
Classification-based Situational Reasoning
for Task-oriented Mobile Service Recommendation

Marko Luther1, Yusuke Fukazawa2, Bertrand Souville1, Kunihiro Fujii2
Takefumi Naganuma2, Matthias Wagner1, Shoji Kurakake2

Abstract. We study the case of integrating situational reasoning
into a mobile service recommendation system. Since mobile Inter-
net services are rapidly proliferating, finding and using appropriate
services requires profound service descriptions. As a consequence,
for average mobile users it is nowadays virtually impossible to find
the most appropriate service among the many offered. To overcome
these difficulties, task navigation systems have been proposed to
guide users towards best-fitting services. Our goal is to improve the
user experience of such task navigation systems by adding context-
awareness (i.e., to optimize service navigation by taking the user’s
situation into account). In this paper we propose the integration of
a situational reasoning engine that applies classification-based infer-
ence to context elements, gathered from multiple sources and rep-
resented using ontologies. The extended task navigator enables the
delivery of situation-aware recommendations in a proactive way. Ini-
tial experiments with the extended system indicate a considerable
improvement of the navigator’s usability.

1 Introduction

Within the growing market for mobile Internet, NTT DoCoMo is to-
day providing services to over 50 million mobile phone subscribers
in Japan. The majority of these users enjoy widely diverse contents
such as entertainment services (ring-tone downloads, games, etc.),
transaction services (money transfer, airline reservation, etc.) and in-
formation services (weather forecast, maps and local information,
etc.) through DoCoMo’s high-speed 3G mobile network. Already to-
day, the number of commercial i-mode sites – DoCoMo’s brand of
mobile Internet services – ranges in the region of many tenth of thou-
sand. With 4G networks at the horizon that promise still substantially
higher bandwidth for data transmissions, the market for services with
rich content is expected to expand further.

Key to support such growth is the availability of intelligent service
platforms that mediate between services and users by observing the
users’ activity. These platforms have to assist the user in selecting
the most appropriate service from the fast growing service pool to
support their real world activities, anytime and anywhere.

Our previously developed task-based service retrieval system for
the non-expert mobile user makes it easy to retrieve appropriate ser-
vices for tackling the users challenges in managing his or her every-
day life [25]. The term task refers here to “what the user wants to
do” as an expression of the users current activity. Furthermore, the

1 DoCoMo Euro-Labs, Landsbergerstr. 312, 80687 Munich, Germany
{luther,souville,wagner}@docomolab-euro.com

2 NTT DoCoMo Inc., 3-5 Hikari-no-oka, Yokusuka, Kanagawa, 239-8536 Japan
{y-fukazawa,naganuma,kurakake}@netlab.nttdocomo.co.jp

system features a task knowledge base, which contains semantic de-
scriptions of potential activities and links to corresponding services
that may be helpful. Although this system enables effective service
retrieval, it behaves passive in requiring a users initial input to trigger
the problem solving process.

In this paper we propose a proactive extension of our basic system
that suggests tasks and services actively, without the need for initial
user input. This is achieved by the integration of a situation engine
and a situation-based task filter, meant to expose only those tasks that
are relevant for a user in a given situation. Taking the user’s situation
into account avoids the necessity of an initial task query. This leads
to a considerable improvement of the navigator’s usability, especially
for non-expert users who are often not willing to input queries.

The abstract characterization of a user’s situation is computed by
inference mechanisms on several pieces of context information gath-
ered from multiple context sources [20]. We formulate high-level
qualitative context elements in the Web Ontology Language (OWL)
[22] and concrete situations as instances within the assertional com-
ponent (Abox) of a situation ontology. To profit from sound, com-
plete and high-performance classifiers such as FaCT++ [31], Pel-
let [30] and Racer [12], we restrict ourselves to the OWL DL frag-
ment of OWL. To separate concerns we assume that probabilistic as-
pects of context representation and reasoning are dealt with at lower
representation levels applying bayesian networks or fuzzy logics.

The rest of this paper is organized as follows. After discussing re-
lated work in the field of ontology-based context reasoning in the
next section, we introduce our task-based service navigator appli-
cation together with some usage scenarios in Section 3. The overall
system architecture that underlies the application is presented in Sec-
tion 4 and the details on our approach to context representation and
classification-based reasoning are given in Section 5. In the closing
section we report on our experiences gained from this development.

2 Related Work
Several projects consider the use of ontologies as a key requirement
for building context-aware applications. Closely related to our ap-
proach is the work done in the CALI project [16] as it explores the
use of Description Logics (DL) [1] and the associated inferencing. To
overcome the limitations of pure DL-based reasoning, a hybrid ap-
proach is proposed. However, our earlier experiments [24] indicate
that the suggested loose coupling of a DL reasoner with an external
generic rule engine leads to serve performance problems. To achieve
completeness both reasoners have to be applied successively until no
new facts have been derived. Furthermore, it remains unclear how
consistency can be guaranteed taking both the knowledge base and
the rule base into account.

Figure 1. Situation-aware Service Recommender

Other approaches such as CONON [32] and SOUPA/CoBra [4]
solely rely on rule-based reasoning which cannot be complete for
OWL (not even for OWL Lite [5]) and easily leads to undecidability,
as generic rules can be used to simulate role value maps [11].

CONON is an OWL DL encoded upper-context ontology for per-
vasive computing applications defining almost 200 concepts. Rule-
reasoning is used to derive high-level context information and to
check its consistency. To cope with the observed delay of several
seconds caused by the reasoning process, complex reasoning tasks
are computed offline. However, this approach is not feasible in our
dynamic setup.

SOUPA, another OWL DL ontology designed for ubiquitous ap-
plications, is about the same size as the CONON ontology. Its ex-
tension CoBra-Ont is used by a context broker architecture to real-
ize a scenario where people on a university campus come together
for a meeting. To limit the reasoning overhead caused by importing
standard ontologies, single concepts are mapped to foreign ontology
terms. Still, the SOUPA ontology is of a rather high-complexity cor-
responding SHOIF(D), because it contains nominals.

An interesting approach to speed up the rule-based inferencing
on complex ontologies is to determine relevant contexts required to
answer queries using the query-tree method [17]. It remains to be
seen how this method extends to our classification-based approach.

3 Situation-aware Service Recommendation

We build on a task-oriented service navigation system [25] that sup-
ports the user in finding appropriate services by querying a rich
task ontology that represents common sense knowledge about typ-
ical complex tasks.

The usage of this basic task navigator is as follows. After having
specified a task-oriented query such as “go to theme park” a list of
tasks that match this query is sent to the mobile device. Now the
user can select the most appropriate task and a corresponding de-
tailed task-model is displayed accordingly. In a final step, associated
services can be invoked by establishing an Internet connection to the
actual i-mode services.

Figure 1 shows the user interface of the situation-aware variant
of the basic service recommender. To explain its functionality, let us
assume the following situation.

Situation 1: Important Business Meeting at Tokyo Station
Two travellers, Dawson Campbell and his boss Fiona Davidson,
arrive on a Friday morning at the Tokyo main station. Gordon
Green, a project partner, is already waiting for them at the plat-
form. The group is looking for a quick transfer to the airport.

Felica Reader-Writer is installed near the gate at Tokyo
station (like the mobile Suica system that is currently
deployed by Sony and NTT DoCoMo for JR East[4]) and
that it delivers location information to the mobile phone
via its Felica tag whenever the user puts it close to the
Reader-Writer device as shown in Fig. 2(b).

The scenario of our demonstration is as follows.
Dawson Campbell, the main character, and his colleague
Fiona Davidson are at Tokyo station one afternoon taking
the train to another facility of their company located
outside the city. At first, Dawson Campbell passes the
gate at Tokyo station as shown in Fig. 2(b). The task-list
associated with the location concept “Station” appears on
Dawson's cell phone and includes the entries "Prepare to
ride a train", "Buy souvenirs", "Meet someone at the
station" etc. as shown in Fig. 2(c). While displaying the
task-list, Dawson's phone connects to the situational
reasoning engine and updates Dawson's location to
“Tokyo station“. No task-list is shown on Fiona's cell
phone at this moment.

Few seconds later, Fiona Davidson passes the same gate
at Tokyo station (Fig. 2(d)). Fiona's phone connects to the
situation reasoning server and uploads Fiona's new
location ("Tokyo station"). In turn, the situation reasoner
infers that Dawson Campbell and Fiona Davidson are
both located at Tokyo station, traveling together. The
situation reasoning engine refers to the situation ontology,
and then finds that the relation between Dawson
Campbell and Fiona Davidson is colleague. Dawson's
situation is reasoned based on time ("afternoon"), place
("station") and relation ("colleague"). In this case, the
reasoned situation becomes BUSINESS and this
judgment is then passed to both Dawson's and Fiona's cell
phone and service navigation server. Both Dawson and
Fiona's cell phone shows the reasoned results as shown in
Fig.2(e). Service Navigation server acquires the task-list
that is determined from both reasoned situation
("Business") and the place ("station"), and then sends the
acquired task-list to both Dawson's and Fiona's cell phone
(Fig.2(f)).

The second demo scenario is as follows. Dawson
Campbell and his father in law Mark Buchanan are at
Tokyo station during an afternoon to go somewhere by
train. In this case, the inferred situation is "Private", and
corresponding task-lists appear on both Dawson's and
Mark's cell phone.

The key point of these scenarios is that the delivered
task-lists are tailored to the different user situations,
"Business" or "Private", even if both place and time are
the same, station in this case.

Demo requirements: LAN access point, either wireless
or wired LAN is OK.

References

[1] T. Naganuma and S. Kurakake: Task Knowledge Based

Retrieval for Service Relevant to Mobile User's Activity, In

Proc. of the 4th Int. Semantic Web Conference (ISWC’05),

Y.Gil et al. (Eds.), LNCS 3729, pp.959-973, 2005.

[2] M. Luther et al.: Situational reasoning – a practical OWL use

case. In Proc. of the 7th Int. Symposium on Autonomous

Decentralized Systems (ISADS'05), 2005.

[3] http://www.nttdocomo.co.jp/english/p_s/i/felica/index.html

[4] http://www.jreast.co.jp/suica/

(d) Fiona passing the gate

(e) Both phones displaying the inferred situation BUSINESS

(f) Both phones displaying the task-list associated with the

situation BUSINESS

-

(a) Gat at Tokyo station (b) Dawson passing the gate

(c) Dawson's phone displaying the task-list suited for station

Fig.2 Demo Sequence

Figure 2. Felica Device

To detect the user’s location we further assume that the cell phones
of Dawson, Fiona and Gordon are equipped with Felica3 contact-less
RFID tags, enabling a two-way communication with Sonys Felica
Reader-Writer devices. Whenever a user puts his phone close to a
Felica Reader-Writer device (e.g., to make a mobile payment at a
train gate) the recommender application retrieves the corresponding
location information as a semantic description of this place (cf. Fig-
ure 2). Since Sony and NTT DoCoMo just started to deploy their
mobile Suica4 system for JR East at all stations in the Tokyo region,
this assumption is not a fiction but reality.

After having passed the gate at Tokyo station, Dawson’s phone dis-
plays a basic list of tasks, associated with the concept Station. This
list may include entries such as “Prepare to ride a train”, “Buy sou-
venirs”, “Meet someone” etc. While displaying this task-list, Daw-
son’s phone connects to the situational reasoning engine and updates
his location to Tokyo station.

Before having passed the gate, no tasks are shown on Fiona’s
phone. Once her location has been detected, a connection to the rea-
soning engine is established and her current location is updated.

As a result, the situation reasoner infers that Dawson Campbell
and Fiona Davidson are travelling together, based on their proximity
at the station. In addition, a lookup in the knowledge base reveals
that Dawson and Fiona are colleagues and that the scene takes place
at a weekdays afternoon.

Because Dawson is located at a public place during office hours
together with colleagues, his situation is classified as a business sit-
uation. His phone shows the inferred situation together with a cor-
responding list of filtered tasks (shown on the left part of Figure 1).
To further specify his needs, Dawson may select one of the recom-
mended tasks (“go to destination” in this case) and finally invoke an
associated service (as shown on the right part of Figure 1).

Let us assume another situation taking place at the same location.

Situation 2: Private Meeting at Tokyo Station
Dawson Campbell arrives on a Saturday around noon at the Tokyo
main station where Mark Buchanan, his father in law, is awaiting
him. They plan to shop for a birthday present for Dawson’s wife.

This situation is classified as private family meeting, because it takes
place during leisure hours and only relatives are in the proximity.
In this case, the situation-aware recommender application suggests
tasks that are related to private activities such as “go to movie the-
ater”, “go shopping”, etc.

The key statement of these scenarios is that task-lists are actually
tailored to different situations of the user, even if some context con-
ditions are the same (location in this case). In this respect, our system
facilitates users to access the mobile services that fit best to their cur-
rent situation, purely based on qualitative context information.

3 <http://www.nttdocomo.co.jp/english/p s/i/felica>
4 <http://www.jreast.co.jp/suica/>

2

Admin
Rectangle

�

Context Management

 Context
Reasoner

 Context
Enrichment

 Situation-based
Task Filter

Situation

Ontology

Task

Ontology

 Sensor Data

Task List

Situation

Context
- location (address, place)
- attendee

 classify

 classification
result

 Qualitative
Time

 Social
Relationships

 Environmental
Data

 "colleague"
 "raining"

"night" "afternoon"

Situation Engine Task Navigator

Figure 3. Architecture

4 Architecture

Figure 3 depicts the overall system architecture. The implementation
contains two main parts, the situation engine and the task navigator.

The situation engine receives context information that has been
collected by the task navigator on the mobile device. Furthermore,
this information is enriched by context artifacts, such as environ-
mental data, social relations between companions and a qualitative
representation of time, all gathered form a distributed network of
context providers. Thereupon, an axiomatized situation instance is
constructed and sent to the inference engine. According to the world
knowledge encoded in the situation ontology, this instance is clas-
sified and the inferred situation is propagated back to the task nav-
igator. A subcomponent of the task navigator, the task filter, detects
the most appropriate task nodes within the task ontology by match-
ing the derived situation with the task-specific categories. Finally,
a representation of the resulting task list is constructed by the task
navigator and presented to the user on his mobile device for further
navigation and service selections.

The task ontology stores descriptions for abstract as well as con-
crete tasks and their interrelations as semantic descriptions. Large
and abstract tasks are thereby described by sequences of smaller sub-
tasks. In addition, abstract tasks are annotated with enabling context
conditions and concrete tasks are linked to appropriate information
services via Uniform Resource Identifiers. The task structures are
defined in terms of the process model of the OWL-S ontology [21].
Each task node is represented as a service class and categorized ac-
cording to the high-level context concepts such as Business meeting,
defined within the situation ontology. The context conditions describ-
ing the applicability of a task node are thereby encoded as corre-
sponding OWL-S service profiles. More details about our task ontol-
ogy can be found elsewhere [26].

5 Context Representation and Classification

We adopted the IST MobiLife5 Context Management Framework [7]
to achieve interoperability between context sources from diverse do-
mains by defining an XML-based context meta model. The elements
of this meta model are linked to ontologies that define the basic con-
textual categories, used to represent qualitative aspects of context in-
formation.

5 http:\\www.ist-mobilife.org

We refer to an ontology as a logical theory accounting for the in-
tended meaning of a formal vocabulary, i.e. its ontological commit-
ment to a particular conceptualization. Therefore, the decidability of
the selected ontology language is crucial. The OWL DL fragment of
the OWL fulfills this requirement, is highly expressive and has the
potential to become the standard ontology language for the Seman-
tic Web. Its selection as the ontology language of choice resulted in
the construction of high-quality ontologies (i.e., ontologies that are
proven consistent by fully automatic inference engines that are avail-
able for OWL DL). It is important to note that we do not propose
the ontologies described hereafter as the main representation format
for all aspects of context modeling, as ontologies are limited to the
formulation of qualitative aspects and the available inference engines
are generally weak in handing large amounts of data efficiently.

The context ontologies are composed of eight interrelated compo-
nents defining more than 300 concepts, 200 properties and 300 indi-
viduals. They provide a general vocabulary for temporal and spatial
concepts, agents as well as devices. Being informed by the vCard
standard, the iCalendar representation and the FOAF (Friend-of-a-
friend) format, an extension for the precise modeling of complex so-
cial relations has been developed. All component ontologies are inte-
grated by a situation ontology that defines a top-level concept named
Situation (cf. Figure 4). This concept is refined by concepts such as
Private and Business by referring to concepts and relations defined
in the component ontologies.

We exemplarily sketch the OWL definitions of two typical situa-
tions using standard DL syntax [1]. A person’s situation is classified
as Business, if he is either located at a business place (such as an
office) or at a public place (e.g., a train station) during office hours.

Business := Situation u (∃ location . Business place t
(∃ location . Public place u ∃ time . Office hour))

A person is participating a family meeting if he or she is in a private
meeting situation where all participants are relatives.

Family meeting := Situation u (∀ company . Relative)

Situational reasoning is realized using a DL reasoning engine that
classifies concrete individual situations w.r.t. the ontology. Let us
consider the Situation 1 introduced in Section 3. First, each piece
of context information such as the location (Tokyo station), the time
(Sunday morning), and all companions (Dawson’s boss Fiona and
his project partner Gordon) are represented in terms of vocabulary
formalized by the context ontologies. This requires the mapping of
sensed quantitative data to qualitative representations (e.g. a time-
stamp is mapped to an individual in the Abox representing a Fri-
day morning). The qualitative representations are enriched by the
world-knowledge formalized in the component ontologies and are
combined to an Abox individual in the situation ontology.

Computed by the reasoning engine, the direct concept type for the
situation instance according to Scenario 1 is Important meeting. In
this case, the location of the scene is a public place (as tokyo station
is an instance of the concept Station, which in turn is a subconcept of
Public place) during office hours (as the individual friday morning
is classified as Office hours) and the main actor Dawson is accompa-
nied by his supervisor and a business partner. Similarly, the situation
instance constructed for Scenario 2 is classified as Family meeting
as it takes place at a public location during leisure time and only
relatives are detected in the proximity of Dawson.

3

Admin
Rectangle

Private_meeting

Meeting

Family_meeting

Important_meetingBusiness_meeting

Private

Business

Situation

Business_place ⊔
(Public_place ⊓ Office_hour)

Private_place ⊔
(Public_place ⊓ Leisure_time)

company ≥ 1

Business ⊓ Meeting ⊓
∃ company (Colleague ⊔ Business_partner)

Business_meeting ⊓
∃ company Supervisor

Private ⊓ Meeting ⊓
∃ company (Relative ⊔ Friend)

Private_meeting ⊓
∀ company Relative

Figure 4. Situation Ontology Fragment

The situational reasoning process described above is supported by
deductions in all component ontologies. For example, the agent on-
tology specifies in detail the semantics of social relations between
people. Based on the knowledge encoded within the ontology, it can
be inferred that two persons (like Dawson and Fiona) are colleagues,
taking into account the transitivity of this relationship in case they
have a common colleague. Similarly, even if no direct relation be-
tween Dawson and Mark is specified it can be inferred that Mark is
Dawson’s father in law (defined to be the father of the spouse of a
person), because Dawson’s wife Madeleine is known to be the child
of Mark. In this case, the subproperty and inverse property specifica-
tions within the agent ontology enable this logical inference: wife is
defined as a subproperty of spouse and father is the inverse of child.

6 Discussion

We integrated a situational reasoning engine into a real-world mo-
bile service application. Our classification-based approach relies on
ontology technology for the representation and reasoning on context
information. As the scalable management of data is not a core fea-
ture of pure ontology-based context management and typical context
models are usually rather large, we restricted its scope to high-level
qualitative context elements. Lower-level context information is rep-
resented according to an XML-based meta model and managed sepa-
rately. The arising reasoning problems are answered by a Description
Logic (DL) [1] inference engine that provides complete reasoning
support for the decidable fragment of OWL.

The use of the standard representation language OWL and the
standardized reasoner interface DIG [2] (a stateless HTTP-based pro-
tocol with XML syntax) enabled us to directly compare the influence
of different context ontologies and reasoners on the overall system
performance. We observed that the inference technology as imple-
mented in modern DL reasoners made significant progress during
the last years. Novel optimization techniques enabled a tremendous
increase in performance, and also the coverage was greatly extended.
By now most systems can be accessed via DIG, and support nomi-
nals as well as Abox reasoning directly. FaCT++ and Pellet support
SHOIQ(D) (OWL DL extended by qualified cardinality restric-
tions) and RacerPro supports SHIQ including approximated nomi-
nals and reasoning with concrete domains.

Nevertheless we observed several limitations in the available tech-
nology (see [18] for details). The import mechanism of OWL, which
brings all triples into the importing ontology, has a limited use for the
sharing and reuse of ontologies. An appropriate mechanism on the

syntactic as well as the semantic level is necessary for referencing
entities in another ontology without inheriting all of its complexity.
Furthermore, our modeling of context ontologies would benefit from
additional constructs such as qualified cardinality restrictions and a
richer object property structure that would allow the specification
of reflexive, irreflexive, symmetric and anti-symmetric properties as
well as property chains and disjoint property axioms. Reasoning sup-
port for the DL-safe fragment [23] of SWRL [14] and for concrete
domains on user defined datatypes would allow us to further enhance
the quality of our situation engine. While concrete domain reasoning
and support for SWRL is already available in some inference en-
gines, and most of the requested additional language constructs are
part of the OWL 1.1 draft6 created by the ad-hoc OWL community,
an improved import mechanisms as given by the E-connection mech-
anism [10] and implemented in Pellet is not included.

At first, we experimented with the DIG interface to realize the
communication between our application and the inference engine.
However, DIG 1.1 does not support the removal of specific axioms
making it necessary to re-submit the complete ontology for each re-
quest to our situation engine. This is especially awkward for our ap-
plication where only a very small part of the assertional knowledge
changes between two requests. As active members of the informal
DIG 2.0 working group7 we therefore propose a modular extension
to the interface that supports incremental reasoning and retraction.
Unfortunately, current reasoner typically only provide some kind of
batch-oriented reasoning procedure. A notable exception is Racer
which offers low-level retraction support for most of its statements.
Still, because of the lack of algorithms for appropriately handling in-
cremental additions as well as retractions, Racer initiates a complete
reclassification after each change in the ontology. Initial empirical re-
sults, performed with an experimental version of Pellet, indicate that
incremental classification algorithms for SHOIN (D) can be quite
effective [28].

The ability to handle simultaneous requests is one of the key re-
quirements in our dynamic mobile setting. However, current infer-
ence engines do not implement any transaction management. Only
for Racer, support for dispatching, load balancing and caching of
OWL-QL [6] queries is available via the RacerManager [8]. As
OWL-QL does not support modifications of an ontology, we had to
implement our own transaction management system that enables the
sharing of reasoning resources between requests, but avoids the ne-
cessity to maintain a separate knowledge base for each user.
6 〈http://www-db.research.bell-labs.com/user/pfps/owl〉
7 〈http://homepages.cs.manchester.ac.uk/∼seanb/dig〉

4

Admin
Rectangle

It has been observed before [17][32] that the delay caused by
ontology-based inferencing easily becomes a major obstacle for re-
alistic applications. This is especially problematic for ontologies that
constantly change, because well-established optimization techniques
such as tabling (used in various rule-based inference engine) cannot
be applied. As a consequence of the high worst-case complexity of
expressive DLs, such as SHOIN (D) underlying OWL DL, mod-
ern DL reasoners implement a suite of optimization techniques to
achieve acceptable performance. The efficiency of implementations
on concrete cases depends therefore on the applicability of optimiza-
tions, which varies with the language features in use. For example,
the use of domain and range restrictions can lead to cycles in a Tbox
for which termination of the tableaux algorithm can only be ensured
by blocking. However, known blocking strategies for SHOIN are
less effective if inverse roles are involved. On the other hand, if nom-
inals do not occur in an ontology blocking can be realized more effi-
ciently [13]. Therefore we avoid the use of standard ontologies, such
as the SHOIF(D) entry sub-ontology of time [27]. It has to be seen
how the recently suggested techniques for optimizing DL reasoning
in the presence of nominals [29] perform in practice.

We optimized our initial ontologies by removing nominals and
most of the domain and range restrictions. Furthermore, we reduced
the number of loaded axioms and objects (especially Abox individ-
uals) and axioms by splitting the ontology in small components and
by separating ontologies in A- and Tboxes to cope with the limits of
the OWL import statement. This step resulted in a performance gain
of up to 1,5 seconds per request. Furthermore, we compared differ-
ent retraction strategies using Racer. The simplest form of retraction
is reloading of ontologies and can be accelerated by either loading
from a pre-classified image or by cloning an ontology in memory.
For small Aboxes cloning outperformed true retraction realized with
forgot statements. However, the strategy performed best was to keep
situation individuals up to a certain number (about 20 in our case) in
the Abox before cloning a fresh pre-loaded Abox. Of course, keep-
ing individuals and axioms in the Abox is only possible if they do
not influence later classifications.

The time to compute our comparable simple reasoning problems
is dominated by the communication overhead caused by the reasoner
interface. Accessing Racer via its native API using TCP is about 1,5
times faster then the access via HTTP/DIG and even 2 times faster
then the access realized with the triple-oriented framework Jena2 [3].
Naturally, we achieved the best performance by using the Pellet rea-
soner running in the same Java virtual machine and this way com-
pletely avoiding any external communication.

Because existing performance results of DL reasoners are often
limited to static Tbox classification, we plan to perform a detailed
analyze of the influence of different retraction strategies for dynamic
assertional reasoning, to compare the performance of interfaces and
to test the effect of the ontology size and complexity on realistic rea-
soning tasks. By that we hope to gain inside on how to further opti-
mize our situation engine.

Our current prototype has only a limited support for automatic
context acquisition. We plan to advance the prototype towards the
use of more actual context information from the real world. Planed
extensions will combine GPS-based location information with the
RFID-based context tags we use currently for location tracking, as
well as or short distance wireless communication technologies such
as Bluetooth to detect people in proximity [19].

REFERENCES
[1] F. Baader et al., The Description Logic Handbook, Cambridge Univer-

sity Press, Cambridge, January 2003.
[2] S. Bechhofer, R. Möller, and P. Crowther, ‘The DIG Description Logic

Interface’, in Proc. of the Int. Workshop on Description Logics, (2003).
[3] J. Carrol et al., ‘Jena: Implementing the Semantic Web recommenda-

tions’, Technical Report HPL-2004-146, HP Labs, (2004).
[4] H. Chen, T. Finin, and A. Joshi, ‘The SOUPA ontology for pervasive

computing’, in Ontologies for Agents, eds., V. Tamma, S. Cranefield,
and T. Finin, Springer, (July 2005).

[5] K. de Bruin and D. Fensel, ‘Owl-’, WSML Deliverable D20.1, (2005).
[6] R. Fikes et al., ‘OWL-QL’, Journal of Web Semantics, (2005).
[7] P. Floréen, M. Przybilski, P. Nurmi, J. Koolwaaij, A. Tarlano, M. Wag-

ner, and M. Luther et al., ‘Towards a context management framework
for MobiLife’, in Proc. of the IST Summit, (June 2005).

[8] J. Galinski et al., ‘Development of a server to support the formal Se-
mantic Web query language OWL-QL’, In Horrocks et al. [15].

[9] Y. Gil, E. Motta, R. Benjamins, and M. Musen, eds. Proc. of the 4th
Int. Semantic Web Conference, volume 3729 of LNCS. Springer, 2005.

[10] B. Grau, B. Parsia, and E. Sirin, ‘Combining OWL ontologies using
E-connections’, Journal of Web Semantics, 4(1), (2005).

[11] B. Grosof, I. Horrocks, R. Volz, and S. Decker, ‘Combining logic pro-
grams with Description Logic’, in Proc. of the Int. WWW Conf., (2003).

[12] V. Haarslev and R. Möller, ‘Racer: A core inference engine for the Se-
mantic Web Ontology Language (OWL)’, in Proc. of the 2nd Int. Work-
shop on Evaluation of Ontology-based Tools, pp. 27–36, (2003).

[13] V. Haarslev, R. Möller, and M. Wessel, ‘Description Logic inference
technology: Lessions learned in the trenches’, In Horrocks et al. [15].

[14] I. Horrocks and P Patel-Schneider, ‘A proposal for an OWL rules lan-
guage’, in Proc. of the Int. WWW Conf., pp. 723–731. ACM, (2004).

[15] I. Horrocks et al., ed. Int. Workshop on Description Logics, July 2005.
[16] D. Khushraj and O. Lassila, ‘CALI: context awareness via logical in-

ference’, in Proc. of the Workshop on Semantic Web Technology for
Mobile and Ubiquitous Applications, (November 2004).

[17] J. Lee, I. Park, and S. Hyun, ‘Application-oriented context pre-fetch
method for improving inference performance in ontology-based context
management’, in Workshop on Contexts and Ontologies, (2005).

[18] Th. Liebig, M. Luther, O. Noppens, M. Paolucci, M. Wagner, and F..
von Henke, ‘Building applications and tools for OWL’, in Proc. of the
OWL Experiences and Directions WS, (November 2005).

[19] M. Luther, S. Böhm, M. Wagner, and J. Koolwaaij, ‘Enhanced presence
tracking for mobile applications’, In Gil et al. [9].

[20] M. Luther, B. Mrohs, M. Wagner, S. Steglich, and W. Kellerer, ‘Situ-
ational reasoning – a practical OWL use case’, in Proc. of the 7th Int.
Symp. on Autonomous Decentralized Systems, (April 2005).

[21] D. Martin et al., ‘OWL-S: Semantic Markup for Web Services’, W3C
Member Submission, The OWL Serivces Coalition, (November 2004).

[22] D. McGuinness and F. van Harmelen, ‘OWL Web Ontology Language
overview’, W3C Recommendation, (February 2004).

[23] B. Motik, U. Sattler, and R. Struder, ‘Query answering for OWL-DL
with rules’, in Proc. of the Int. Semantic Web Conf., (2004).

[24] B. Mrohs, M. Luther, R. Vaidya, and M. Wagner et al., ‘OWL-SF – a
distributed semantic service framework’, in Proc. of the Workshop on
Context Awareness for Proactive Systems, pp. 67–77, (June 2005).

[25] T. Naganuma and S. Kurakake, ‘Task knowledge based retrieval for
service relevant to mobile user activity’, In Gil et al. [9], pp. 959–973.

[26] T. Naganuma and M. Luther et al., ‘Task-oriented mobile service rec-
ommendation enhanced by a situational reasoning engine’, in Proc. of
the 1st Asian Semantic Web Conference (ASWC’06), (2006). To Appear.

[27] F. Pan and J. Hobbs, ‘Time in OWL-S’, in Proceedings of the AAAI
Spring Symposium on Semantic Web Services, (2004).

[28] B. Parsia et al., ‘Towards incremental reasoning through updates in
OWL-DL’, in Reasoning on the Web WS, (2006). To Appear.

[29] E. Sirin, B. C. Grau, and B. Parsia, ‘From wine to water: Optimizing
Description Logic reasoning for nominals’, in Int. Conf. on the Princi-
ples of Knowledge Representation and Reasoning, (2006). To Appear.

[30] E. Sirin and B. Parsia, ‘Pellet: An OWL DL reasoner’, in Proc. of the
Int. Workshop on Description Logics, pp. 212–213, (2004).

[31] D. Tsarkov and I. Horrocks, ‘Ordering heuristics for Description Logic
reasoning’, in Proc. of the 19th Int. Conf. on AI (IJCAI’05), (2005).

[32] X. Wang, Q. Zhang, T. Gu, and H. K. Pung, ‘Ontology-based context
modeling and reasoning using OWL’, in Proc. of the Workshop on Con-
text Modeling and Reasoning (PerCom’04), pp. 18–22, (March 2004).

5

Admin
Rectangle

