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Abstract. In this paper, 3D shape retrieval methodology suited for
search in special category of 3D shape is presented. The proposed
approach employs a fully unsupervised segmentation algorithm to
decompose 3D models into components. Shape distribution vectors
describing the resulting components are extracted and together with
connectivity relations identify a 3D model. The 3D-shapes we are in-
terested in this paper are models of furniture. Ontology of furniture
that we started building will be used in annotation and then key word
based retrieval of furniture models. A mapping between low level
features extracted by the above mentioned algorithm and ontology
concepts is performed. The proposed approach bridges the gap be-
tween keyword-based approaches and query-by-example approaches
by using not only the low-level features but also a domain ontology.

1 INTRODUCTION

Shape description and retrieval problem arose with the growth of
available information in Internet and development of technologies
allowing easy creation of 3D models. However modern search en-
gines allow only textual search of information in Internet. This ap-
proach is not effective for graphical objects [13]. Special structures
describing geometrical and/or topological characteristics were sug-
gested to substitute verbal description of a shape. The authors of
[15] group shape descriptors into three large groups: feature based
methods, graph based methods and other methods which can be as
well compositions of the former two approaches. We refer interested
reader to [14], [11], [17], [8], [3]. In our work we use the shape de-
scriptor proposed in [14]. The descriptor is a vector of the distribution
of the function defined over the shape. As the authors of [14] exam-
ined D2 function of the distance between two random points of the
shape gives the best results. The shape distribution based descriptor
can be used for categorizing 3D models into wide classes, because it
is able to detect major differences between shapes, but cannot capture
detailed features.

Although geometry and topology based descriptors have improved
content based 3D shape retrieval, they still deal with low-level fea-
tures and this leads to a big gap between low-level and high-level
features. Moreover, geometrical-based matching does not consider
the semantics of the object to be retrieved [12].

The research in the field of knowledge structuring suggests to use
ontology for describing knowledge of a chosen domain. [5]. The
author of [7] defines ontology as a specification of a representa-
tional vocabulary for a shared domain of discourse which may in-
clude definitions of classes, relations, functions and other objects.
Therefore, if we know the domain in which the 3D shapes are con-
structed, the ontology of the domain can be built. Then mapping be-
tween low level features and ontology concepts is performed. Finally,
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3D shapes are annotated and become well-defined structure under
human-perspective.

2 PROPOSED METHODOLOGY
2.1 Problem of shape similarity and appropriate

assumptions
Content retrieval is a difficult task which is affected by the prob-
lem of ambiguity of words and shapes. It can be explained by va-
riety of words, images and 3D models which have equal or similar
spelling, shape but different meaning in different domains. This task
became even more complicated while dealing with 3D models. The
file containing a 3D model often lacks any description, its name can
be ambiguous, misleading or not carrying any useful information. As
a result descriptors containing geometrical and/or topological infor-
mation are defined to be used in shape retrieval. The research in this
field has proved that searching 3D graphical objects using words has
worse results than while using shape descriptors [13]. However shape
descriptors do not solve the problem of shape ambiguity. According
to the domain where a model is used, it can have different semantic
meaning, e.g. the model with the shape of human hand can be con-
sidered as a part of human body in the domain of human models or as
a glove in the domain of clothing models. To solve similar problems
existing in natural language (like words with different meanings) the
current research suggests to build ontologies of different domains
and interpret a word within the chosen domain. In order to transfer
this approach to the field of shape retrieval we build ontology for
3D models, assuming that a model can be completely described by
connectivity relations between its constituents and their shape. Re-
stricting our models’ domain to the one of furniture, we explain how
we build the ontology of furniture, how we extract feature vectors
from shapes, and using the latter, how we annotate the model and
retrieve 3D objects within the same category.

According to the chosen furniture domain we can assume that
models are created using Constructive Solid Geometry (CSG) ap-
proach. Thus the furniture models are assemblies of meaningful
atoms that are similar to geometric primitives. To prove that this
assumption does not constrict too much the number of 3D models
which can be used in the proposed approach we performed a search
of 3D furniture models in Internet. We downloaded 98 furniture mod-
els from Princeton Shape Benchmark [2] and Free Stuff of 3D Cafe
[1]. After analysis we found that 63% of furniture models are com-
pound models (here we notice that 88% of models from Princeton
Benchmark are compound), and 75% of compound models are mod-
els composed from geometrical primitives. We suppose that these fig-
ures can increase when a 3D database is created by designers from
the same industrial domain. As consequence our assumptions will
be valid for the majority of CAD models, because assembly mod-
elling is effective approach, which allows designers to work together
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Figure 1. Geometrical primitives used for composition of 3D models and
their shape distributions.

on a complex model and gives a possibility of the further reuse of
designed objects.

2.2 Feature vector extraction

Given a query 3D model we start analyzing it. Considering the as-
sumption that models are compositions of conceptual parts, we start
the model analysis from its decomposition into the constituents. We
load the triangle mesh, representing the given model, and then we
perform its decomposition into connected components. The decom-
position process has the complexity O(|V |+ |E|). Then we analyze
the shape of each constituent of the model using the approach sug-
gested in [14]. For each constituent we construct the vector of shape
distribution. The choice of using a descriptor based on shape distribu-
tion is determined by simplicity of construction, invariance to affine
transformations and good discriminative results for the models sim-
ilar to geometrical primitives, like cubes, spheres, cylinders, etc [9].
According to the assumptions stated before, we consider models that
are the compositions of geometrically simple objects. As a conse-
quence we can build the finite set of the geometric primitives, which
can be used to construct CAD models. For each of such geometri-
cal primitives we extract the distribution based shape descriptor, and
we label primitives with the corresponding name. At this stage the
construction of the database of geometrical primitives and labeling
them with corresponding names are done manually. The number of
geometrical primitives which can be used for the composition of fur-
niture model is finite, thus once the database has been constructed it
can be used later without user intervention. Figure 1 illustrates which
geometric primitives we have considered along with their shape de-
scriptions. Having decomposed the given 3D model into constituents,
we start to compare each part with geometrical primitives from Fig-
ure 1. The smallest distance between the vectors of shape descriptors
identifies the shape of the analyzed constituent. In the current work
we calculate Euclidean distance; however the other types of metrics,
like Earth Mover and the Kolmogorov-Smirnov distances [14] can
be used. The constituent inherits the label with the name of the most
similar geometric primitive. The process continues for all parts of
the model. As a result we output the vector, which has as compo-
nents the names of constituent parts of the query model. For better
description of the model we also analyze the connectivity relations
between the parts. We compute the principal eigenvectors of the tri-
angulations representing each part of the model and we calculate the
angle between them in pairs. In this way we obtain n× (n− 1) val-

Figure 2. Feature vector extraction. 1) Input model. 2) Model decomposi-
tion. 3) Shape distributions of the model’s constituents. 4) Labelling model’s
constituents as shape primitives. 5) Output feature vector.

ues of angles between model constituents where n is the number of
connected components.

To clarify the shape analysis process we consider the example of a
3D model of a table. Figure 2 shows this process. As a result we pass
the feature vector identifying the query model to the Table 1, which
describes the ontology of the domain . In the next chapter we explain
how having the feature vector we obtain the vector of semantic labels.

2.3 Mapping feature vector to semantic labels
using knowledge domain

In order to map geometrical and topological features of an object
from a specific domain to semantically meaningful constituents of
the object we should create a database describing all models of the
domain. Table 1 illustrates the description of the models of the table
of Figure 2.

Table 1. Mapping from low-level features to semantic labels.
Component Geometrical Connectivity Semantic

primitive (pairwise label
angle between
components

1 rect sheet {90,90,90,90} top
2 rect rod {90,0,0,0} leg
3 rect rod {90,0,0,0} leg
4 rect rod {90,0,0,0} leg
5 rect rod {90,0,0,0} leg

The database should describe all concepts present in the ontology
of the domain. Thus, querying it by the feature vector we can output
as a result the vector of semantic labels. For instance taking the model
of the table of the previous example, we get {top,leg,leg,leg,leg}, and
we can pass the given semantic vector to the domain ontology in
order to identify the category the model belongs to.

2.4 Ontology for shape annotation

Before building an ontology we should define its scoping, that is its
domain, and its purpose, that is its intended usage [16]. In our case
the domain that our ontology will formalize is that of furniture. In the



first phase the intended usage of the furniture ontology is the anno-
tation of models in the database with ontology concepts. In a second
phase we want to investigate the possibility of retrieving the models
by textual queries. We regard the 3D models as a syntactic domain
and the ontology language as a semantic domain. An interpretation
function will assign to each ”3D model” a concept from ontology. In
this way we can say that a certain 3D model is a ”Chair”, while an-
other 3D model is a ”Table”, where ”Chair” and ”Table” are concepts
in our ontology. Since the classes of models are distinguished at the
syntactic level by the feature vectors extracted and explained in the
above sections, there are two interesting questions that an ontology
based shape annotation system should answer:

1. What is the system precision? The precision of the system is de-
fined in the well know way:

P =
MCadn

Madn
× 100% (1)

where MCadn- is the number of correctly annotated models and
Madn is the number of annotated models. Since the system is still
not fully operational we cannot quantify its precision, but we can
make an interesting observation. The upper boundary of what can
be achieved is already known. If the properties that distinguish two
ontology concepts cannot be mapped to distinct sets of syntactic
features that the above component can extract then the system will
fail to correctly annotate the models. Let’s suppose for example
that there are in our ontology two concepts named ”YellowChair”
and ”BlueChair”. Both concepts have as their superclass the con-
cept ”chair” and they are distinguished only by the color they
have: respectively yellow and blue. Because the above mentioned
algorithm cannot extract the color of an object the system will
fail to correctly annotate ”BlueChair” and ”YellowChair” mod-
els. However, assuming that for designers the shape of a model is
a more important matter than its color, we suppose that the fea-
ture vector extracted on the previous step completely describes a
model.

2. The second relevant parameter is the recall of the system.

R =
Madn

MT
× 100% (2)

where MT is the total number of models we have. If all models
are well formed the recall will be 100%.

We started building the furniture ontology using Wordnet Domains
[4]. Developed at IRST, Wordnet Domains, is PWN (Princeton
Wordnet) 1.6 [6] augmented with a set of Domain Labels. PWN
1.6 synsets have been semi-automatically linked with a set of 200
domain labels taken from Dewey Decimal classification, the world
most widely used library classification system. The domain labels
are hierarchically organized and each synset received one or more
domain labels. We are interested in the synsets that are annotated
with the domain ”furniture”. Because PWN is a linguistic resource
and many concepts found there are not suitable for building an ontol-
ogy of furniture we want to make use in our work of other ontologies
and specialized thesauri.

We decided to encode our ontology in OWL language. At the mo-
ment the ontology is a simple taxonomy enriched with a relation
”hasPart” that specifies the parts of objects in the furniture domain.
We make use also of cardinality restrictions as the following exam-
ple, which describes the entry for the concepts ”BackRestChair” and
Back Rest Chair ”BackRestChairWithFourLegs”, shows:

<owl:Class rdf:ID="BackRestChair">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty>

<owl:ObjectProperty rdf:
ID="hasPartLeg"/>

</owl:onProperty>
<owl:someValuesFrom rdf:

resource="#Leg"/>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:someValuesFrom rdf:

resource="#BackRest"/>
<owl:onProperty>

<owl:ObjectProperty rdf:
ID="hasPartBackRest"/>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:

ID="BackRestChairWithFourLegs">
<rdfs:subClassOf rdf:

resource="#BackRestChair"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty>

<owl:ObjectProperty rdf:
about="#hasPartLeg"/>

</owl:onProperty>
<owl:cardinality rdf:datatype=
"http://www.w3.org/2001/XMLSchema#int"
>4</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

The above OWL representation says that a ”BackRestChair” has
as a part exactly one ”BackRest” and that a ”BackRestChairWith-
FourLegs” IS-A ”BackRestChair” and has exactly four legs. The
only kind of inference needed in the example is the ”inheritance”
of properties from super-classes to their subclasses.

2.5 Retrieval through annotations

After we annotated the 3D models with ontology concepts users have
two possibilities. First they can make retrieval of 3D objects by tex-
tual query. A query can be typed by the user or can be formed by
ontology browsing. For example a user interested in barber chair
models can input the concept in a text box. Alternatively he can
browse the ontology and select the appropriate concept. The system
will answer the user query by returning all the models annotated with
the input concept or with a subconcept of the input concept. An en-
hanced retrieval system based on textual queries can take advantage
of Boolean operators.

The second possibility is to query by an example model. Here a
user can browse all models within the category of the input model
and autonomously search for more similar models. Such approach



groups all objects into quite large classes. The other way to search for
similar models is to find the smallest dissimilarity measure (i.e. the
smallest distance value) between feature vectors of the constituents
of a sample model and corresponding parts of models from the same
category. Such approach reduces the number of comparisons needed
to retrieve similar models. Furthermore, as was pointed out in [10]
the descriptors based on shape distribution do not give good discrim-
inative results for models with detailed shape properties. Decompo-
sition of the model and shape understanding allows to perform com-
parison between each constituent part separately. As a result the over-
all dissimilarity measure will be the sum of dissimilarities between
corresponding constituent parts.

3 CONCLUSIONS AND FUTURE WORK
In the current work we presented the methodology for the the new
synthesis of shape description and ontology-based annotation and re-
trieval. Performing shape analysis we decompose a 3D model into its
constituent and we analyze the shape and connectivity between each
of the parts of the model. As a result we output the feature vector
describing the 3D model. Using a database defining all concepts of
the ontology of the given domain (here furniture), we map the ex-
tracted feature vector to the vector of semantic labels. Finally, the
ontology of the considered domain will be used in model annotation
and then key word based retrieval of furniture models. The proposed
method offers two options to the user: textual query and query by a
sample model. As a result, the proposed method succeeded in term
of shape-to-text (shape annotation) and text-to-shape (query shape by
text) schemes. In the future, the database will be enriched not only
in terms of number of 3D models but also by number of other spe-
cific domains. Beside that, the ontology will be constructed in more
details to improve the accuracy of the query process.

ACKNOWLEDGEMENTS
We thank Eduard Barbu for the useful discussions and comments on
ontology construction.

This work has been supported by the CFP6 IST NoE 506766
AIM@SHAPE.

REFERENCES
[1] 3d cafe. http://www.3dcafe.com.
[2] Princeton shape benchmark. http://shape.cs.princeton.

edu/search.html.
[3] Marco Attene, Silvia Biasotti, and Michela Spagnuolo, ‘Shape under-

standing by contour driven retiling’, The Visual Computer, 19(2-3),
127–138, (2003).

[4] Magnini Bernardo and Cavaglia Gabriela, ‘Integrating subject field
codes into wordnet’, in 2nd International Conference on Language Re-
sources & Evaluation, Athens, Greece, (May-June 2000).

[5] Balakrishnan Chandrasekaran, John R. Josephson, and Richard V. Ben-
jamins, ‘What are ontologies, and why do we need them?’, IEEE Intel-
ligent Systems, 14(1), 20–26, (1999).

[6] Christiane Fellbaum (Ed.). Wordnet: An electronical lexical database.
MIT Press, May 1998.

[7] Thomas R. Gruber, ‘A translation approach to portable ontology speci-
fications’, Knowledge Acquisition, 5(2), 199–220, (1993).

[8] Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura, and Tosiyasu L.
Kunii, ‘Topology matching for fully automatic similarity estimation of
3d shapes’, in SIGGRAPH ’01: Proceedings of the 28th annual confer-
ence on Computer graphics and interactive techniques, New York, NY,
USA, (August 2001).

[9] Taesik Hong, Kunwoo Lee, Sungcnan Kim, Chongnam Chu, and Hyun-
chan Lee, ‘Similarity comparison of mechanical parts’, Computer-
Aided Design and Applications, 2(6), 759–769, (2005).

[10] Cheuk Yiu Ip, Daniel Lapadat, Leonard Sieger, and William C. Regli,
‘Using shape distributions to compare solid models’, in SMA ’02: Pro-
ceedings of the seventh ACM symposium on Solid modeling and appli-
cations, New York, NY, USA, (2002).

[11] Michael Kazhdan, Thomas Funkhouser, and Szymon Rusinkiewicz,
‘Rotation invariant spherical harmonic representation of 3d shape
descriptors’, in SGP ’03: Proceedings of the 2003 Eurograph-
ics/ACM SIGGRAPH symposium on Geometry processing, Aire-la-
Ville, Switzerland, Switzerland, (June 2003).

[12] Patrick Min, A 3D Model Search Engine, Ph.D. dissertation, Princeton
University, January 2004.

[13] Patrick Min, Michael Kazhdan, and Thomas A. Funkhouser, ‘A com-
parison of text and shape matching for retrieval of online 3d models’,
in Research and Advanced Technology for Digital Libraries: 8th Euro-
pean Conference, Bath, UK, (September 2004).

[14] Robert Osada, Thomas Funkhouser, Bernard Chazelle, and David
Dobkin, ‘Matching 3d models with shape distributions’, in SMI ’01:
Proceedings of the International Conference on Shape Modeling & Ap-
plications, Washington, DC, USA, (2001).

[15] Johan W.H. Tangelder and Remco C. Veltkamp, ‘A survey of content
based 3d shape retrieval methods’, in Shape Modeling International,
Genoa, Italy, (June 2004).

[16] Mike Uschold and Martin King, ‘Towards a methodology for build-
ing ontologies’, in IJCAI95 Workshop on Basic Ontological Issues in
Knowledge Sharing, Montreal, Canada, (August 1995).

[17] Dejan V. Vranic and Dietmar Saupe, ‘3d shape descriptor based on 3d
fourier transform’, in ECMCS ’01: Proceedings of the EURASIP Con-
ference on Digital Signal Processing for Multimedia Communications
and Services, Budapest, Hungary, (September 2001).

http://www.3dcafe.com
http://shape.cs.princeton.edu/search.html
http://shape.cs.princeton.edu/search.html

	INTRODUCTION
	PROPOSED METHODOLOGY
	Problem of shape similarity and appropriate assumptions
	Feature vector extraction
	Mapping feature vector to semantic labels using knowledge domain
	Ontology for shape annotation
	Retrieval through annotations

	CONCLUSIONS AND FUTURE WORK

