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Abstract. Numerous techniques for ontology alignment and mapping have 
appeared in the literature, but there has been little discussion on the use of 
formal semantics for the task. Typical solutions apply multiple techniques to 
produce their results. We demonstrate that a hybrid solution that brings together 
a number of matching techniques yields the best results. An essential 
component of any ontology mapping solution is the ability for users to interact 
with the system and manipulate intermediate and final results. We introduce 
Onto-Mapology; an approach to ontology mapping that integrates techniques 
based on string/text matching, structure/graph matching, and semantic (rule-
based/logic-based) matching. After the initial design, development, testing and 
evaluation we applied Onto-Mapology to the OAEI 2006 test cases with 
encouraging results.  

1  Onto-Mapology: The Mapping Process 

Ontology mapping techniques have been discussed in the literature that describe 
string and text matching techniques [1], schema matching techniques [2], categorical 
information mapping techniques [3], and machine learning techniques [4], but very 
little has been discussed that describes formal semantic matching techniques. Onto-
Mapology is the Johns Hopkins University Applied Physics Lab (JHU/APL) ontology 
mapping software solution that was designed and developed with strong consideration 
for human participation in the mapping process. It integrates techniques based on 
string/text matching, structure/graph matching, and semantic (rule-based/logic-based) 
matching. It allows users to apply different combinations of these techniques, or a 
hybrid algorithm that produces solid results in our testing. This paper discusses Onto-
Mapology, our approach to the ontology mapping process, and our results for OAEI 
2006. 

1.1  Purpose, General Statement 

We determined at an early stage in the design of our mapping solution that given the 
state of the art in ontology mapping, human participation would be a crucial part of 
any successful real world application. This meant that we needed to design user 
interaction as an important part of the software design rather than an afterthought. 



Onto-Mapology was developed as an Eclipse Plug-in, where Eclipse.org is an open 
source community whose projects are focused on providing an extensible 
development platform and application frameworks for building software [5]. The 
Eclipse SDK is a development environment that many software developers and end 
users are familiar with, and provided us with the user interface and the environment to 
offer important user interactions. 
 
Upon reviewing the literature it was clear that there was not much discussion on using 
formal semantics (e.g. using reasoning engines and inference) in the ontology 
mapping process. It is appropriate to hypothesize that this is due to the fact that much 
of the semantic meaning expressed in past and present ontologies is expressed through 
the linguistic content. In contrast, as ontologies mature and users get better at using 
the tools at their disposal for creating and maintaining ontologies, we will begin to see 
more semantically expressive ontologies. We wanted to determine what would be 
needed to successfully utilize formal semantics to help accomplish ontology mapping, 
and we wanted to implement some semantic matching techniques in Onto-Mapology. 
We have identified the features of formal semantics expressed in ontologies that will 
improve the results of ontology mapping dramatically using future ontologies. 
 
In current ontologies, the majority of the information available for communicating 
semantic meaning, and thus for matching and mapping, is in the text of the ontologies. 
Many ontology mapping solutions rely predominantly on matching techniques 
performed on the textual content of ontologies, and that is where we started 
identifying and implementing our matching techniques.  
 
As ontologies become more structurally sophisticated, or as textual content becomes 
more degraded, structure matching techniques can play increasingly significant roles 
in ontology matching. Also, in the literature there is a long tradition of supplementing 
text matching techniques with structure or graph matching techniques, and several 
approaches are described in the references provided above and the following [6, 7, 8]. 
In addition to envisioning ontologies becoming more structurally sophisticated one 
can envision ontologies becoming more semantically expressive. At present the 
majority of the ontologies that have been developed or are available in the public 
domain are not very rich semantically. They rely largely on capturing and conveying 
meaning through linguistic content. But the vision of the Semantic Web implies that 
the ontologies will be sufficiently expressive as to allow software agents on the Web 
to act “intelligently” [9].  
 
Here we have provided the motivation and goals for the design and development of 
Onto-Mapology; we only had to make some minor adjustments to apply the OAEI 
2006 benchmark test cases. 



1.2  Specific Techniques Used 

The mapping solution integrates techniques based on string matching, structure 
matching, and semantic matching. As we discuss our matching techniques we are 
assuming the ontologies are expressed using OWL.  

1.2.1 Linguistic Matching Techniques 

Onto-Mapology can use an implementation of any string comparison matching 
algorithm, as long as the implementation can use a provided abstract interface.  We 
implemented the algorithms from the SecondString [10] project by creating wrappers 
around the SecondString string comparison classes. These classes include the Jaro, 
Jaro-Winkler, TFIDF, and Monge-Elkan string similarity algorithms. Our testing 
yielded the Jaro-Winkler algorithm as the best performer of the SecondString classes 
in our implementation. This algorithm calculates the edit distance between two strings 
and captures the string similarity using: 

 

 
 

 
 

For two strings s and t, let s' be the characters in s that are “common with” t, and let t' 
be the characters in t that are "common with" s … Let Ts’,t’ measure the number of 
transpositions of characters in s' relative to t'. P is the length of the longest common 
prefix of s and t, and P’ = max (P, 4) [11]. 

 
Onto-Mapology also implements an algorithm that uses an n=2 n-gram comparison, 
affectionately known as “How to Strike a Match” [12].  It bases the similarity score 
on a comparison of consecutive letter pairs in the two strings. This approach bases its 
metric upon the similarity of adjacent letters within a string. It meets the following 
two criteria; 1) strings with slight discrepancies will be scored as similar; 2) strings 
that contain the same words but differ in arrangement will be scored as similar. This 
algorithm captures the string similarity using: 

 

 
 

For two strings s1 and s2 the similarity is twice the number of character pairs that are 
common to both strings divided by the sum of the number of character pairs in the 
two strings. When using a single matching technique in Onto-Mapology this 
algorithm tended to yield the best results on the OAEI 2006 test suite. 



 
Onto-Mapology also uses the Lucene [13] text search engine and indexing tool to 
create a matcher that compares the terms in two ontologies based on the content of 
their comments, labels and local names. Lucene is high-performance, scalable, full-
featured, open-source, and written in Java. We index one ontology using Lucene, 
treating each term as a “document” and the term’s local name, comment text and label 
text as the document’s content.  Lucene removes all stop words from the text and 
creates an index organized by term.  Subsequent ontologies are processed term by 
term, and each term’s local name, comment text and label text are processed using 
Lucene’s string processing capabilities to remove all stop words.  The resulting list of 
words is then used as a search argument against the index created from the first 
ontology.  Lucene is configured to use a letter distance algorithm to score the hits 
against the index.  We treat a high scoring hit as a match between a term in one 
ontology with a term in another ontology. 

1.2.2 Structure Matching Techniques 

Onto-Mapology implements an algorithm called “Neighborhood Match” where each 
ontology is viewed as a graph with nodes and edges, the nodes are classes (or data 
types) and the edges are properties. For each node in the respective graphs the 
similarity between nodes (ontology terms) is determined by the number of nodes and 
edges from each nodes “neighborhood” that match. The neighborhood is determined 
by specifying how many edges the algorithm should traverse from the starting node. 
The match is determined by the type of the node or edge or by the text of the node or 
edge if the user wants to use an algorithm that combines text matching techniques and 
structure matching techniques. 
 

 
 
So, from a starting node in each of the graphs, the algorithm follows all edges leading 
from those nodes and compares the edges and related nodes. For example, using the 
Human node in figure 1 the neighborhood 1 edge away would be the subClass 
property relating to Mammal, the subClass property relating to Male, the subClass 
property relating to Female, the hasAge property relating to integer, the classes 
Mammal, Male, Female, and the data type integer. Using the HomoSapien node in 
figure 2 the neighborhood 1 edge away would be the subClass property relating to 
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Figure 1: Human Node Neighborhood



Mammalian, the subClass property relating to Female, the subClass property 
relating to Male, the hasAge property relating to integer, the classes Mammalian, 
Female, Male, and the data type integer. 
 

 
 
In a purely structural context, our algorithm would compare the 3 subClass properties, 
1 data type property, 3 classes, and 1 integer data type neighborhood of the Human 
node to the 3 subClass properties, 1 data type property, 3 classes, and 1 integer data 
type neighborhood of the HomoSapien node and find a match. In a combined 
linguistic and structural context, our algorithm would also compare the strings of the 
neighborhoods. For example, it would compare “Mammal,” “Male,” “Female,” and 
“hasAge” from the Human node with “Mammalian,” “Female,” “Male,” and 
“hasAge” from the HomoSapien node. In this example, text matching techniques 
would not produce a match between Human and HomoSapien where structure 
matching would. 

1.2.3 Semantic Matching Techniques 

Jena includes a general purpose rule-based reasoner which is used to implement both 
the RDFS and OWL reasoners but is also available for general use. This reasoner 
supports rule-based inference over RDF graphs and provides forward chaining, 
backward chaining and a hybrid execution model. A rule for the rule-based reasoner is 
defined by a Java Rule object with a list of body terms (premises), a list of head terms 
(conclusions) and an optional name and optional direction. Each term or ClauseEntry 
is either a triple pattern, an extended triple pattern or a call to a built-in primitive. A 
rule set is simply a List of Rules. 
 
Onto-Mapology implements rules based on class hierarchy and property hierarchy. 
For example, we have a rule that states if a class in one ontology is determined to be 
equivalent to a class in another ontology then the super classes of the equivalent 
classes are equivalent. The rule looks like this: 
 
(?a owl:equivalentClass ?b), notEqual(?a, ?b), 
(?a rdfs:subClassOf ?c), (?b rdfs:subClassOf ?d), 
notEqual(?c, ?d), notBNode(?c), notBNode(?d) -> 
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Figure 2: HomoSapien Node Neighborhood



(?c owl:equivalentClass ?d) 
 
We also have a rule that states that if the domain and range of a property in one 
ontology are determined to be equivalent to the domain and range of a property in 
another ontology, respectively then the properties are equivalent. The rule looks like 
this: 
 
(?a rdfs:domain ?b), (?c rdfs:domain ?d),  
(?b owl:equivalentClass ?d),  
(?a rdfs:range ?e), (?c rdfs:range ?f), 
(?e owl:equivalentClass ?f) -> 
(?a owl:equivalentProperty ?c) 
 
Semantic matching through rules doesn’t fully access the formal semantics expressed 
in the ontologies. For sufficiently expressive ontologies an OWL DL reasoning engine 
should be able to indicate terms that are equivalent and terms that are not equivalent 
because of the expressed formal semantics. In order for Onto-Mapology to exploit 
formal semantics expressed in ontologies to assist in ontology alignment we have 
incorporated Pellet [14], an open-source Java based OWL DL reasoner, into our 
solution. 

1.2.4 Hybrid Algorithm 

The Onto-Mapology hybrid algorithm first generates a list of alignments based on 
name equivalence (100% similarity) using the Jaro-Winkler matching technique. 
Terms matched in this way are placed into a “high confidence” list. Terms in this list 
can not be matched again. Next, alignments are created using the lemma matching 
technique and matched terms are added to the high confidence list. Alignments made 
in this step do not consist of matches created during the Jaro-Winkler phase. Finally 
the remaining terms in each ontology are compared based on type. If two terms are 
the same type then they are compared both structurally and semantically.  
 
Structural comparison is performed as follows: if two terms share 80% equivalent 
neighborhoods they are judged to be equivalent. Two neighbors are judged to be 
equivalent if they have been aligned previously or if they share the same type. 
Semantic equivalence is based upon OWL language relations. We define properties to 
be equivalent if they have had their domains and ranges aligned. For classes, we state 
that if two classes share equivalent child class then they are defined to be equivalent. 
We have completed the task of bringing these techniques together in one algorithm, 
but we need to add the formal semantic reasoning and characterize which parts of the 
algorithm will work best under which circumstances. After we have the full 
implementation and the characterization we can fine tune the algorithm to give the 
best results given multiple and different types of ontologies. 



2  OAEI 2006 Results 

Here we present the results of alignment experiments performed on the OAEI 2006 
campaign. All the output is produce using the same input parameters. In the 
presentation of our results and analysis of our algorithms we have also included our 
experiment results from the OAEI 2005 benchmark tests. The OAEI 2005 based 
experiment results used linguistic matching techniques to establish alignments based 
on name similarity. These results were not submitted to the OAEI 2005 campaign 
because we had not known about the OAEI until after the submission deadline. We 
will not discuss the OAEI 2005 results or algorithms any further in this paper. 

2.1  Benchmark  

The benchmark test cases are broken up into five main categories. The first series of 
tests (#101-104) examine an algorithm’s ability to make basic matches. It also 
determines the program’s ability to handle discrepancies of OWL Language usage, 
like generalization and restriction.  
 
In this first grouping of tests we found our algorithm to be relatively successful in 
obtaining satisfactory results. However, we found that test #102 created problems for 
our algorithm. In this test case we compare the reference ontology to one that is 
irrelevant. The string similarities of the terms in each document are quite different; 
this leads our structure matching component to become more prevalent thus causing a 
precision of 0 to occur when any mappings were made. The average performance of 
this group is depicted below: 
 

 Precision Recall F-Measure 
Average 2005 0.81 0.99 0.89 
Average 2006 0.75 1.00 0.75 

 
The next series of tests (#201-266) manipulate six parameters: name, comments, 
specialization hierarchy, instances, properties, and classes. These tests allow for 
algorithms to be examined in specific situations. This set of tests was the most useful 
to us; they allowed us to see the specific areas where we need improvement. 
 
Tests (#201-210) manipulate names and comments. In this set of test cases our 
algorithm performed relatively well except in those cases where name similarity was 
not high (#201, 202, 209, & 210). Even in those cases our recall was still quite high. 
 

 Precision Recall F-Measure 
Average 2005 0.64 0.28 0.28 
Average 2006 0.53 0.96 0.64 

 
Tests (#221-247) manipulate structure. In this set of test cases our algorithm 
performed very well. This was due to the fact that the terms in these test cases had 



high string similarity, and in the cases where specific terms did not have similar 
names or comments, our algorithm was able to use structural or semantic features of 
each ontology to derive the remaining alignments. 
 

 Precision Recall F-Measure 
Average 2005 0.75 0.86 0.76 
Average 2006 0.99 1.00 0.99 

 
Tests (#248-266) randomize the names and comments while manipulating structure. 
In this set of test cases our algorithm performed very poorly. Since we rely heavily on 
string similarity we were unable to extract meaningful results from this section. 
 

 Precision Recall F-Measure 
Average 2005 0.07 0.00 0.00 
Average 2006 0.06 0.58 0.11 

 
The last set of tests (#301-304) use ontologies that are adapted from real life 
ontologies. Since they were not initially created for the purposes of the OAEI library, 
they give some insight as to how well each algorithm will perform outside of testing. 
In this set of test cases the set of terms in either ontology never subsumed the other. 
This means that there were a number of terms within each ontology that were not 
meant to be aligned. In addition there were several terms that were synonyms of each 
other. These two factors led to a heavy reliance on our structure and semantic 
algorithm components, which lead to poor recall and precision. 
 

 Precision Recall F-Measure 
Average 2005 0.72 0.51 0.55 
Average 2006 0.19 0.61 0.28 

3  Comments on Results 

As Onto-Mapology demonstrates, our algorithm performed very well when names 
were highly similar, as did many other solutions in the OAEI 2005. Onto-Mapology 
was able to derive the terms that did not match lexically, as long as there were enough 
aligned terms to make those associations, given the semantic and structural aspects of 
our algorithm. Since we used a combination of methods our weaknesses came into 
effect when: a) names were random or dissimilar; b) comments were random or 
dissimilar; c) structures of two disjoint objects were identical; d) semantics of two 
disjoint objects were similar (e.g. same subclass). The test cases were extremely well 
conceived. They cover a wide variety of cases and also attempt to isolate specific 
weaknesses within algorithms. They also include real world ontologies which may 
give indication of how the algorithm will perform in practice. 



4  Conclusion 

Onto-Mapology is an ontology mapping solution that is both flexible and interactive. 
Users can choose from a number of matching techniques and apply a single matching 
technique or a preconfigured combination of matching techniques. Users may also 
choose our hybrid matching algorithm that brings together several matching 
techniques across linguistics, structure and semantics. The results of using the hybrid 
algorithm are discussed in this paper and we have some work to do to improve the 
performance. The hybrid solution within Onto-Mapology will perform very well as 
ontologies become more structurally sophisticated and semantically expressive. 
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