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Abstract. In a pervasive computing environment, heterogeneous 
devices need to communicate in order to provide services adapted 
to the situation of users. So, they need to assess this situation as 
their context. We have developed an extensible context model 
using semantic web technologies and a context information 
management component that enable the interaction between 
context information producer devices and context information 
consumer devices and as well as  their insertion in an open 
environment.  

1 INTRODUCTION1 
In a pervasive computing environment, various basic services can 
be provided by smart devices (e.g., sensors, actuators, human-
computer interface). More advanced services can be provided when 
they act together and cooperate, but smarter services can only be 
achieved if the devices could adapt their behaviour to the user, 
his/her preference and his/her task, than if users have to find the 
specific service they want among all the smart devices. 
 This idea requires the perception of the environment in which 
devices and users interact. There are pieces of information that can 
be considered common to all services. In particular, spatial and 
temporal location as well as information related to the physical 
environment in which services are made available [1, 2]. These 
elements are part of the context in which applications operate. We 
are here concerned with context-aware applications, i.e., 
applications whose behaviour is determined to some extent by the 
context.  
 Our goal is to design a context management system general 
enough to be used by different pervasive computing applications, 
specific enough for encompassing existing services and 
applications, and flexible enough for supporting the dynamic 
addition of new devices. 
 First we introduce our proposal for a distributed architecture 
that manages context information (Section 2), then we define a 
context representation (Section 3) which is independent of 
applications and an architecture enabling their evolution. The 
openness of the system will require dealing with heterogeneous 
representations that will have to be reconciled before being used 
(section 4). For that purpose, we will take advantage of solutions 
developed for the “semantic web”.  

2 CONTEXTS 
Context is the set of information (partly) characterizing the 
situation of some entity [5]. The notion of context is not universal 
but relative to some situation [15, 11]. This can be a physical 
situation (as the spatio-temporal location of some person) or 
functional (as the current task of the person). 
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Although, several scientific domains have considered the 
notion of context, the standpoints from which this notion is 
considered are different: in pervasive computing, the context of an 
application in terms of its physical parameters has been especially 
considered ; in human-computer communication, the context is 
most often the user task and the history of its dialogue with the 
computer [4]; in artificial intelligence, the context is rather 
considered as the conditions of validity of an assertion [14]. 

2.1 Context in pervasive computing 
In pervasive computing, the physical context is of the utmost 
importance. In general, it is acquired through sensor data. These 
data are further elaborated into context characterization adapted to 
their use (for instance « high temperature » for some air 
conditioning controller). With regard to the sensor data (a 
temperature), the information has been weakened (i.e., made less 
precise) but is more adapted. 

The various definitions of context in pervasive computing are 
very often related to an application or a particular domain [6, 15]. 
The drawback of this characterization is its reliance on the task: 
« high temperature » is not an absolute characterization. It depends 
on the use of the room (a sauna or a sleeping room). More than 
context, pervasive computing tends to manipulate a 
characterization of the context in the perspective of an application. 
As a consequence, it is difficult to dynamically implement non 
expected applications with the characterization of context made for 
another one. 
 
 
 
 
 
 

 

Figure 1: Model for context in pervasive computing. Data coming from 
sensors are aggregated and elaborated into the context used by applications 
(from[7]). This paper does not consider the orthogonal aspects (discovery, 
history and security). 

However, multi-application context modelling is now 
understood in pervasive computing [7] and raises the issue of 
considering context independently from applications. Figure 1 
shows the way to progressively elaborate context information from 
sensors to applications. We will follow this approach and this paper 
details the content of the perception and situation layers so that 
they can support the dynamic nature of the environment (new 
sensors and applications appear and disappear). 
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2.2 Contexts in artificial intelligence 
In artificial intelligence, the notion of context is, in general, 
concerned with the representation of information. It is used for 
accounting for two phenomena: the context of validity of 
information [16] and the efficiency of reasoning in narrower 
contexts [1]. 

John McCarthy [17] proposed a formalization of context 
based on context « reification » as well as the « meta-predicate » ist, 
ist(p,c) meaning that assertion p is true in context c. The 
approaches of context in artificial intelligence allow grouping 
knowledge in micro-theories [1] and to reason within those. In this 
framework (that of Cyc), the context is a more precise frame for 
interpreting information. This kind of approach can be used in 
pervasive computing in order to integrate and interpret data 
provided by sensors. Taking advantage of the theory associated 
with the sensor enables reducing the ambiguity of the data it 
delivers. In that view, raw data issued from sensors, are generally 
not weakened but rather enriched (and aggregated with other 
information sources allowing to further precise their interpretation). 
[14] describes the way to express this kind of context within the 
semantic web by providing each triple information on its origin 
(« quad »). The same model is implemented in modern RDF 
managers [2]. 

Although work from McCarthy and Guha consider contexts as 
independent theories related to some particular knowledge field, 
Fausto Giunchiglia instead considers contexts as concurrent 
viewpoints on the same information. He expresses the relations 
between contexts as « mappings » used for importing information 
under some context into another. This approach can be useful in 
pervasive computing when several information sources provide 
comparable information. These works found their way within 
semantic web tools through the C-OWL language [18]. A 
comparison of both approaches is made in [19]. 

2.3 Synthesis 
In summary, pervasive computing tends to consider context as 
what characterizes the situation while artificial intelligence rather 
characterizes the information itself. More notably, Pervasive 
computing very often deals with the particular context of an 
application while artificial intelligence determines the context in 
function of the information source. In pervasive computing, 
information coming from sources is very often weakened in order 
to fit the application needs while artificial intelligence tends to 
enrich it with further information. 

Of course, these approaches are rather complementary than 
competitors. In general, raw data can go through weakening and 
enrichment, thus bridging both approaches. 

In pervasive computing, upgrading the environment is not an 
option: the environment must be designed from scratch in order to 
evolve. Our goal is to contribute to dealing with the dynamic 
evolution of context [7]. For that purpose, we design an 
architecture supporting the introduction of new context elements 
(provided from some new device) and the introduction of new 
applications without interruption of the environment.  

This component-based context management architecture relies 
on a context modelling formalism based on semantic web 
technologies. We demonstrate how they can be used to 
dynamically extend the environment. 

3 A CONTEXT INFORMATION 
MANAGEMENT COMPONENT 

Pervasive Computing applications retrieve context data directly or 
indirectly from sensors, which are grounded in the physical 
environment. We propose an architecture in which applications do 
not need to directly connect to each sensor available and where 
adding a new sensor does not require all applications to be 
recompiled and redeployed.  

3.1 Architecture 
Designing an architecture for hosting context-aware services, 
suggests the development of a context management service for 
providing other services or devices with context information [6, 7, 
11]. We have identified several alternative approaches for 
designing the target architecture. The first approach lets 
applications directly communicate with sensors they have an 
interest in. This approach requires applications to know in advance 
who they need to communicate with to get the information they 
need. Furthermore it adds complexity to the process of information 
aggregation, as this process should then be handled by the 
applications themselves and overloads sensors activity. Finally this 
approach makes it difficult to insert new sensors into the 
environment and thus doesn't comply with our flexibility 
requirement. 

In the framework of service oriented architectures, the second 
approach consists of building a context management service [4] 
whose job is to collect sensors information and forward this 
information to applications that need it. This approach makes it 
possible to gather sensor information in a single place so that 
information could be easily aggregated. For example, a system that 
provides local temperature and atmospheric is very useful in a 
home environment. At a city level, the same information is useful; 
however it doesn't need the same degree of precision. The 
drawback of such a system is that it centralizes the management of 
context information, which is contradictory to the concept of 
context. More specifically, this system provides information about 
the activity environment (a special case of context information), 
however this information is not contextual as it is independent of 
the current task or situation, i.e. that of the client application. 
Moreover, with such a system, the scope of context management 
would be efficient in a limited area only. 

We have adopted a third approach in which each device or 
service embeds a context management component (CMC) for 
maintaining context information for its own use or for the benefit 
of others (Figure 2). The main advantage of this approach is that 
new devices can join online or leave, without having to recompile 
or reinitialize any part of the whole environment.  This component 
provides mechanisms for helping context-aware devices to request 
context information from context sensitive devices. 



 

Figure 2: Each device embeds a context management component (CMC) and a semantic description of its context.

3.2 Interaction 
Applications should be able to query context information they are 
interested in and some services should be able to provide context 
information, such as aggregated context information to other devi-
ces. For this purpose we design a protocol that makes the best of 
available services. We need to be able to identify a service, to 
know what kind of context information it could provide and to 
interact with it to get access to this information. Thus the context 
management component provides a few methods. In our 
description the first element is the query, the second is the response 
type: 
 
Id() -> URI: The identifier of the service; 
Cl(URI) -> URI: The class of the identified service; 
Desc(URI) -> OWL: The description of the information that 
the component can provide; 
Req(RDQL) -> RDF. 
 
The first method allows identifying devices that are available in the 
environment. The identifier can then be used to contact the device. 
Alternatively, it could be used to get a more detailed description of 
the device (e.g., in case the identifier is a URI pointing to a 
network location where a description of the identified object is 
stored). A second method identifies the class (in OWL terminology) 
of the device. In theory, this class should be accessible from the 
network and once its definition is found, it provides a detailed 
description of the device. A third method provides the device 
description (or rather that of context information they provide) in 
an OWL formalism (OWL-S). A fourth method is used to post 
queries to the devices and to get the context information returned. 
 Thus any device is able to: find out, in its environment, 
services that are able to provide information relevant to its own 
context, get features of services that have been found (for example, 
measurement precision), connect to the selected service to get the 
information sought. 
 We need a language to describe the context model of 
heterogeneous devices so that these devices can interact in a 
dynamic environment. 

4 OPENESS, DYNAMICS AND 
HETEROGENITY 

The languages developed for the semantic web, and particularly 
RDF and OWL, are adapted to context representation in pervasive 
computing and particularly to the representation of dynamically 
evolving contexts for two reasons: these languages are open: they 

implement the open world assumption under which it is always 
possible to add more information to a context characterization; and 
they have been designed to work in a networked way.  

4.1 Context model and language 
In this dynamic pervasive computing environment, each CMC 
manages context information of its device. To express its context 
model, its needs or its capabilities, we use semantic web languages. 
They ensure interoperability between these heterogeneous devices. 
 The ground language for the semantic web is RDF (Resource 
Description Framework [8]). It enables expressing assertions of the 
form subject-predicate-object. The strength of RDF is that the 
names of entities (subjects, predicates or objects) are URIs (the 
identifiers of the web that can be seen as a generalization of URLs: 
http://www.w3c.org/sw). This opens the possibility for different 
RDF documents to refer precisely to an entity (it is reasonable to 
assume that a URI denotes the same thing for all of its users). 
 The OWL language [9], has been designed for expressing 
« ontologies » or conceptual models of a domain of knowledge. It 
constrains the interpretation of RDF graphs concerning this domain. 
OWL defines classes of objects and predicates and makes it 
possible to declare constraints applying to them (i.e., that the 
« output » of a « thermometer » is a « temperature »). 
 The context model that we use at that stage is very simple: a 
context is a set of RDF assertions. Interoperability is guaranteed 
through considering that context-aware devices are consumers and 
producers of RDF. However, this is not precise enough and devices 
may want to extract only the relevant information from context 
sources. For that purpose, a language like RDQL [10] is useful for 
querying or subscribing to context sources. In order to post the 
relevant queries to the adequate components, it is necessary that 
components publish the OWL classes of objects and properties on 
which they can answer.  

4.2 Why ontologies? 
If we can add components at any time, they may not be easily 
usable. Indeed, there is no a priori reason that components 
available, new applications and new sensors are compatible. 
Fortunately, knowledge representation techniques, and namely the 
open world assumption, makes it possible to introduce new device 
specifications in the environment by extending the ontology, 
through specifying a new concept or a property. Using ontologies 
to characterize the situations permits new equipment whose 
capabilities have not been known at the beginning to enter and new 
applications to benefit from these possibilities. The applications 
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must be as general as possible describing the information they need 
whereas the context management system must be as precise as 
possible on the information it makes available. This approach 
enables the most specialized applications to take advantage of 
CMCs. The essential point is to have sufficiently generic 
ontologies to cover the various concepts implied in pervasive 
computing applications [12]. 

4.3 Taking advantage of heterogeneous resources 
The context management system we propose makes it possible to 
introduce new devices in the environment by extending the 
ontologies in such a way that existing applications can make the 
best use of them. However, this view holds if all parties share the 
same ontology. 
 Unfortunately this is not always the case and agreeing on 
standard, universal and self contained context ontology is not a 
reasonable assumption. This raises the issue of matching context 
information with applications context information requirements. 
There are three alternative approaches addressing interoperability 
in pervasive computing environments: (i) A priori standardisation 
of ontologies, (ii) setting up mediators among ontologies and (iii) a 
dynamical ontology matching service. These three approaches are 
not incompatible and might even be jointly used. For example 
parties could agree on sharing common high level ontologies. 
Letting more specific level ontology evolve freely and 
independently is a strategy enabling a close account for a fast 
evolving domain. 

As ontologies, matching services should be available for 
applications and context managers through network access. They 
provide an interface that allows the explicit handling of ontologies 
alignments developed in the framework of the semantic web [20]. 
We propose to set up one (or more) ontology matching service(s) 
(Figure 3). The goal of such services is to help agents (context 
managers in our case) to find a matching between different 
ontologies. These services provide mechanisms for finding out 
ontologies close to a given ontology, archiving (and retrieving) 
past alignments, dynamically computing matching between two 
ontologies and translating queries and responses to queries between 
context managers that use different ontologies [13]. 

 
 
 

5 RELATED WORKS 
In pervasive computing, it is largely recognized that handling 
context information is essential. As we presented, there are many 
different management systems for context information. The one 
which is the nearest to what we presented here is the work on  
contextors [11]. It proposes a library of elements able to provide 
context information: it makes it possible to combine contextual 
information on a distributed mode. On the other hand, this system 
does not establish how to dynamically add devices without 
stopping the system or other devices.  Regarding to the use of the 
semantic Web technologies to represent context, there are several 
proposals to extend the languages of the semantic Web in order to 
contextualize the assertions [14, 19, 2]. With regard to the use of 
OWL to represent the context information, [12] introduces a high 
level ontology of contextual information for pervasive computing.  

6 CONCLUSION AND PERSPECTIVES 
We specifically addressed the problem of adaptability of context 
management to an ever-evolving world. This is achieved by 
providing a distributed component-based architecture and by using 
semantic web technologies. Components enable the addition, at 
any moment, of new devices that can provide information about the 
context of applications. The use of RDF and OWL ensures 
interoperability between components developed independently by 
taking advantage of the open character of these technologies. 
Moreover, using ontology alignment modules allows dealing with 
the necessary heterogeneity between components. The proposed 
approach relies on a minimal commitment on basic technologies: 
RDF, OWL, and some identification protocol. 
 We are currently developing a demonstrator of this 
technology. It consists of a toolkit for developers of pervasive 
applications which help them deploy a distributed context 
management system. This toolkit provides a component for 
managing (searching, broadcasting and updating) context 
information. 
 
 

 

Figure 3: For finding correspondence between its model and the model of the context information provider, the window service asks to an alignment service 
to translate his model to another device model. 
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