
JHU/APL Onto-Mapology Results for OAEI 2006

Wayne L. Bethea, Clayton R. Fink, John S. Beecher-Deighan

Research and Technology Development Center
Johns Hopkins University Applied Physics Laboratory

Laurel, MD 20723, USA
Wayne.Bethea@jhuapl.edu

Abstract. Numerous techniques for ontology alignment and mapping have
appeared in the literature, but there has been little discussion on the use of
formal semantics for the task. Typical solutions apply multiple techniques to
produce their results. We demonstrate that a hybrid solution that brings together
a number of matching techniques yields the best results. An essential
component of any ontology mapping solution is the ability for users to interact
with the system and manipulate intermediate and final results. We introduce
Onto-Mapology; an approach to ontology mapping that integrates techniques
based on string/text matching, structure/graph matching, and semantic (rule-
based/logic-based) matching. After the initial design, development, testing and
evaluation we applied Onto-Mapology to the OAEI 2006 test cases with
encouraging results.

1 Onto-Mapology: The Mapping Process

Ontology mapping techniques have been discussed in the literature that describe
string and text matching techniques [1], schema matching techniques [2], categorical
information mapping techniques [3], and machine learning techniques [4], but very
little has been discussed that describes formal semantic matching techniques. Onto-
Mapology is the Johns Hopkins University Applied Physics Lab (JHU/APL) ontology
mapping software solution that was designed and developed with strong consideration
for human participation in the mapping process. It integrates techniques based on
string/text matching, structure/graph matching, and semantic (rule-based/logic-based)
matching. It allows users to apply different combinations of these techniques, or a
hybrid algorithm that produces solid results in our testing. This paper discusses Onto-
Mapology, our approach to the ontology mapping process, and our results for OAEI
2006.

1.1 Purpose, General Statement

We determined at an early stage in the design of our mapping solution that given the
state of the art in ontology mapping, human participation would be a crucial part of
any successful real world application. This meant that we needed to design user
interaction as an important part of the software design rather than an afterthought.

Onto-Mapology was developed as an Eclipse Plug-in, where Eclipse.org is an open
source community whose projects are focused on providing an extensible
development platform and application frameworks for building software [5]. The
Eclipse SDK is a development environment that many software developers and end
users are familiar with, and provided us with the user interface and the environment to
offer important user interactions.

Upon reviewing the literature it was clear that there was not much discussion on using
formal semantics (e.g. using reasoning engines and inference) in the ontology
mapping process. It is appropriate to hypothesize that this is due to the fact that much
of the semantic meaning expressed in past and present ontologies is expressed through
the linguistic content. In contrast, as ontologies mature and users get better at using
the tools at their disposal for creating and maintaining ontologies, we will begin to see
more semantically expressive ontologies. We wanted to determine what would be
needed to successfully utilize formal semantics to help accomplish ontology mapping,
and we wanted to implement some semantic matching techniques in Onto-Mapology.
We have identified the features of formal semantics expressed in ontologies that will
improve the results of ontology mapping dramatically using future ontologies.

In current ontologies, the majority of the information available for communicating
semantic meaning, and thus for matching and mapping, is in the text of the ontologies.
Many ontology mapping solutions rely predominantly on matching techniques
performed on the textual content of ontologies, and that is where we started
identifying and implementing our matching techniques.

As ontologies become more structurally sophisticated, or as textual content becomes
more degraded, structure matching techniques can play increasingly significant roles
in ontology matching. Also, in the literature there is a long tradition of supplementing
text matching techniques with structure or graph matching techniques, and several
approaches are described in the references provided above and the following [6, 7, 8].
In addition to envisioning ontologies becoming more structurally sophisticated one
can envision ontologies becoming more semantically expressive. At present the
majority of the ontologies that have been developed or are available in the public
domain are not very rich semantically. They rely largely on capturing and conveying
meaning through linguistic content. But the vision of the Semantic Web implies that
the ontologies will be sufficiently expressive as to allow software agents on the Web
to act “intelligently” [9].

Here we have provided the motivation and goals for the design and development of
Onto-Mapology; we only had to make some minor adjustments to apply the OAEI
2006 benchmark test cases.

1.2 Specific Techniques Used

The mapping solution integrates techniques based on string matching, structure
matching, and semantic matching. As we discuss our matching techniques we are
assuming the ontologies are expressed using OWL.

1.2.1 Linguistic Matching Techniques

Onto-Mapology can use an implementation of any string comparison matching
algorithm, as long as the implementation can use a provided abstract interface. We
implemented the algorithms from the SecondString [10] project by creating wrappers
around the SecondString string comparison classes. These classes include the Jaro,
Jaro-Winkler, TFIDF, and Monge-Elkan string similarity algorithms. Our testing
yielded the Jaro-Winkler algorithm as the best performer of the SecondString classes
in our implementation. This algorithm calculates the edit distance between two strings
and captures the string similarity using:

For two strings s and t, let s' be the characters in s that are “common with” t, and let t'
be the characters in t that are "common with" s … Let Ts’,t’ measure the number of
transpositions of characters in s' relative to t'. P is the length of the longest common
prefix of s and t, and P’ = max (P, 4) [11].

Onto-Mapology also implements an algorithm that uses an n=2 n-gram comparison,
affectionately known as “How to Strike a Match” [12]. It bases the similarity score
on a comparison of consecutive letter pairs in the two strings. This approach bases its
metric upon the similarity of adjacent letters within a string. It meets the following
two criteria; 1) strings with slight discrepancies will be scored as similar; 2) strings
that contain the same words but differ in arrangement will be scored as similar. This
algorithm captures the string similarity using:

For two strings s1 and s2 the similarity is twice the number of character pairs that are
common to both strings divided by the sum of the number of character pairs in the
two strings. When using a single matching technique in Onto-Mapology this
algorithm tended to yield the best results on the OAEI 2006 test suite.

Onto-Mapology also uses the Lucene [13] text search engine and indexing tool to
create a matcher that compares the terms in two ontologies based on the content of
their comments, labels and local names. Lucene is high-performance, scalable, full-
featured, open-source, and written in Java. We index one ontology using Lucene,
treating each term as a “document” and the term’s local name, comment text and label
text as the document’s content. Lucene removes all stop words from the text and
creates an index organized by term. Subsequent ontologies are processed term by
term, and each term’s local name, comment text and label text are processed using
Lucene’s string processing capabilities to remove all stop words. The resulting list of
words is then used as a search argument against the index created from the first
ontology. Lucene is configured to use a letter distance algorithm to score the hits
against the index. We treat a high scoring hit as a match between a term in one
ontology with a term in another ontology.

1.2.2 Structure Matching Techniques

Onto-Mapology implements an algorithm called “Neighborhood Match” where each
ontology is viewed as a graph with nodes and edges, the nodes are classes (or data
types) and the edges are properties. For each node in the respective graphs the
similarity between nodes (ontology terms) is determined by the number of nodes and
edges from each nodes “neighborhood” that match. The neighborhood is determined
by specifying how many edges the algorithm should traverse from the starting node.
The match is determined by the type of the node or edge or by the text of the node or
edge if the user wants to use an algorithm that combines text matching techniques and
structure matching techniques.

So, from a starting node in each of the graphs, the algorithm follows all edges leading
from those nodes and compares the edges and related nodes. For example, using the
Human node in figure 1 the neighborhood 1 edge away would be the subClass
property relating to Mammal, the subClass property relating to Male, the subClass
property relating to Female, the hasAge property relating to integer, the classes
Mammal, Male, Female, and the data type integer. Using the HomoSapien node in
figure 2 the neighborhood 1 edge away would be the subClass property relating to

Human

Male Female

isa isa

integer
hasAge

Mammal
isa

Figure 1: Human Node Neighborhood

Mammalian, the subClass property relating to Female, the subClass property
relating to Male, the hasAge property relating to integer, the classes Mammalian,
Female, Male, and the data type integer.

In a purely structural context, our algorithm would compare the 3 subClass properties,
1 data type property, 3 classes, and 1 integer data type neighborhood of the Human
node to the 3 subClass properties, 1 data type property, 3 classes, and 1 integer data
type neighborhood of the HomoSapien node and find a match. In a combined
linguistic and structural context, our algorithm would also compare the strings of the
neighborhoods. For example, it would compare “Mammal,” “Male,” “Female,” and
“hasAge” from the Human node with “Mammalian,” “Female,” “Male,” and
“hasAge” from the HomoSapien node. In this example, text matching techniques
would not produce a match between Human and HomoSapien where structure
matching would.

1.2.3 Semantic Matching Techniques

Jena includes a general purpose rule-based reasoner which is used to implement both
the RDFS and OWL reasoners but is also available for general use. This reasoner
supports rule-based inference over RDF graphs and provides forward chaining,
backward chaining and a hybrid execution model. A rule for the rule-based reasoner is
defined by a Java Rule object with a list of body terms (premises), a list of head terms
(conclusions) and an optional name and optional direction. Each term or ClauseEntry
is either a triple pattern, an extended triple pattern or a call to a built-in primitive. A
rule set is simply a List of Rules.

Onto-Mapology implements rules based on class hierarchy and property hierarchy.
For example, we have a rule that states if a class in one ontology is determined to be
equivalent to a class in another ontology then the super classes of the equivalent
classes are equivalent. The rule looks like this:

(?a owl:equivalentClass ?b), notEqual(?a, ?b),
(?a rdfs:subClassOf ?c), (?b rdfs:subClassOf ?d),
notEqual(?c, ?d), notBNode(?c), notBNode(?d) ->

HomoSapien

Male Female

isa isa

integer
hasAge

Mammalian
isa

Figure 2: HomoSapien Node Neighborhood

(?c owl:equivalentClass ?d)

We also have a rule that states that if the domain and range of a property in one
ontology are determined to be equivalent to the domain and range of a property in
another ontology, respectively then the properties are equivalent. The rule looks like
this:

(?a rdfs:domain ?b), (?c rdfs:domain ?d),
(?b owl:equivalentClass ?d),
(?a rdfs:range ?e), (?c rdfs:range ?f),
(?e owl:equivalentClass ?f) ->
(?a owl:equivalentProperty ?c)

Semantic matching through rules doesn’t fully access the formal semantics expressed
in the ontologies. For sufficiently expressive ontologies an OWL DL reasoning engine
should be able to indicate terms that are equivalent and terms that are not equivalent
because of the expressed formal semantics. In order for Onto-Mapology to exploit
formal semantics expressed in ontologies to assist in ontology alignment we have
incorporated Pellet [14], an open-source Java based OWL DL reasoner, into our
solution.

1.2.4 Hybrid Algorithm

The Onto-Mapology hybrid algorithm first generates a list of alignments based on
name equivalence (100% similarity) using the Jaro-Winkler matching technique.
Terms matched in this way are placed into a “high confidence” list. Terms in this list
can not be matched again. Next, alignments are created using the lemma matching
technique and matched terms are added to the high confidence list. Alignments made
in this step do not consist of matches created during the Jaro-Winkler phase. Finally
the remaining terms in each ontology are compared based on type. If two terms are
the same type then they are compared both structurally and semantically.

Structural comparison is performed as follows: if two terms share 80% equivalent
neighborhoods they are judged to be equivalent. Two neighbors are judged to be
equivalent if they have been aligned previously or if they share the same type.
Semantic equivalence is based upon OWL language relations. We define properties to
be equivalent if they have had their domains and ranges aligned. For classes, we state
that if two classes share equivalent child class then they are defined to be equivalent.
We have completed the task of bringing these techniques together in one algorithm,
but we need to add the formal semantic reasoning and characterize which parts of the
algorithm will work best under which circumstances. After we have the full
implementation and the characterization we can fine tune the algorithm to give the
best results given multiple and different types of ontologies.

2 OAEI 2006 Results

Here we present the results of alignment experiments performed on the OAEI 2006
campaign. All the output is produce using the same input parameters. In the
presentation of our results and analysis of our algorithms we have also included our
experiment results from the OAEI 2005 benchmark tests. The OAEI 2005 based
experiment results used linguistic matching techniques to establish alignments based
on name similarity. These results were not submitted to the OAEI 2005 campaign
because we had not known about the OAEI until after the submission deadline. We
will not discuss the OAEI 2005 results or algorithms any further in this paper.

2.1 Benchmark

The benchmark test cases are broken up into five main categories. The first series of
tests (#101-104) examine an algorithm’s ability to make basic matches. It also
determines the program’s ability to handle discrepancies of OWL Language usage,
like generalization and restriction.

In this first grouping of tests we found our algorithm to be relatively successful in
obtaining satisfactory results. However, we found that test #102 created problems for
our algorithm. In this test case we compare the reference ontology to one that is
irrelevant. The string similarities of the terms in each document are quite different;
this leads our structure matching component to become more prevalent thus causing a
precision of 0 to occur when any mappings were made. The average performance of
this group is depicted below:

 Precision Recall F-Measure
Average 2005 0.81 0.99 0.89
Average 2006 0.75 1.00 0.75

The next series of tests (#201-266) manipulate six parameters: name, comments,
specialization hierarchy, instances, properties, and classes. These tests allow for
algorithms to be examined in specific situations. This set of tests was the most useful
to us; they allowed us to see the specific areas where we need improvement.

Tests (#201-210) manipulate names and comments. In this set of test cases our
algorithm performed relatively well except in those cases where name similarity was
not high (#201, 202, 209, & 210). Even in those cases our recall was still quite high.

 Precision Recall F-Measure
Average 2005 0.64 0.28 0.28
Average 2006 0.53 0.96 0.64

Tests (#221-247) manipulate structure. In this set of test cases our algorithm
performed very well. This was due to the fact that the terms in these test cases had

high string similarity, and in the cases where specific terms did not have similar
names or comments, our algorithm was able to use structural or semantic features of
each ontology to derive the remaining alignments.

 Precision Recall F-Measure
Average 2005 0.75 0.86 0.76
Average 2006 0.99 1.00 0.99

Tests (#248-266) randomize the names and comments while manipulating structure.
In this set of test cases our algorithm performed very poorly. Since we rely heavily on
string similarity we were unable to extract meaningful results from this section.

 Precision Recall F-Measure
Average 2005 0.07 0.00 0.00
Average 2006 0.06 0.58 0.11

The last set of tests (#301-304) use ontologies that are adapted from real life
ontologies. Since they were not initially created for the purposes of the OAEI library,
they give some insight as to how well each algorithm will perform outside of testing.
In this set of test cases the set of terms in either ontology never subsumed the other.
This means that there were a number of terms within each ontology that were not
meant to be aligned. In addition there were several terms that were synonyms of each
other. These two factors led to a heavy reliance on our structure and semantic
algorithm components, which lead to poor recall and precision.

 Precision Recall F-Measure
Average 2005 0.72 0.51 0.55
Average 2006 0.19 0.61 0.28

3 Comments on Results

As Onto-Mapology demonstrates, our algorithm performed very well when names
were highly similar, as did many other solutions in the OAEI 2005. Onto-Mapology
was able to derive the terms that did not match lexically, as long as there were enough
aligned terms to make those associations, given the semantic and structural aspects of
our algorithm. Since we used a combination of methods our weaknesses came into
effect when: a) names were random or dissimilar; b) comments were random or
dissimilar; c) structures of two disjoint objects were identical; d) semantics of two
disjoint objects were similar (e.g. same subclass). The test cases were extremely well
conceived. They cover a wide variety of cases and also attempt to isolate specific
weaknesses within algorithms. They also include real world ontologies which may
give indication of how the algorithm will perform in practice.

4 Conclusion

Onto-Mapology is an ontology mapping solution that is both flexible and interactive.
Users can choose from a number of matching techniques and apply a single matching
technique or a preconfigured combination of matching techniques. Users may also
choose our hybrid matching algorithm that brings together several matching
techniques across linguistics, structure and semantics. The results of using the hybrid
algorithm are discussed in this paper and we have some work to do to improve the
performance. The hybrid solution within Onto-Mapology will perform very well as
ontologies become more structurally sophisticated and semantically expressive.

References

1. Milo, T., Zohar, S., Using Schema Matching to Simplify Heterogeneous Data Translation, In
Proceedings of the International Conference on Very Large Databases (VLDB), 1998

2. Rahm, E., Bernstein, P. A., A Survey of Approaches to Automatic Schema Matching, the
VLDB Journal, 2001

3. Zhou, N., A Study on Automatic Ontology Mapping of Categorical Information, 2002
4. Doan, A., Madhavan, J., Domingos, P., Halevy, A., Learning to Map between Ontologies on

the Semantic Web, 2002
5. Eclipse.org Home, http://www.eclipse.org/, 2006
6. Noy, N., Musen, M., PROMPT: Algorithm and Tool for Automated Ontology Merging and

Alignment, In Proceedings of the 17th National Conference on Artificial Intelligence (AAAI),
2000

7. McGuinness, D. L., Fikes, R., Rice, J., Wilder, S., An Environment for Merging and Testing
Large Ontologies, In Proceedings of the Seventh International Conference on Principles of
Knowledge Representation and Reasoning (KR2000), 2000

8. Ehrig, M., Sure, Y., Ontology Mapping: An Integrated Approach, Accepted for publication at
1st European Semantic Web Symposium, 2004

9. Fensel, D., Hendler, J., Lieberman, H., Whalster, W., The Semantic Web: Why, What, and
How, MIT Press, 2001

10. SecondString Project Page, http://secondstring.sourceforge.net/, 2006
11. Cohen, W. W., Ravikumar, P., Fienberg, S. E., A Comparison of String Distance Metrics

for Name-Matching Tasks, Carnegie Mellon University, 2003
12. White, S., "How to Strike a Match," Development Cycles, 2004
13. Lucene Search Engine, http://lucene.apache.org/java/docs/, 2006
14. Pellet, http://www.mindswap.org/2003/pellet/index.shtml, 2006
15. Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., Hübner,

S., Ontology-Based Integration of Information-A Survey of Existing Approaches, In
Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI-01),
2001

16. De Bruijn, J., et. al., “State-of-the-art Survey on Ontology Merging and Aligning,” Digital
Enterprise Research Institute, University Innsbruck, 2004

17. Kalfoglou, Y., Schorlemmer M., Ontology Mapping: The State of the Art, Dagstuhl
Seminar Proceedings, Semantic Interoperability and Integration, 2005

