
A Context Information Manager
for Pervasive Computing Environments

Jérôme Euzenat1, Jérôme Pierson2, Fano Ramparany2

Abstract. In a pervasive computing environment, heterogeneous
devices need to communicate in order to provide services adapted
to the situation of users. So, they need to assess this situation as
their context. We have developed an extensible context model
using semantic web technologies and a context information
management component that enable the interaction between
context information producer devices and context information
consumer devices and as well as their insertion in an open
environment.

1 INTRODUCTION1
In a pervasive computing environment, various basic services can
be provided by smart devices (e.g., sensors, actuators, human-
computer interface). More advanced services can be provided when
they act together and cooperate, but smarter services can only be
achieved if the devices could adapt their behaviour to the user,
his/her preference and his/her task, than if users have to find the
specific service they want among all the smart devices.
 This idea requires the perception of the environment in which
devices and users interact. There are pieces of information that can
be considered common to all services. In particular, spatial and
temporal location as well as information related to the physical
environment in which services are made available [1, 2]. These
elements are part of the context in which applications operate. We
are here concerned with context-aware applications, i.e.,
applications whose behaviour is determined to some extent by the
context.
 Our goal is to design a context management system general
enough to be used by different pervasive computing applications,
specific enough for encompassing existing services and
applications, and flexible enough for supporting the dynamic
addition of new devices.
 First we introduce our proposal for a distributed architecture
that manages context information (Section 2), then we define a
context representation (Section 3) which is independent of
applications and an architecture enabling their evolution. The
openness of the system will require dealing with heterogeneous
representations that will have to be reconciled before being used
(section 4). For that purpose, we will take advantage of solutions
developed for the “semantic web”.

2 CONTEXTS
Context is the set of information (partly) characterizing the
situation of some entity [5]. The notion of context is not universal
but relative to some situation [15, 11]. This can be a physical
situation (as the spatio-temporal location of some person) or
functional (as the current task of the person).

1INRIA Rhône-Alpes, France
2France Telecom R&D, France

Although, several scientific domains have considered the
notion of context, the standpoints from which this notion is
considered are different: in pervasive computing, the context of an
application in terms of its physical parameters has been especially
considered ; in human-computer communication, the context is
most often the user task and the history of its dialogue with the
computer [4]; in artificial intelligence, the context is rather
considered as the conditions of validity of an assertion [14].

2.1 Context in pervasive computing
In pervasive computing, the physical context is of the utmost
importance. In general, it is acquired through sensor data. These
data are further elaborated into context characterization adapted to
their use (for instance « high temperature » for some air
conditioning controller). With regard to the sensor data (a
temperature), the information has been weakened (i.e., made less
precise) but is more adapted.

The various definitions of context in pervasive computing are
very often related to an application or a particular domain [6, 15].
The drawback of this characterization is its reliance on the task:
« high temperature » is not an absolute characterization. It depends
on the use of the room (a sauna or a sleeping room). More than
context, pervasive computing tends to manipulate a
characterization of the context in the perspective of an application.
As a consequence, it is difficult to dynamically implement non
expected applications with the characterization of context made for
another one.

Figure 1: Model for context in pervasive computing. Data coming from
sensors are aggregated and elaborated into the context used by applications
(from[7]). This paper does not consider the orthogonal aspects (discovery,
history and security).

However, multi-application context modelling is now
understood in pervasive computing [7] and raises the issue of
considering context independently from applications. Figure 1
shows the way to progressively elaborate context information from
sensors to applications. We will follow this approach and this paper
details the content of the perception and situation layers so that
they can support the dynamic nature of the environment (new
sensors and applications appear and disappear).

Sensors (numeric)
Perception (symbolic)

Context identification

Exploitation

Web

Privacy/Tru
st

H
istory

D
iscovery

2.2 Contexts in artificial intelligence
In artificial intelligence, the notion of context is, in general,
concerned with the representation of information. It is used for
accounting for two phenomena: the context of validity of
information [16] and the efficiency of reasoning in narrower
contexts [1].

John McCarthy [17] proposed a formalization of context
based on context « reification » as well as the « meta-predicate » ist,
ist(p,c) meaning that assertion p is true in context c. The
approaches of context in artificial intelligence allow grouping
knowledge in micro-theories [1] and to reason within those. In this
framework (that of Cyc), the context is a more precise frame for
interpreting information. This kind of approach can be used in
pervasive computing in order to integrate and interpret data
provided by sensors. Taking advantage of the theory associated
with the sensor enables reducing the ambiguity of the data it
delivers. In that view, raw data issued from sensors, are generally
not weakened but rather enriched (and aggregated with other
information sources allowing to further precise their interpretation).
[14] describes the way to express this kind of context within the
semantic web by providing each triple information on its origin
(« quad »). The same model is implemented in modern RDF
managers [2].

Although work from McCarthy and Guha consider contexts as
independent theories related to some particular knowledge field,
Fausto Giunchiglia instead considers contexts as concurrent
viewpoints on the same information. He expresses the relations
between contexts as « mappings » used for importing information
under some context into another. This approach can be useful in
pervasive computing when several information sources provide
comparable information. These works found their way within
semantic web tools through the C-OWL language [18]. A
comparison of both approaches is made in [19].

2.3 Synthesis
In summary, pervasive computing tends to consider context as
what characterizes the situation while artificial intelligence rather
characterizes the information itself. More notably, Pervasive
computing very often deals with the particular context of an
application while artificial intelligence determines the context in
function of the information source. In pervasive computing,
information coming from sources is very often weakened in order
to fit the application needs while artificial intelligence tends to
enrich it with further information.

Of course, these approaches are rather complementary than
competitors. In general, raw data can go through weakening and
enrichment, thus bridging both approaches.

In pervasive computing, upgrading the environment is not an
option: the environment must be designed from scratch in order to
evolve. Our goal is to contribute to dealing with the dynamic
evolution of context [7]. For that purpose, we design an
architecture supporting the introduction of new context elements
(provided from some new device) and the introduction of new
applications without interruption of the environment.

This component-based context management architecture relies
on a context modelling formalism based on semantic web
technologies. We demonstrate how they can be used to
dynamically extend the environment.

3 A CONTEXT INFORMATION
MANAGEMENT COMPONENT

Pervasive Computing applications retrieve context data directly or
indirectly from sensors, which are grounded in the physical
environment. We propose an architecture in which applications do
not need to directly connect to each sensor available and where
adding a new sensor does not require all applications to be
recompiled and redeployed.

3.1 Architecture
Designing an architecture for hosting context-aware services,
suggests the development of a context management service for
providing other services or devices with context information [6, 7,
11]. We have identified several alternative approaches for
designing the target architecture. The first approach lets
applications directly communicate with sensors they have an
interest in. This approach requires applications to know in advance
who they need to communicate with to get the information they
need. Furthermore it adds complexity to the process of information
aggregation, as this process should then be handled by the
applications themselves and overloads sensors activity. Finally this
approach makes it difficult to insert new sensors into the
environment and thus doesn't comply with our flexibility
requirement.

In the framework of service oriented architectures, the second
approach consists of building a context management service [4]
whose job is to collect sensors information and forward this
information to applications that need it. This approach makes it
possible to gather sensor information in a single place so that
information could be easily aggregated. For example, a system that
provides local temperature and atmospheric is very useful in a
home environment. At a city level, the same information is useful;
however it doesn't need the same degree of precision. The
drawback of such a system is that it centralizes the management of
context information, which is contradictory to the concept of
context. More specifically, this system provides information about
the activity environment (a special case of context information),
however this information is not contextual as it is independent of
the current task or situation, i.e. that of the client application.
Moreover, with such a system, the scope of context management
would be efficient in a limited area only.

We have adopted a third approach in which each device or
service embeds a context management component (CMC) for
maintaining context information for its own use or for the benefit
of others (Figure 2). The main advantage of this approach is that
new devices can join online or leave, without having to recompile
or reinitialize any part of the whole environment. This component
provides mechanisms for helping context-aware devices to request
context information from context sensitive devices.

Figure 2: Each device embeds a context management component (CMC) and a semantic description of its context.

3.2 Interaction
Applications should be able to query context information they are
interested in and some services should be able to provide context
information, such as aggregated context information to other devi-
ces. For this purpose we design a protocol that makes the best of
available services. We need to be able to identify a service, to
know what kind of context information it could provide and to
interact with it to get access to this information. Thus the context
management component provides a few methods. In our
description the first element is the query, the second is the response
type:

Id() -> URI: The identifier of the service;
Cl(URI) -> URI: The class of the identified service;
Desc(URI) -> OWL: The description of the information that
the component can provide;
Req(RDQL) -> RDF.

The first method allows identifying devices that are available in the
environment. The identifier can then be used to contact the device.
Alternatively, it could be used to get a more detailed description of
the device (e.g., in case the identifier is a URI pointing to a
network location where a description of the identified object is
stored). A second method identifies the class (in OWL terminology)
of the device. In theory, this class should be accessible from the
network and once its definition is found, it provides a detailed
description of the device. A third method provides the device
description (or rather that of context information they provide) in
an OWL formalism (OWL-S). A fourth method is used to post
queries to the devices and to get the context information returned.
 Thus any device is able to: find out, in its environment,
services that are able to provide information relevant to its own
context, get features of services that have been found (for example,
measurement precision), connect to the selected service to get the
information sought.
 We need a language to describe the context model of
heterogeneous devices so that these devices can interact in a
dynamic environment.

4 OPENESS, DYNAMICS AND
HETEROGENITY

The languages developed for the semantic web, and particularly
RDF and OWL, are adapted to context representation in pervasive
computing and particularly to the representation of dynamically
evolving contexts for two reasons: these languages are open: they

implement the open world assumption under which it is always
possible to add more information to a context characterization; and
they have been designed to work in a networked way.

4.1 Context model and language
In this dynamic pervasive computing environment, each CMC
manages context information of its device. To express its context
model, its needs or its capabilities, we use semantic web languages.
They ensure interoperability between these heterogeneous devices.
 The ground language for the semantic web is RDF (Resource
Description Framework [8]). It enables expressing assertions of the
form subject-predicate-object. The strength of RDF is that the
names of entities (subjects, predicates or objects) are URIs (the
identifiers of the web that can be seen as a generalization of URLs:
http://www.w3c.org/sw). This opens the possibility for different
RDF documents to refer precisely to an entity (it is reasonable to
assume that a URI denotes the same thing for all of its users).
 The OWL language [9], has been designed for expressing
« ontologies » or conceptual models of a domain of knowledge. It
constrains the interpretation of RDF graphs concerning this domain.
OWL defines classes of objects and predicates and makes it
possible to declare constraints applying to them (i.e., that the
« output » of a « thermometer » is a « temperature »).
 The context model that we use at that stage is very simple: a
context is a set of RDF assertions. Interoperability is guaranteed
through considering that context-aware devices are consumers and
producers of RDF. However, this is not precise enough and devices
may want to extract only the relevant information from context
sources. For that purpose, a language like RDQL [10] is useful for
querying or subscribing to context sources. In order to post the
relevant queries to the adequate components, it is necessary that
components publish the OWL classes of objects and properties on
which they can answer.

4.2 Why ontologies?
If we can add components at any time, they may not be easily
usable. Indeed, there is no a priori reason that components
available, new applications and new sensors are compatible.
Fortunately, knowledge representation techniques, and namely the
open world assumption, makes it possible to introduce new device
specifications in the environment by extending the ontology,
through specifying a new concept or a property. Using ontologies
to characterize the situations permits new equipment whose
capabilities have not been known at the beginning to enter and new
applications to benefit from these possibilities. The applications

Web
Privacy/Tru

st

 .

 Alignment
Service

CMC

CMC

CMC

CMC

 CMC

CMC

CMC

 .

 .

 .

 .

 .

 .

must be as general as possible describing the information they need
whereas the context management system must be as precise as
possible on the information it makes available. This approach
enables the most specialized applications to take advantage of
CMCs. The essential point is to have sufficiently generic
ontologies to cover the various concepts implied in pervasive
computing applications [12].

4.3 Taking advantage of heterogeneous resources
The context management system we propose makes it possible to
introduce new devices in the environment by extending the
ontologies in such a way that existing applications can make the
best use of them. However, this view holds if all parties share the
same ontology.
 Unfortunately this is not always the case and agreeing on
standard, universal and self contained context ontology is not a
reasonable assumption. This raises the issue of matching context
information with applications context information requirements.
There are three alternative approaches addressing interoperability
in pervasive computing environments: (i) A priori standardisation
of ontologies, (ii) setting up mediators among ontologies and (iii) a
dynamical ontology matching service. These three approaches are
not incompatible and might even be jointly used. For example
parties could agree on sharing common high level ontologies.
Letting more specific level ontology evolve freely and
independently is a strategy enabling a close account for a fast
evolving domain.

As ontologies, matching services should be available for
applications and context managers through network access. They
provide an interface that allows the explicit handling of ontologies
alignments developed in the framework of the semantic web [20].
We propose to set up one (or more) ontology matching service(s)
(Figure 3). The goal of such services is to help agents (context
managers in our case) to find a matching between different
ontologies. These services provide mechanisms for finding out
ontologies close to a given ontology, archiving (and retrieving)
past alignments, dynamically computing matching between two
ontologies and translating queries and responses to queries between
context managers that use different ontologies [13].

5 RELATED WORKS
In pervasive computing, it is largely recognized that handling
context information is essential. As we presented, there are many
different management systems for context information. The one
which is the nearest to what we presented here is the work on
contextors [11]. It proposes a library of elements able to provide
context information: it makes it possible to combine contextual
information on a distributed mode. On the other hand, this system
does not establish how to dynamically add devices without
stopping the system or other devices. Regarding to the use of the
semantic Web technologies to represent context, there are several
proposals to extend the languages of the semantic Web in order to
contextualize the assertions [14, 19, 2]. With regard to the use of
OWL to represent the context information, [12] introduces a high
level ontology of contextual information for pervasive computing.

6 CONCLUSION AND PERSPECTIVES
We specifically addressed the problem of adaptability of context
management to an ever-evolving world. This is achieved by
providing a distributed component-based architecture and by using
semantic web technologies. Components enable the addition, at
any moment, of new devices that can provide information about the
context of applications. The use of RDF and OWL ensures
interoperability between components developed independently by
taking advantage of the open character of these technologies.
Moreover, using ontology alignment modules allows dealing with
the necessary heterogeneity between components. The proposed
approach relies on a minimal commitment on basic technologies:
RDF, OWL, and some identification protocol.
 We are currently developing a demonstrator of this
technology. It consists of a toolkit for developers of pervasive
applications which help them deploy a distributed context
management system. This toolkit provides a component for
managing (searching, broadcasting and updating) context
information.

Figure 3: For finding correspondence between its model and the model of the context information provider, the window service asks to an alignment service
to translate his model to another device model.

 WEB

Average
Temperature

Physical
Context

Temperature Brightness
isA

isA

Brightness

Alignment
Service

isA

Temperature °K Temperature °C Temperature °F

isA
isA

Physical
context

Temperature

isA

isA

Context

Room Context

Ho use
Context

isA

Resident Time

isA

isA isA isA

myRoomTemperature

Average
 Temperature

isA

⌠

>>

ACKNOWLEDGEMENTS
Fano Ramparany and Jérôme Pierson are partially supported by the
European project Amigo (IST-2004-004182); Jérôme Euzenat is
partially supported by the European network of excellence
Knowledge Web (IST-2004-507482).

REFERENCES
[1] R. Guha, Contexts: a formalization and some applications, PhD thesis,

Stanford university (CA US), 1991 (Technical Report STAN-CS-91-
1399-Thesis et MCC ACT-CYC-423-91).

[2] O. Khriyenko, V. Terziyan, Context description framework for the
semantic web, Proceedings Context 2005 Context representation and
reasoning workshop, Paris (FR), 2005

[3] A. Dey, D. Salber, G. Abowd, A conceptual framework and a toolkit
for supporting the rapid prototyping of context-aware applications,
Human-Computer Interaction 16:97-166., 2001

[4] P. Dourish, Seeking a foundation for context-aware computing,
Human-Computer Interaction, 16(2-3), 2001.

[5] M. Chalmers, A Historical View of Context, Computer supported
cooperative work 13(3), 223-247, 2004.

[6] A. Dey, Understanding and using context, Personal and ubiquitous
computing 5(1):4-7, 2001.

[7] J. Coutaz, J. Crowley, S. Dobson, D. Garlan, Context is key,
Communications of the ACM 48(3):49-53, 2005.

[8] G. Klyne, J. Carroll, Eds., Resource Description Framework (RDF):
Concepts and Abstract Syntax, W3C Recommendation, 2004
http://www.w3.org/TR/rdf-concepts/

[9] M. Dean, G. Schreiber Eds, OWL Web Ontology Language:
Reference, W3C Recommendation, 2004. http://www.w3.org/TR/owl-
ref/

[10] A. Seaborne, RDQL — A Query Language for RDF, W3C Member
submission, 2004. http://www.w3.org/Submission/2004/SUBM-
RDQL-20040109/

[11] J. Crowley, J. Coutaz, G. Rey, P. Reignier, Perceptual components for
context aware computing, Proceedings International Conference on
Ubiquitous Computing, Göteborg (SW), pp. 117-134, 2002.

[12] X. H. Wang, D. Q. Zhang, T. Gu, H. Keng Pung, Ontology based
context modeling and reasoning in OWL, Proceedings 2nd
International conference on pervasive computing and communication
Workshop on Context Modeling and Reasoning (CoMoRea), Orlando
(FL US), 2000.

[13] J. Euzenat, Alignment infrastructure for ontology mediation and other
applications, Proceedings ICSOC 1st international workshop on
Mediation in semantic web services, pp.81-95, Amsterdam (NL),
2005.

[14] R. Guha, R. Fikes, R. McCool, Contexts for the Semantic Web,
Proceedings 3rd ISWC, Hiroshima (JP), LNCS 3298:32-46, 2004.

[15] H. Chen, T. Finin, A. Joshi, An Ontology for Context-Aware
Pervasive Computing Environments, Knowledge engineering review
18(3):197-207, 2004.

[16] J. de Kleer, An assumption-based TMS, Artificial Intelligence
28(2):127-162, 1986.

[17] J. McCarthy, Notes on formalizing context, Proceedings 13th IJCAI,
Chambéry (FR), pp. 555-560, 1993.

[18] P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, H.
Stuckenschmidt, C-OWL: contextualizing ontologies, Proceedings 2nd
ISWC, Sanibel Island (FL US), LNCS 2870:164-179, 2003

[19] L. Serafini, P. Bouquet, Comparing formal theories of context in AI,
Artificial Intelligence 155:1-67, 2004.

[20] J. Euzenat, An API for ontology alignment, Proceedings 3rd ISWC,
Hiroshima (JP), LNCS 3298:698-712, 2004.

