to have received a mail from fm205 i.e. from the “composite” agent sendmail |
fm205. We usually trust sendmail to forward all requests by fm205 and not to forge
fake requests but we should not automatically rely on this assumption.

Other operators are possible i.e. P forQ and P asR [1]: the former is used when
P is claiming to act as a delegate for Q; the latter when Q speaks using a role6

R. They can be encoded using “|” and “&” (see [1] for a discussion), so we do not
use them. For instance P for Q

.= (P&d) | Q where d is an agent entrusted with
delegation certificates. The incorporation of roles may be trickier since roles may have
particular properties. So, we discuss their incorporation into this framework in more
details in §10.

To represent agent requests we use the modal statement “P says s”: principal P
requests s to be granted. If P is a group then we follow Abadi et al. [1, 26] and
interpret it as “somebody in group P says s”. When P is a cryptographic key we
mean that the request has been signed or encrypted with the corresponding key. So,
following a common interpretation in computer security, we may identify a principal
with a key7.

Hierarchical relations between principals are constructed with the “speaks for”
operator P ⇒ Q. The intuition is that P has at least all privileges of Q i.e. P can
speak for Q. If P says s this would be as Q itself said s. Back to our example about the
mail agent, in our day by day work we often assume that sendmail | fm205 ⇒ fm205.

The operator ⇒ is also used for group membership: P ⇒ G means that P has
at least all privileges of group G. We also speak of a “certificate” when we have the
formula K ⇒ P . Intuitively this formula binds K to P , so that all messages signed
with K can be seen as coming from P .

Principals and statements are linked by privileges attributions [35]: the statement
“P controls s” captures the intuition that principal P has access control over s. This
is the jurisdiction of a principal (see §3).

In the DEC-SRC calculus controls is a defined symbol:

P controls s ≡ (P says s) ⊃ s

The intuition may become clearer by rephrasing it as “P controls s means that if P
asks for s to be executed then s will indeed be executed by the agent in charge of the
access control decision”.

In future extensions, it may be desirable to replace material implication with
an intuitionistic or a relevant implication. At present, a principal may pretend to
control whatever she does not explicitly request i.e. ¬(P says s) ⊃ P controls s.
Such situation may be a feature if we are interested in modelling “bluffing” principals.
Anyhow, this is sufficient for modelling a wide range of situations.

To show how the logic can be used, we consider the case of the access control
structure of Fig. 1.

6For a distinction between the security concepts of role and group see [13, 35].
7Since we are interested in access control and not in authentication or confidentiality we assume

that the problems of associating keys with principals or finding whether keys are good etc. have been
tackled already (see [6, 26, 37]).

8

agents =

{
maj ⇒ SysAdm
gt ⇒ (SwAdm&DepPostM)
pb ⇒ PostMaster
fm205 ⇒ RemUsr

groups =


SysAdm ⇒ SwAdm
SysAdm ⇒ PostMaster
SwAdm ⇒ Usr
PostMaster ⇒ DepPostM
DepPostM ⇒ Usr
Usr ⇒ RemUsr

priv. =

{
SysAdm controls (fm205 ⇒ Usr)
Usr controls login(telnet)
RemUsr controls login(ftp)
(fm205&Usr) controls read(mail)

req. =

{
maj says (fm205 ⇒ Usr)
fm205 says login(telnet)
fm205 says read(mail)

Figure 2: A Logical Formalization of Fig. 1

We use an assumption P ⇒ Q for every direct subsumption relation between roles.
So we have SysAdm ⇒ SwAdm and SwAdm ⇒ Usr. The role membership of the
various agents is also described with the ⇒ operator, so we have maj ⇒ SysAdm
and fm205 ⇒ RemUsr. We do not need to specify in details all relations between
agents and roles: the logic does the transitive closure of the speaks-for relation for us.
For instance pb ⇒ Usr is a logical consequence of our assumptions. We can verify it
with the tableau procedure in §7.

We also introduce some privileges: every remote user can log in with ftp but only
authorized users can use telnet. The privilege of reading one’s mail is a possible
example of the use of conjunction: the mail belongs to fm205 so he (or a delegate of
him) is the only one who can read it, but he must have being logged in as a legitimate
user. Notice that the system administrator can change the group membership of
fm205. So, the possibility of logging from remote sites depends on maj’s statements.

Some possible statements are also shown with the final formalization in Fig. 2.

5.2 Formal Syntax

The formal language is the described by the following syntax, where r is an atomic
request (a propositional letter) and a is an atomic principal (an agent or a key):

P,Q ::= a | P&Q | (P | Q)
s, s′ ::= r | ¬s | s ∧ s′ | P says s | (P ⇒ Q)

Other connectives are abbreviations, e.g. s ⊃ s′ ≡ ¬(s ∧ ¬s′). We also assume that
in P ⇒ Q either P or Q is an atomic principal, w.l.o.g. since P ⇒ Q is equivalent to
P ⇒ a ∧ a ⇒ Q for a new atomic a.

For sake of readability we try to omit parentheses whenever possible. So we
make the following assumptions: | and & bind more strongly than ⇒; operators over
principals have higher precedence than modal and propositional connectives; modal
connectives such as says and controls have a higher precedences than proposi-
tional ones. Finally, we assume the usual precedence relation among propositional
connectives.

So ¬(A | B says s) ∧A | B ⇒ B ⊃ B | A says s should read as follows:

(¬ ((A | B) says s) ∧ ((A | B) ⇒ B)) ⊃ ((B | A) says s)

9

A statement is left (right) restricted when speaks-for subformulae have the form
a ⇒ Q (respectively P ⇒ a) i.e. the left (right) principal is atomic. It is weakly left
(right) restricted if all speaks-for statements under the scope of an even number of
negation are left (right) restricted. This means that arbitrary statements P ⇒ Q
are admitted only under the scope of an odd number of negations8. It is request
restricted when in each statement of the form P says s, the statement s is either
an atomic request or a group membership (each possibly negated). For instance the
logical formalization of the access control structure in Fig. 2 is left, right and request
restricted.

In many cases, statements are right and request restricted. If “⇒” is used for
hierarchies and group and role membership, as in Fig. 1, the rightmost principal is
atomic. Moreover, in almost all systems [34], privileges attributions are represented
by ACL (Access Control Lists). In the DEC-SRC language, an ACL for a request r is
simply the conjunction of statements

∧
i Pi controls r, where r is uninterpreted [26,

35]. If we add, among the possible privileges, the possibility to hand over delegation
to other principals such as Pi controls (Qj ⇒ ak), then we still have a right restricted
language. Further examples can be found in §6.

5.3 Kripke Semantics

The semantics is based on Kripke models [15, 23]: a relation models the compatibility
of a state with the requests made by a principal in the real world. Thus, a model is a
pair 〈W, I〉, where W is a non empty set of states (sometimes called worlds) and (·)I
an interpretation such that for every atomic principal a we have (a)I ⊆ W ×W and
for every propositional letter r we have (r)I ⊆ W . Then (·)I is extended as follows:

(¬s)I .= W − (s)I

(s ∧ s′)I .= (s)I ∩ (s′)I

(P ⇒ Q)I .= if (Q)I ⊆ (P)I then W else ∅
(P says s)I .=

{
w | ∀v ∈ W if 〈w, v〉 ∈ (P)I then v ∈ (s)I

}
(P&Q)I .= (P)I ∪ (Q)I

(P | Q)I .=
{
〈w, v〉 | ∃u 〈w, u〉 ∈ (P)I and 〈u, v〉 ∈ (Q)I

}
We write w ‖−s for w ∈ (s)I and say that w satisfies s. For simplicity we interchange
a set of statements with their conjunction. A model 〈W, I〉 satisfies a set of statements
S iff every state in W satisfies S.

Definition 1 A statement s is valid if every model 〈W, I〉 satisfies s. It is a logical
consequence of a set of global assumptions G iff in every model 〈W, I〉 which satisfies
G every state w satisfies s.

In this framework the global assumptions are non-logical axioms describing the access
control system: groups membership, privileges attributions etc.

Global assumptions can be added in the axiomatization of Abadi et al. [1] with the
modal deduction theorem [23, 15], but their explicit representation is more effective
because the modal deduction theorem leads to an exponential blow up [12].

8For instance the formula ¬(a says ((b&c) ⇒ d)) is weakly left restricted since the group mem-
bership (b&c) ⇒ d is under the scope of one negation.

10

5.4 Semantical Properties

It is worth noting that, in contrast with other operators, the semantics of P ⇒ Q
reflects global properties of the model. Indeed it is the only operator for which a
statement must hold either everywhere or nowhere, since either (P ⇒ Q)I = W or
(P ⇒ Q)I = ∅.

This property is very close to the universal modality discussed by Goranko et.
al [19, 20]. We can represent explicitly the relation between ⇒ and the universal
modality, denoted by everybody says s, as follows:

P ⇒ Q ≡ everybody says (P ⇒loc Q)

where we have the following two conditions:

(P ⇒loc Q)I .=
{
w | ∀v ∈ W if 〈w, v〉 ∈ (Q)I then 〈w, v〉 ∈ (P)I

}
(everybody)I .= W ×W

We can use this relation to introduce axiom schemata “on the fly”. Indeed, enforcing
everybody says s in a world is equivalent to enforce s in the whole model and hence
enforcing s as a non-logical axiom.

For instance P ⇒ P | P forces the transitivity of relation (P)I , where P may
be a complex principal. Yet, these global properties may or may not be present.
As an example, suppose we have A says (B ⇒ B | B). Transitivity of B follows
only if ¬(A says⊥) is the case. So B’s properties depend on the particular global
assumptions and theorems we are trying to prove.

Another “feature” is the absence of the tree-model property [38, 23]. For instance
the following formula has no tree model at all:

a ⇒ a | a ∧ % a is transitive
¬(a ⇒ b) ∧ % b is not included in a
b says⊥ ∧ ¬(a says⊥) ∧ % b is inconsistent and a is not
a says (b says⊥ ∧ ¬a says⊥) % and so on (at least for a)

Yet, it is satisfiable in the state 1 of the model with W = { 1, 2, 3 } and (a)I =
{ 〈1, 3〉 , 〈3, 3〉 } and (b)I = { 〈2, 2〉 }. The key point is that this model has two clusters
(connected components) so that state 1 satisfies the (local) says statements and
state 2 satisfies the global ¬(a ⇒ b).

In model theoretic terms, (un)satisfiability is not preserved under disjoint union
as in “traditional” modal logics [38]. This is due to the “hidden” presence of the
universal modality which makes impossible the complete characterization of the logic
with an Hilbert system [19, 20, 38].

5.5 Undecidability

Validity is undecidable in general and a reduction to Thue systems (without details)
is pointed out in [1]. A simpler proof uses the techniques of Schmidt-Schauss [36] for
AI languages and reduces validity to the word problem of (semi)groups.

We map each element of the group ag to an atomic principal a and composition “◦”
to quoting “|”. Equations between words pg

∼= qg becomes conjunctions of speaks-for

11

statements P ⇒ Q ∧ Q ⇒ P (for short P = Q) for the corresponding principals P
and Q.

To define groups we must add, for each atomic principal a, a new principal ac

corresponding to its converse. Then we add the equation such as a | ac = e where e
is the atomic principal corresponding to the identity element eg of the group.

Finally we introduce a new principal g and the global assumptions g | a = g for
every atomic a and the statement g says (P = Q) for every pg

∼= qg characterizing
the group. Then one can prove that g says (P ′ = Q′) is valid with those assumptions
iff equation p′g

∼= q′g holds for the group (see Schmidt-Schauss [36] for the proof).

6 Examples of Access Control Problems

In this section we use the logic to formalize the information of agents who have to
make the access control decision for a number of problems.

We have already shown the formalization of the access control structure of Fig. 1
in Fig. 2. Then we can consider the following problem:

Example 2 A software agent works as a firewall in a Computer Laboratory whose
policy is formalized in Fig. 2. What should the agent do when maj grants to fm205
the membership in the role of User and fm205 asks to login with telnet and tries to
read his mail, should the agent grant login(telnet) ∧ read(mail)?

If we abbreviate req
.= login(telnet) ∧ read(mail), then the statement we would like

to check is the following:

maj says (fm205 ⇒ User) ∧ fm205 says req ⊃ req

The global assumptions we use are those denoted by agents, groups and priv. in
Fig. 2. If the statement above is a logical consequence of our assumptions then the
agent in charge of the firewall could “safely” grant the request of fm205.

The next example is the following:

Example 3 The agent Paymaster is responsible for the automatic handling of in-
voices and payments in the department. Alice is responsible for the accounts, Bob for
marketing and ordering of goods, and Charlie is the storekeeper in charge of receiving
and shipping of goods. Alice is trusted in forwarding Bob orders. Sam is the security
agent responsible for the authentication server. The policy of the department is to
pay after the store has certified the arrival of goods. Messages and certificates are
shown in Fig. 3. Should the agent Paymaster actually pay?

The corresponding formalization is shown in Fig. 3. We used the same technique
used for Fig. 2 in §5.1: group memberships are represented by statements of the form
agent ⇒ department for every agent and every department; key certificates have the
form key ⇒ agent; signed messages are denoted by key saysmessage. The set of
privileges is immediate.

Another example concerns the access control decision in presence of the standard
hierarchy of “clearance” with read-down and write-up policies (see Sandhu & Samarati
[34] for a discussion). For instance, with a read-down security policy an agent can only
read documents with a clearance lower than his own. Although it seems a problem

12

agents =

{
Alice ⇒ Account
Bob ⇒ Marketing
Charlie ⇒ Store
Sam ⇒ Server

msg =

{
KA saysBob says order
KC says recvd
KS saysKA ⇒ Alice
KS saysKC ⇒ Charlie

priv. =


Marketing controls order
Account controls pay
Store controls recvd
Alice controls (Bob says order)
Server controls (KA ⇒ Alice)
Server controls (KB ⇒ Bob)

cert. =
{

KS ⇒ Sam

constr. =
{

Account says (order ∧ recvd ⊃ pay)

Figure 3: A Model with Keys for Example 3

groups =

{
A ⇒ 15
15 ⇒ PG
PG ⇒ F

agents =

{
Sam ⇒ A
Bob ⇒ 15
Charlie ⇒ F

cert. =

{
KD ⇒ Decoder
KS ⇒ Sam

priv. =



A controls view(m1)
A controls load(m1)
15 controls load(m1)
15 controls view(m2)
F controls stop(m1)
Decoder controls (KS ⇒ Sam)
Decoder controls (KB ⇒ Bob)
Decoder controls (KC ⇒ Charlie)

msg =

{
KD saysKB ⇒ Bob
KB saysSam says (load(m1) ∧ view(m1))

Figure 4: A Read-down Policy for “Cyber-sitter”

restricted to the military, its relevance spans far beyond this field. Video on demand
is a good example.

Example 4 Consider the hierarchy established by a corporation for video on demand:
F for films suitable for the whole family, PG for those requiring parental guidance,
15 for those limited to teenager at least 15 years old, and A for adults only. The
users are Sam with A privileges, Bob with 15 and Charlie who has none. The agent
Alice, sometimes called “Cyber-sitter” supervises the requests from the users which
are entitled to different movies and tries to avoid that minors have access to unsuitable
movies. She received a message and some delegation certificates from the Decoder
(Fig. 4). Should load(m1) ∧ view(m1) be granted with the equivalent of a read-down
policy for viewing?

In other terms is load(m1) ∧ view(m1) a logical consequence of the access control
model described in Fig. 4? Again, recall that we represent the information from the
viewpoint of Alice, the agent in charge of the access control decision. Even in this
simple case is not easy to see that it is not . Hence the need of an automated reasoning
method.

For a “real-life” example we take delegation without certificates from Abadi et al.
[1, page 719] where a careful (and non trivial) Hilbert proof is given. The problem
that an agent C has to face is the following:

Example 5 “A delegates to B who makes requests to C. For instance A may be a
user with a sufficiently powerful smart-card, B a workstation and C a file server. [. . .]

13

When B wishes to make a request r on A’s behalf, B sends the signed requests along
with A’s name. . . in the format KB says (A says r). . .When C receives the request
r he has evidence that B has said A has requested r but not that A has delegated
to B; then C consults the ACL for request r and determines whether the request
should be granted. [. . .] A certification authority provides the certificates for the
principals’ public keys as needed. The necessary certificates are KS says (KA ⇒ A)
and KS says (KB ⇒ B), where KS is S’s public key.”

In symbols we are asking whether G |= s ⊃ r where G and s are defined as follows:

G
.= {KS ⇒ S, S controls (KB ⇒ B), Sc ⇒ A } ∪ACL

s
.= KB says (Sc says r) ∧KS says (KB ⇒ B)

Where ACL is a set of statements of the form P controls s. For instance we may
assume that (B | A) controls r ∈ ACL.

7 Prefixed Tableaux

To define our tableau calculus we capitalize on the deductive machinery with prefixed
tableaux which have been developed for modal and dynamic logic (see Fitting [15],
Goré [21] and De Giacomo & Massacci [9] for further references).

Prefixed tableaux for the DEC-calculus use prefixed statements, i.e. pairs σ : s
where s is a statement and σ is an alternating sequence of integers n and atomic
principals a called prefix and defined as σ ::= n | σ.a.n.

Remark 6 A key difference from “standard” prefixed tableaux for modal logics (such
as [15, 21]) is that a prefix does not always start with 1. So a set of prefixes is a forest
of trees, where arcs are labelled with atomic principals and nodes with integers.

With k initial prefixes we have, in graph-theoretic terminology, k connected compo-
nents or clusters. With global assumptions and the operator ⇒ we can impose an
euclidean or transitive closure on a cluster but we cannot collapse two clusters.

The definition of prefixed tableau is standard [15, 21]. A tableau T for a statement
s is a rooted (binary) tree where nodes are labelled with prefixed statements according
the rules of the calculus in the usual fashion:

• 1 : s labels the root of the tree;

• if the antecedent of a rule labels a node in a path from the root to a leaf then
we can extend the tree by adding to the leaf of the path one or more children,
each labelled with a consequent of the rule.

What changes is the notion of branch:

Definition 7 A branch of a tableau T is a pair 〈B, GB〉 where B is a path from the
root to a leaf of T and GB is a set of global assumptions.

Thus, each time we split a branch of the tree, we should also duplicate (in theory)
the set of global assumption. This definition is essential because we need to modify

14

〈|〉 : σ : ¬(P | Q says s)
σ : ¬(P says (Q says s)) [|] : σ : P | Q says s

σ : P says (Q says s)

〈&〉 : σ : ¬(P&Q says s)
σ : ¬(P says s) σ : ¬(Q says s) [&] : σ : P&Q says s

σ : P says s
σ : Q says s

Glob :
...

σ : s if σ is present in B and s ∈ GB

〈a〉 : σ : ¬(a says s)
σ.a.m : ¬s with σ.a.m new in B

[a] : σ : a says s
σ.a.n : s with σ.a.n present in B

D(a) : σ : a says s
σ : ¬(a says¬s) with some σ.a.n present in B

Figure 5: Rules for “Modal” Connectives

the set of global assumptions during the deduction process and therefore different
branches may end up with different and possibly inconsistent global assumptions.

The notions of prefixes present or new in a branch 〈B, GB〉 are defined in the usual
way [21]: a prefix σ is present if there is a node in B labelled by a prefixed statement
σ : s for some s; it is new if it is not present.

7.1 Tableaux Rules

The rules for propositional connectives are identical to those for modal and dynamic
logics and therefore omitted (see [9, 15, 21]). The rules for conjunction, quoting, the
use of global assumptions and the transitional rules for atomic principals are in Fig. 5.
We assume that each rule is applied to a prefixed statement labeling a node in the
branch 〈B, GB〉.

Note the similarity of the rules for “|” and “&” operators with the corresponding
rules for sequential and nondeterministic composition in dynamic logic [9].

To cope with “⇒” we introduce a new set of propositional atoms xi (distinct from
r) to mark unsaid statements as in Fig. 6. Since P ⇒ Q implies that if P says s
then Q says s for all s, its negation means that there is “something” (an unknown
xi) which principal P said but principal Q didn’t. The first two rules correspond to
the local features of the ⇒ operator, whereas the last is due to its “universal” flavor.
The 〈Ugr〉-rule combines both aspects.

Remark 8 For weakly left restricted statements we may use but do not need rules
〈Rgr〉 and D(a) while for right restricted statements we do not need rule [Lgr].

These rules are sound for the whole language (see further Thm. 13) but the complete-
ness proof of Thm. 14 (see §9) for weakly left restricted fragments does not make use
of the rules 〈Rgr〉 and D(a). So we may or may not use them.

15

〈Rgr〉 : σ : P ⇒ a σ : ¬(a says s)
σ : ¬(P says s) [Lgr] : σ : a says s σ : a ⇒ Q

σ : Q says s

〈Ugr〉 : σ : ¬(P ⇒ Q)
n : P saysxi

n : ¬(Q saysxi)

xi and n new [Ugr] : σ : P ⇒ Q
GB := GB ∪ {P ⇒ Q}

Figure 6: Rules for the speaks-for operator

Needless to say, we can introduce a number of optimizations as in modal and
dynamic logic. For instance we may apply the following observation:

Observation 9 Rule 〈a〉 must be applied to a prefixed statement σ : ¬(a says s)
only if there is no prefixed statement σ.a.n : ¬s already present in the branch.

See [3, 9, 21] for further references and techniques.
Other optimizations are linked to this particular calculus. For instance the state-

ment P ⇒ (A&B) is logically equivalent to P ⇒ A ∧ P ⇒ B. A rule transforming
statements of the former type into the latter type can be useful since it may lead
to right-restricted formulae. We can also simplify our proof by using the following
observation:

Observation 10 Rule 〈Ugr〉 can be applied only once for each subformula ¬(P ⇒ Q)
in the branch, no matter its prefix.

Definition 11 A branch 〈B, GB〉 is contradictory if B contains both σ : s and σ : ¬s,
for some s and σ. It is open if all possible rules have been applied and it is not
contradictory. A tableau is closed if all branches are contradictory; it is open if at
least one branch is open.

Definition 12 A tableau proof for statement s with global assumptions G is a closed
tableau starting with the branch 〈{ 1 : ¬s } , G〉.

We can now prove that the calculus is sound:

Theorem 13 (Strong Soundness) If s has a tableau proof with global assump-
tions G then s is a logical consequence of G.

As for completeness, we can only prove a weaker result, namely that the tableau
calculus is strongly complete for the two main fragments introduced so far:

Theorem 14 (Strong WL-Completeness) If s is a logical consequence of G and
G ∪ {¬s} is weakly left restricted then s has a tableau proof.

Theorem 15 (Strong WRR-Completeness) If s is a logical consequence of G
and G ∪ {¬s} is weakly right and request restricted then s has a tableau proof.

If the calculus is complete for the fragment at hand, then a satisfiability witness
is an open branch of the tableau starting with 〈{ 1 : s } , G〉.

16

7.2 Decidability in Practice

A decision method (rather than a semi-decidable procedure which could be based on
first order translations) is important for security analysis because satisfiability gives
information on security weaknesses.

To obtain a decision method a sufficient condition, checkable in polynomial time,
can be imposed on the global assumptions and the consequence s. Associate a graph
to the global assumptions and the negation of the formula to be proved as follows:

• each atomic principal is represented by a node,

• for every P ⇒ Q (under the scope of an even number of negation) draw an arc
from the atomic principals in P to those in Q

If the resulting graph is acyclic then the tableau construction terminates by using
loop checking with an extended notion of the Fischer-Ladner closure [9]. Notice that
in the embedding of the word problem (§5.5), the principal g creates cycles.

In access control, acyclicity is not a restriction but a requirement: if ⇒ is used
for hierarchies of groups/roles then cycles are not allowed (see Ferraiolo et al. [13] or
Sandhu et al. [35]).

8 Some Examples of Deduction

For sake of simplicity, we assume that we can directly reduce ⊃ and controls with
the obvious α and β rules rather than translating them back to ∧, ¬ and says and
then apply the corresponding rules.

The first example is the derivation of hand-off axioms [1, 26]:

¬(a says⊥) ⊃ (a controls (P ⇒ a)).

We need a statement of this form whenever principal a must be able to hand over her
privileges to P . It cannot be proved within the Hilbert system developed by [1] and
must be added to the assumptions. The tableau derivation is shown in Fig. 7. Once
again, the key step is the application of rule [Ugr] which cannot be axiomatized.

To check that global assumptions must be linked to a branch, try the statement
below using one set of global assumptions for the whole tableau. This statement is
not valid, yet the tableau constructed by using only one set of global assumptions can
be closed.

(b says (b ⇒ a) ∧ b says r ∧ b says¬r) ⊃ a&b says⊥

As a practical example we show the deduction necessary for Example 2 (page 12)
in Fig. 8. We abbreviate SysAdm in Sys, login(telnet) in telnet, and read(mail) in
mail. For sake of readability we omit the root of the tableau which is labelled by the
negated goal formula:

(a) 1 : ¬((fm says (telnet ∧mail) ∧maj says (fm ⇒ usr)) ⊃ (telnet ∧mail))

Last, we show the deduction necessary for Example 5 (pag.13). We use the logic
for the reasoning of the agent C and add a level of indirection to the original problem

17

(a) 1 : ¬ (¬(a says⊥) ⊃ (a controlsP ⇒ a))
G := {}

(b) 1 : ¬(a says⊥) by α to (a)
(c) 1 : ¬a controls (P ⇒ a)
(d) 1 : a says (P ⇒ a) by reduce controls to (c)
(e) 1 : ¬(P ⇒ a)
(f) 2 : P saysx1 by 〈Ugr〉 to (e)
(g) 2 : ¬(a saysx1)
(h) 1.a.3 : ¬⊥ by 〈a〉 to (b)
(i) 1.a.3 : P ⇒ a by [a] to (d)
(l) G1 := {P ⇒ a } by [Ugr] to (i)
(m) 2 : P ⇒ a by Glob to (G1)
(n) 2 : ¬(P saysx1) by 〈Rgr〉 to (g,m)

contradiction between (g, n)

Figure 7: Tableau Proof of an Hand-off Axiom

by modeling explicitly the smart-card Sc. The statement we want to prove is the
following:

(KB says (Sc says r) ∧KS says (KB ⇒ B) ∧ (B | A) controls r) ⊃ r

Therefore the tableau starts with

1 : ¬ ((KB says (Sc says r) ∧KS says (KB ⇒ B) ∧ (B | A) controls r) ⊃ r)

The tableau proof is shown in Fig. 9. In Fig. 9 only [Lgr]-rule is used. A derivation
with only 〈Rgr〉-rule is possible.

This is an example of the “not compilability” of P ⇒ Q into axiom schemata
(or rules). Indeed the statement KB ⇒ B corresponds to the semantical property
BI ⊆ KI

B , i.e. to the axiom schema KB says s ⊃ B says s. The problem is that it
is not always valid, since it depends on the server’s statement S says (KB ⇒ B).
Without the server’s certificate, it doesn’t hold. So, if we try to prove a different
theorem without this certificate this axiom schema turns out to be invalid. The
possibility of adding “on-line” properties is critical here, because delegations and
groups membership depend on security policies and current certificates and therefore
cannot be fixed a priori in the calculus.

9 Soundness and (partial) completeness

The overall structure of the proofs of soundness and completeness is similar to the
corresponding proofs for modal logics [15, 21, 28] and dynamic logic [9]. We must
“only” adapt the proofs to the new connectives.

At an high-level the soundness proof requires the following steps:

1. devise a mapping between prefixes in a tableau and states in a model;

18

(a) 1 : . . .
(b) 1 : fm says (telnet ∧mail)
(c) 1 : maj says (fm ⇒ Usr)
(d) 1 : ¬(telnet ∧mail)
(e) 1 : maj ⇒ Sys
(f) 1 : Sys says (fm ⇒ Usr)
(g) 1 : Sys controls (fm ⇒ Usr)

↙ ↘
(h1)1 : ¬(Sys says (fm ⇒ Usr))

×
(h2)1 : fm ⇒ Usr
(i) 1 : Usr says (telnet ∧mail)

↙ ↘
(l1) 1 : ¬telnet

T1

(l2) 1 : ¬mail
T2

T1
(m) 1 : Usr controls telnet

↙ ↘
(n1)1 : ¬(Usr says telnet)
(o) 1.Usr.2 : ¬telnet
(p) 1.Usr.2 : telnet ∧mail
(q) 1.Usr.2 : telnet
(s) 1.Usr.2 : mail

×

(n2)1 : telnet
×

T2
(t) 1 : (fm&Usr) controlsmail

↙ ↘
(u1)1 : ¬((fm&Usr) saysmail)
↙ ↘

(v1) 1 : ¬(fm saysmail)
T21

(v2) 1 : ¬(Usr saysmail)
T22

(u2)1 : mail
×

We recall that the prefixed statement (a) (omitted here and shown in the text) is the negation of the
goal formula. We obtain (b), (c), and (d) from (a) by a number of α-rules. The prefixed statement
(e) is introduced from the assumptions by rule Glob. From (b, e) we derive (f) by the [Lgr]-rule. (g)
is also introduced by rule Glob and the direct reduction of controls in (g) yields (h1) and (h2).
One branch closes immediately. In the other branch we apply rule [Lgr] to (h2, b) and obtain (i).
Next we apply rule β to (d) and split the tableau with (l1) and (l2).
As for T1 we first apply rule Glob to introduce (m) and then reduce controls with a β-rule. Again,
one branch closes immediately and, in the other branch, we apply rule 〈Usr〉 to (n1) yielding (o).
Since the prefix 1.Usr.2 is present we can apply rule [Usr] to (i) and add (p). Then we apply rule α
to (p) and we are done.

To close T2 we apply rule Glob to obtain (t) and then reduce controls . We apply 〈&〉 to (u1)

splitting further the tableau. The resulting tableau T21 and T22 are substantially identical to T1,

replacing telnet with mail.

Figure 8: Deduction for the request of Example 2

19

(a) 1 : KB says (Sc says r)
(b) 1 : KS says (KB ⇒ B)
(c) 1 : B | A controls r
(d) 1 : ¬r
(e) 1 : KS ⇒ S
(f) 1 : S says (KB ⇒ B)
(g) 1 : S controls (KB ⇒ B)

↙ ↘
(h1)1 : ¬(S says (KB ⇒ B))

×
(h2)1 : KB ⇒ B
(i) 1 : B says (Sc says r)

↙ ↘
(l1) 1 : ¬(B | A says r)
(m) 1 : ¬(B says (A says r))
(n) 1.B.2 : ¬(A says r)
(o) 1.B.2 : Sc says r
(p) 1.B.2 : Sc ⇒ A
(q) 1.B.2 : A says r

×

(l2) 1 : r
×

We omit again the negated theorem in the root. The prefixed statements (a), (b),
(c), and (d) are obtained by α-rules from the negated theorem. (e) is obtained by rule
Glob and (f) by rule [Lgr] from (b, e). The prefixed statement (g) is added by rule
Glob too. Then we reduce controls in (g) yielding two branches.

One branch closes immediately. In the other branch, we derive (i) by rule [Lgr]
from (a, h2) and then split again the branch by reducing (c). Next we apply rule 〈|〉
to (l1) yielding (m). The prefixed statement (n) is introduced by rule 〈B〉 from (m).
Since 1.B.2 is now present we can apply rule [B] to (i) and add (o). Then we introduce
(p) by rule Glob and apply [Lgr] to (o, p).

Figure 9: Tableau Proof of Delegation without Certificates

20

2. prove a safe extension lemma (any tableau rule applied to a satisfiable formula
preserves satisfiability with this mapping);

3. prove a safe closure lemma (no satisfiable branch is ignored).

The first and third steps are very similar to dynamic and multi modal logic [9] taking
into account that branches are pairs 〈B, GB〉 in our framework.

For the second step, which is also the longest, we can capitalize on the proof for
dynamic logic for the operators | and & (see again [9]). The only substantially new
cases are given by the rules for the operator ⇒. The argument requires to apply both
the local properties and the universal properties of ⇒. We use local properties for
〈Rgr〉 and [Lgr] and global properties for [Ugr]. The rule 〈Ugr〉 relies heavily on both
kind of properties and on the fact that the propositional letter xi is a new letter.

For completeness, we also have an established path:

1. apply a systematic and fair procedure to the tableau;

2. if the tableau does not close, then choose an open branch to build a model for
the initial formula ¬s.

The difficult part of the proof is the construction of the model and the mayor dif-
ferences with the proof for modal and dynamic logics is that the presence of the ⇒
relation imposes constraints on the accessibility relation which are not known a priori.

So we must work in two stages.

1. At first we construct a pre-model as in dynamic logic, by using prefixes σ as
states, assigning the valuation to agents such that (a)I0 = { 〈σ, σ.a.n〉 } and to
proposition according the prefixed statements presents in the branch (r)I0 =
{σ | σ : r ∈ B }.

2. Then we start an iterative closure phase where we construct the final valuation
(·)I from the pre-valuation. For each constraint a ⇒ P we add all prefixes from
(P)I to (a)I . We must repeat this process until we arrive at a fixed point.

Then we start the hard part of the proof which requires to show that if a prefixed
statement occurs on the branch then that statement is satisfied in the state named by
that prefix. This requires a double induction: on the number of steps of the closure
phase and, on the size of the statements. Only the inner induction (on the size of the
statement) is the usual argument for modal and dynamic logic.

9.1 Soundness

Definition 16 Let B be a branch and 〈W, I〉 a model, a mapping is a function ı() from
prefixes to states such that for all σ and σ.a.n present in B it is 〈ı(σ), ı(σ.a.n)〉 ∈ (a)I .

Definition 17 A tableau branch 〈B, GB〉 is SAT in the model 〈W, I〉 iff

1. 〈W, I〉 satisfies GB;

2. there is a mapping ı(·) such that for every σ : s present in B one has ı(σ) ‖−s.

A tableau is SAT if one branch is such.

21

We can now give a proof of the safe extension lemma.

Theorem 18 (Safe Extension) If T is a SAT tableau for the model 〈W, I〉, then
the tableau T ′ obtained by an application of a tableau rule is also SAT for the same
model.

Proof Let 〈B, GB〉 be the SAT branch of the tableau and ı() the corresponding
mapping. If the rule in not applied on B then clearly the new tableau is still SAT. If
the rule is applied on B then we must show that the new branch 〈B′, G′

B〉 is still SAT,
possibly by changing the mapping. For the propositional connectives and the modal
operator says the proof is identical to that of logic K in [28, 15]. For quoting and
conjunction we use the techniques used for dynamic logic in [9].

The only new cases are for the reduction of the operator ⇒.
At first consider rule 〈Rgr〉 and suppose that σ : P ⇒ a and σ : ¬(a says s) are

present in B. Then by hypothesis ı(σ) ‖−P ⇒ a and ı(σ) ‖6−a says s. therefore for
some w one has 〈ı(σ), w〉 ∈ (a)I and w ‖6−s. We also have that (a)I ⊆ (P)I so
that 〈ı(σ), w〉 ∈ (P)I and thus ı(σ) ‖6−P says s by definition of semantic entailment.
Dually for [Lgr] we use the fact that ı(σ) ‖−a ⇒ P implies that (P)I ⊆ (a)I . If
σ : a says s is present then for all w such that 〈ı(σ), w〉 ∈ (a)I one has w ‖−s. Hence
we also have ı(σ) ‖−P says s.

For rule [Ugr] suppose that σ : P ⇒ Q occurs in B. Then ı(σ) ‖−P ⇒ Q and
therefore (P ⇒ Q)I = W for the global property of ⇒ because it contains at least
ı(σ) and therefore it is not empty. Therefore adding it to GB as done by the [Ugr] does
not change the satisfiability of the branch w.r.t. the first condition on GB imposed by
Def. 17.

If σ : ¬(P ⇒ Q) is present in the branch then by hypothesis ı(σ) ‖−¬(P ⇒ Q).
Hence there is a 〈w,w∗〉 ∈ (Q)I with 〈w,w∗〉 6∈ (P)I . Set ı(n) = w for the new prefix n
and (xi)I = W−{w∗ } for the new propositional variable xi. Clearly ı(n) ‖−P saysxi

but ı(n) ‖6−(Q saysxi).

The soundness theorem (Thm. 13) follows with a standard argument (see Fitting
[15] or Goré [21]).

9.2 Completeness

The completeness proof is given for weakly left restricted statements and its extension
to right and request restricted statements is sketched.

At first we apply a systematic and fair proof search procedure (see Goré [21] for
a formal definition) to our initial tableau. At the end of this process (possibly ad
infinitum) we either close the tableau or get an open branch. Then we can show that
an open branch can be used to build a model for the initial formula.

Theorem 19 (Model Existence) If 〈B, GB〉 is an open branch with weakly left
restricted statements only, then it is SAT in a model 〈W, I〉.

Proof Construct a pre-model 〈W, I0〉 as follows:

W
.= {σ | σ is present in B }

(a)I0
.= { 〈σ, σ.a.n〉 | σ and σ.a.n are present in B }

(r)I0
.= {σ | σ : r ∈ B }

22

Incorporate the constraints due to ⇒ and build (·)I from (·)I0 as follows:

• set (·)Ik+1 :=(·)Ik ;

• for every formula σ : a ⇒ P occurring in B

– compute (P)Ik ;

– if 〈σ, σ∗〉 ∈ (P)Ik then add 〈σ, σ∗〉 to (a)Ik+1 ;

• repeat until a fix-point is reached9.

We denote th final result as (·)I .
After this closure phase we must prove that B is SAT in the model 〈W, I〉 (ac-

cording Def. 17) with the mapping ı(σ) = σ: if σ : s is present in B then ı(σ) ‖−s by
induction on the construction of s.

Indeed, once we have this result, it is easy to prove that for all s ∈ GB and for all
σ ∈ W one has σ ‖−s. Indeed by use saturation w.r.t. the Glob rule we have that for
all σ present in B and s ∈ GB we have that σ : s ∈ B.

The proof is similar to those used for converse propositional dynamic logic and
modal logics and works by induction on the size of s (see [9, 21]).

The new connective ⇒ can be dealt without much difficulties. By construction we
satisfy the local properties of ⇒. For the global condition we use mutual saturation
between Glob and [Ugr]-rules. If σ : a ⇒ P occurs in B then [Ugr]-implies that
a ⇒ P ∈ GB. By Glob we have that for all s ∈ GB and all prefixes σ in B one has
σ : s present in the branch. Hence every σ satisfies the local condition i.e. W satisfies
the global condition and therefore (P)I ⊆ (a)I .

The difficult case is σ : a says s since we must prove that for all prefixes 〈σ, σ∗〉 ∈
(a)I the prefixed statement σ∗ : s is present in B so that we can apply the induction
hypothesis to σ∗ : s, get σ∗ ‖−s and then the claim.

The difference with “traditional” proofs [15, 28] is that some prefixes σ∗ are in-
troduced in (a)I during the closure phase. Hence we can have

• σ∗ = σ.a.n for some n or

• 〈σ, σ∗〉 ∈ (P)Ik before the closure phase and (P)Ik ⊆ (a)Ik+1 ⊆ (a)I after a
step of the closure phase

The proof goes by induction on the number of closure steps and needs a series of
intermediate lemmata and propositions.

The base case requires the following property:

Lemma 20 If 〈W, I0〉 is the pre-model of B and σ : P says s is present in B then for
all σ∗ such that 〈σ, σ∗〉 ∈ (P)I0 then the prefixed formula σ∗ : s is also present in B.

The proof here also require induction on the size of P . Thus is P is an atomic principal
a we simply apply saturation w.r.t. rule [a]

9A fix point is always reached since the operation we perform is monotone on a bounded lattice.

23

For complex principals we must first show that if 〈σ, σ∗〉 ∈ (P)I then we can
“travel” from σ to σ∗ using only atomic principals as intermediate steps. To this
extent we introduce the definition of the initial segment of P (its head):

head(a) = { a }
head(P&Q) = head(P) ∪ head(Q)
head(P | Q) = head(P)

Then we use the following proposition to prove the main lemma:

Proposition 21 If 〈σ, σ∗〉 ∈ (P)I0 then σ∗ has the form σ.a.n.a1.n1ak.nk and
a ∈ head(P).

Proposition 22 If σ : P says s is present in B, 〈σ, σ∗〉 ∈ (P)I0 and the prefix σ∗ has
the form σ.a.n.a1.n1ak.nk then there are principal Q1, . . .Qh such that σ.a.n :
Q1 says . . . Qh says s is present in B and 〈σ.a.n, σ∗〉 ∈ (Q1 | · | Qh)I0 .

Notice that the presence of a number of Qi is simply due to the various possibilities
in which quoting was associated in P . If we had a sort of normal form, for instance
always associating quoting to the right, then we would only have one Q.

From these results we can prove the main result by induction. For the base case
we use Lemma20. For the inductive step we must show that these properties are
preserved for the partial (·)I we construct after each step of the iteration. Thus the
inductive hypothesis is simply Lemma 20 where the partial (·)I replace (·)I0 .

The key point is to observe that whenever σ : a ⇒ P is present then by saturation
σ : a says s implies σ : P says s. So we apply the inductive hypothesis to get σ∗ : s
from σ : P says s. Therefore, when the prefix σ∗ was added in (a)I in the closure
phase the prefixed statement σ∗ : s was present.

Once this theorem has been proved, the completeness theorem (Thm. 14) follows
with a standard argument. See Fitting [15] for the proof.

For the right and request restricted fragment of the language the key point is that
we only have literals or statements of the form P ⇒ a under the scope of says . The
operator ⇒ does not create problems given its global nature and the only difficult
part is due to literals l (r or ¬r).

The previous proof does not work since σ : P says s for non atomic P cannot
propagate over σ : P ⇒ a. However we can prove the dual of the induction step
of the previous proof: if σ : ¬(a says l) and P ⇒ a is also present then there is a
〈σ, σ∗〉 ∈ (P)I such that σ∗ : ¬l.

This means that all σ : P says l′ are consistent with each σ : ¬(a says l). At this
stage we need to use the D(a)-rule, to prove that those P statements are consistent
also with each σ : a says l′′. By D(A) we obtain σ : ¬(a says¬l′′) and then apply the
dual property.

Since all l, l′, l′′ are literals this is enough: all a says l are consistent among them-
selves, and each of them with all P says l′. This means that when we add a 〈σ, σ∗〉
from (a)I to (P)I in the closure phase we can always extend the valuation of the
unspecified l′ or l′′ in σ∗ so that the result is still a model. Again, this only works for
request restricted statements.

This is sufficient for the proof of the the completeness theorem for weakly right
and request restricted fragments (Thm. 15).

24

10 Incorporating Roles

New security paradigms have stressed the importance of an explicit treatment of roles
in the design and verification of access control systems and policies [13, 17, 35]. For
instance, roles simplify the design of the system and make possible to use engineering
principles such as least privilege, separation of duties, etc. [13, 35].

Roles are typically assumed by principals to accomplish some particular duties.
A simple example is the command su (super-user) in Unix systems. By executing
pb@ely% su webmaster the user pb assume the role of webmaster to accomplish some
tasks (such as changing the department home page) which require a particular set
of privileges. As mentioned already, the distinction between roles and groups can
be tricky and we refer to the literature for further discussion [13, 35]. An intuitive
understanding of the concept of role and of the difference between the principals P
and P asR is sufficient here.

A role will be typically used by a principal in the format P asR, where principal
P claims to be using role R, e.g. pb aswebmaster. This can still be encoded by
modelling role assumption “ as ” with quoting “|” as we suggested in §5.1.

Yet, in the formalism and deduction method presented so far, roles are just “prin-
cipals like any other”. After the encoding, the design of properties and global as-
sumptions characterizing them is up to the user of our method.

It is possible to deal with them explicitly, along the lines proposed by Abadi et al.
[1] for an axiomatic approach or by Massacci [29] for a tableau-based deduction.

To this extent we must introduce distinguished symbols for atomic roles R1 . . . Rn

and define their properties by adding suitable axiom schemata or tableau rules.
The first step is establishing the relationships between normal agents and roles.

A possible consideration is the following: if Bob does not restrict his privileges when
making a request to Alice, then Alice should conclude that Bob wants to use all
possible roles entrusted to him. This assumption avoids a “denial of service” from
Alice and can be easily characterized by the axiom schema below:

P ⇒ P asR

We can also require idempotency and enforce the following axioms:

R asR ⇒ R R ⇒ R asR

There seems to be no special reason why fm205 asuser should be different from
fm205 asuser asuser.

Other properties, adopted in [1], may be less intuitive and appealing. For instance
consider commutativity of roles, represented by the axioms below:

R1 asR2 ⇒ R2 asR1 R2 asR1 ⇒ R1 asR2

Commutativity may lead to undesirable results when combined with the need of
avoiding denial of service. Indeed we can expect to have P asR1 asR2 to have the
same privileges of P asR2 and hence by commutativity of P asR2. So we may lose the
possibility of “downgrading” our privileges which may be advisable when performing
sensitive operation (for instance we may want to act as user rather than root while

25

deleting files). Moreover, if R1 and R2 are incompatible roles we may also derive an
inconsistency.

The direct embedding preserves the flexibility of the calculus but may generate
many irrelevant properties and therefore may hinder the effectiveness of the deduction
method.

Another possibility is to design deduction rules for roles, which take into account
their specific properties. The trade off is that we may hardwire desirable and less
desirable security properties into the deduction methods.

A combination of both methods may be worth investigating.

11 Conclusions

The combination of logical languages and decision methods based on logic may be a
step towards the development of practical reasoning tools for formal verification of
multi-agent distributed systems.

A claim that we do not make is that logic and semantic tableaux should be used
for run-time decisions on access control. Although possible, this may lead to un-
acceptable slow-downs. On the contrary, logic and tableaux (or similar logic-based
methods) should be used for off-line verification and prototyping, for checking that
access protocols respect security policies. This work is a step in this direction.

The major contribution of this paper is the development of tableau methods for
the calculus for access control by Abadi, Lampson et al. [1, 26, 40]. We also clarified
some model theoretic features of the calculus. The completeness results presented
here extend those in [1] and provide the basis for a full fledged automatization. The
method extends the deduction capabilities of [1] as we can prove important properties
which must be added as non-logical axiom [1, 26].

This tableau method requires novel techniques such as passing from a tree-like
tableau to a forest of prefixes, a run time update of global assumptions and a modifi-
cation of the notion of branch. Future research is in the direction of providing a fully
automated verifier, possibly using the results of Beckert and Goré [3], and extending
the formalism to first order logic for expressing quantified properties over objects.

An important side-effect of these deductive techniques (discussed in [30]) is an
EXPTIME-tableau for multi-modal logics with the universal modality [19, 20].

Acknowledgments

Most of this work was done while the author was at the Computer Laboratory at
the University of Cambridge (UK). I’m indebted to L. Paulson and the Computer
Laboratory for their hospitality in Cambridge and to my advisor L. Carlucci Aiello
for her encouragement and support.

I would like to thank M. Abadi for discussing the features of the DEC-SRC cal-
culus, clarifying some of its tricky aspects and commenting previous versions of this
work, and the Computer Security group (Cambridge) and the Applied Logic group
(IRIT) for many useful discussions. Precise comments from the anonymous referees
have also greatly improved the quality of this paper.

A preliminary, much shorter version of this paper appearead in [30].

26

This work has been financially supported by grants from ASI, CNR and MURST.

References

[1] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A calculus for access
control in distributed systems. ACM Transactions on Programming Languages
and Systems, 15(4):706–734, 1993.

[2] R. Anderson. A security policy model for clinical information systems. In Pro-
ceedings of the 15th IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, 1996.

[3] B. Beckert and R. Goré. Free variable tableaux for propositional modal log-
ics. In Proceedings of the International Conference on Analytic Tableaux and
Related Methods (TABLEAUX-97), volume 1227 of Lecture Notes in Artificial
Intelligence, pages 91–108. Springer-Verlag, 1997.

[4] D. Bell and L. La Padula. Secure computer systems: unified exposition and
MULTICS. Report ESD-TR-75-306, The MITRE Corporation, March 1976.

[5] E. Bertino, S. Jajodia, and P. Samarati. Supporting multiple access control
policies in database systems. In Proceedings of the 15th IEEE Symposium on
Security and Privacy, pages 94–109. IEEE Computer Society Press, 1996.

[6] M. Burrows, M. Abadi, and R. Needham. A logic for authentication. ACM Trans-
actions on Computer Systems, 8(1):18–36, 1990. Also available in Proceedings
of the Royal Society of London, volume 426, pages 233–271, 1989 and Research
Report SRC-39, DEC - System Research Center, 1989.

[7] D. Clark and D. Wilson. A comparison of commercial and military computer
security policies. In Proceedings of the 6th IEEE Symposium on Security and
Privacy,pages 184–194. IEEE Computer Society Press, 1987.

[8] F. Cuppens and R. Demolombe. A deontic logic for reasoning about confiden-
tiality. In 3rd International Workshop on Deontic Logic in Computer Science,
Sesimbra, Portugal, 1996.

[9] G. De Giacomo and F. Massacci. Tableaux and algorithms for propositional
dynamic logic with converse. In Proceedings of the 13th International Conference
on Automated Deduction (CADE-96), volume 1104 of Lecture Notes in Artificial
Intelligence, pages 613–628. Springer-Verlag, 1996. Extended version to appear
in Information and Computation.

[10] Department of Defense. Trusted computer systems evaluation criteria. Technical
Report, DoD 5200,28-STD, United States of America, 1990.

[11] Directorate General XIII. Information technology security evaluation criteria
(ITSEC). Technical Report, European Economic Community, 1990.

[12] R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning about Knowledge. The
MIT Press, 1995.

27

[13] D. Ferraiolo, J. Cugini, and R. Kuhn. Role-based access control (RBAC): Fea-
tures and motivations. In Proceedings of the Annual Computer Security Appli-
cations Conference. IEEE Computer Society Press, 1995.

[14] D. Ferraiolo, D. Gilbert, and N. Lynch. An examination of federal and commer-
cial access control policy needs. In Proceedings of the 16th NIST-NCSC National
(U.S.) Computer Security Conference, pages 107–116, 1993.

[15] M. Fitting. Proof Methods for Modal and Intuitionistic Logics. Reidel, Dordrecht,
1983.

[16] M. Georgeff and A. Rao. The semantics of intention maintenance for rational
agents. In Proceedings of the 14th International Joint Conference on Artificial
Intelligence (IJCAI-95), pages 704–710. Morgan Kaufmann, Los Altos, 1995.

[17] L. Giuri and P. Iglio. A formal model for role based access control with con-
straints. In Proceedings of the 10th IEEE Computer Security Foundations Work-
shop, pages 136–145. IEEE Computer Society Press, 1996.

[18] J. Glasgow, G. MacEwen, and P. Panangaden. A logic for reasoning about
security. ACM Transactions on Computer Systems, 10(3):226–264, 1992.

[19] V. Goranko. Modal definability in enriched languages. Notre Dame journal of
Formal Logic, 31(1), 1990.

[20] V. Goranko and S. Passy. Using the universal modality: Gains and questions.
Journal of Logic and Computation, 2(1):5–30, 1992.

[21] R. Goré. Tableaux method for modal and temporal logics. Technical Report
TR-ARP-15-5, Australian National University, 1995. To appear as chapter on
the ”Handbook of Tableau Methods”.

[22] M. Harrison, W. Ruzzo, and J. Ullman. Protection in operating systems. Com-
munications of the ACM, 19(8):461–471, 1976.

[23] G. Hughes and M. Cresswell. An Introduction to Modal Logic. Methuen, 1968.

[24] S. Kanger. Law and logic. Theoria, 38(3):105–132, 1972.

[25] C. Krogh. Obligations in multiagent systems. In Proceedings of the 5th Scandi-
navian Conference on Artificial Intelligence (SCAI-95), pages 29–31. ISO Press,
Amsterdam, 1995.

[26] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in dis-
tributed systems: Theory and practice. ACM Transactions on Computer Sys-
tems, 10(4):265–310, 1992.

[27] B. Lampson. Protection. ACM Opearting Systems Reviews, 8(1):18–24, 1974.

[28] F. Massacci. Strongly analytic tableaux for normal modal logics. In Proceedings of
the 12th International Conference on Automated Deduction (CADE-94), volume
814 of Lecture Notes in Artificial Intelligence, pages 723–737. Springer-Verlag,
1994.

28

[29] F. Massacci. Reasoning about security: a logic and a decision methods for role-
based access control. In Proceeding of the International Joint Conference on
Qualitative and Quantitative Practical Reasoning (ECSQARU/FAPR-97), vol-
ume 1244 of Lecture Notes in Artificial Intelligence, pages 421–435. Springer-
Verlag, 1997.

[30] F. Massacci. Tableaux methods for access control in distributed systems. In
D. Galmiche, editor, Proceedings of the International Conference on Analytic
Tableaux and Related Methods (TABLEAUX-97), volume 1227 of Lecture Notes
in Artificial Intelligence, pages 246–260. Springer-Verlag, 1997.

[31] C. McCollum, J. Messing, and L. Notargiacomo. Beyond the pale of MAC and
DAC - defining new forms of access control. In Proceedings of the 9th IEEE
Symposium on Security and Privacy, pages 190–200, 1990.

[32] J. Moffet and M Sloman. Policy hierarchies for distributed systems management.
IEEE Journal on Selected Areas in Communications, 11(9), 1993.

[33] R. Sandhu. The typed access matrix model. In Proceedings of the 11th IEEE
Symposium on Security and Privacy, pages 122–136. IEEE Computer Society
Press, 1992.

[34] R. Sandhu and P. Samarati. Access control: Principles and practice. IEEE
Communications Magazine, pages 40–48, September 1994.

[35] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-based access controls
models. IEEE Computer, 29(2), February 1996.

[36] M. Schmidt-Schauss. Subsumption in KL-ONE is undecidable. In Proceedings of
the 1st International Conference on the Principles of Knowledge Representation
and Reasoning (KR-89), pages 421–431, 1989.

[37] P. Syverson and P. van Oorschot. On unifying some cryptographic protocols
logics. In Proceedings of the 13th IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, 1994.

[38] J. van Benthem. Correspondence theory. In Handbook of Philosophical Logic,
volume II, pages 167–247. Reidel, 1986.

[39] R. van der Meyden. The dynamic logic of permission. Journal of Logic and
Computation, 6(3):465–479, 1996.

[40] E. Wobber, M. Abadi, and M. Burrows. Authentication in the Taos operating
system. ACM Transactions on Computer Systems, 12(1):3–32, 1994.

29

