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Abstract. In this paper we present SEMA tool for the automatic mapping of 
ontologies. The main purpose of SEMA is to locate one to one equivalence 
correspondences (mappings) between elements (i.e., classes and properties) of 
two input ontologies. Towards this goal, SEMA synthesizes lexical, semantic 
and structural matching algorithms through their iterative execution.

1 Presentation of the system

1.1 State, purpose, general statement

Ontologies have been realized as the key technology to shaping and exploiting 
information for the effective management of knowledge and for the evolution of the 
Semantic Web and its applications. In such a distributed setting, ontologies establish a 
common vocabulary for community members to interlink, combine, and communicate 
knowledge shaped through practice and interaction, binding the knowledge processes 
of creating, importing, capturing, retrieving, and using knowledge. However, it seems 
that there will always be more than one ontology even for the same domain. In such a 
setting, where different conceptualizations of the same domain exist, information 
services must effectively answer queries, bridging the gaps between 
conceptualizations of the same domain. Towards this target, networks of semantically 
related information must be created at-request. Therefore mapping of ontologies is a 
major challenge for bridging the gaps between agents (software and human) with 
different conceptualizations.
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Tools for the automated mapping of ontologies have achieved remarkable results 
but still there is lot of space for improvements when dealing with real world 
ontologies. Building on our experience in participating in OAEI 2006 with AUTOMS 
[1], we intent to further increase the precision and recall of our matching methods, 
and further minimize the efficiency cost, by devising enhanced techniques and 
combinations of methods.

This paper presents the SEMA tool for the mapping of ontologies. SEMA is built 
on top of AUTOMS-F [2], which a framework implemented as a Java API, aiming to 
facilitate the rapid development of tools for the automatic mapping of ontologies. 
AUTOMS-F provides facilities for synthesizing individual ontology matching
methods.

The main purpose of SEMA is to locate one to one equivalence correspondences 
(mappings) between the elements (i.e., classes and properties) of two input ontologies, 
by increasing the recall of the mapping process and achieving a fair balance between 
precision and recall. SEMA combines lexical, semantic and structural matching 
algorithms: A semantic matching method exploiting Latent Dirichlet Allocation 
model (LDA) [3], requiring no external resources, in combination with the lexical 
matcher COCLU (COmpression-based CLUstering) [4] and a matching method that 
exploits structural features of the ontologies by means of simple rules. This 
combination of approaches contributes towards automating the mapping process by 
exploiting lexical, structural and semantic features of the source ontologies, resulting 
to increased recall and precision. It must be emphasized that the aggregation of the 
mappings produced by the individual methods is performed through their iterative 
execution as described in [5, 6].

It must be pointed that the experience gained by participating in the OAEI contest 
helped us towards the following aspects: (i) We increased the precision and recall of 
SEMA by iteratively combining the individual matching methods, (ii) we improved 
AUTOMS-F framework by adding more facilities towards the synthesis of individual 
matching methods, (iii) we noticed the fact that tools such as SEMA tend to fail to 
notice subsumption relations between elements of distinct ontologies, since they 
assess only equivalences between them, and finally, (vi) we managed to improve the 
execution time of matching methods, such as the one based on LDA.

1.2 Specific techniques used

Fig. 1. Overview of SEMA.

SEMA combines six matching methods, executed in a predefined sequence, as 
depicted in Fig. 1. Each method in sequence exploits the results of the previous 
methods, aiming to find additional mapping element pairs. This policy is applied as 
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the competition is restricted to the discovery of one-to-one mappings, and in order to 
exploit the complementary nature of the combined methods. As already pointed,
SEMA iteratively executes the overall mapping method, providing the mappings
computed during an iteration as input to the next iteration, until no change in the 
matching pairs arises. In more detail, the ontology mapping problem is modeled as an 
iterative process that finds the most nearest reachable fixed point of a vector function, 
as presented in similar approaches in the literature ([5], [6] and [7]).

The following paragraphs present the matching methods in the order of their 
execution: 

Lexical matcher: As said, SEMA uses a lexical matcher implementing the COCLU 
lexical similarity approach [4].

COCLU was originally proposed as a method for discovering typographic 
similarities between sequences of characters over an alphabet (ASCII or UTF 
character set), aiming to reveal the similarity of classes instances’ lexicalizations 
during ontology population [4]. It is a partition-based clustering algorithm which 
divides data into clusters and searches the space of possible clusters using a greedy 
heuristic. Each cluster is represented by a model, rather than by the collection of data 
assigned to it. The cluster model is realized by a corresponding Huffman tree which is 
incrementally constructed as the algorithm dynamically generates and updates the 
clusters by processing one string (instance’s surface appearance) at a time. The use of 
a model classifies the algorithm to the conceptual or model based learning algorithms. 
To decide whether a new string should be added in a cluster (and therefore, that it 
lexicalizes the same class/property as the other strings in the cluster do) the algorithm 
employs a score function that measures the compactness and homogeneity of a 
cluster. This score function, Cluster Code Difference (CCDiff), is defined as the 
difference of the summed length of the coded string tokens that are members of the 
cluster, and the length of the cluster when it is updated with the candidate string. This 
score function groups together strings that contain the same set of frequent characters 
according to the model of a cluster (e.g., Pentium III and PIII). 

According to the above, COCLU takes as input two strings and returns their 
similarity. The local name, label or comment of an OWL class or property, considered 
as a string, belongs in a particular cluster when its CCDiff is below a specific 
threshold and it is the smallest between the CCDiff’s of the given string and all 
existing clusters. Based on our experience with COCLU, the similarity threshold 
(ranging in [0,1]) was set to 0.986. A new cluster is created if the candidate string 
cannot be assigned to any of the existing clusters. As a result, it is possible to use the 
algorithm even when no initial clusters are available.

Matching pairs of ontology elements are generated according to the following 
rules:

1. A pair of ontology elements is a matching pair if the similarities of their 
local names, and labels, and comments are greater than the threshold value.

2. If two ontology elements do not match according to rule 1, then the elements 
are considered to match if the similarities of either their local names, or 
labels, or comments are greater than the threshold value.

3. If two ontology elements do not match according to rule 1 and rule 2, then 
their labels are substituted by their synonyms found in WordNet (in case they 
have WordNet entries) and rules 1 and 2 are repeated using the synonyms.



Latent Features Matcher: The second matching method applied is the semantic 
matching one detailed in [3]. This method aims at discovering and exploiting latent 
features that reveal the intended meaning of ontology elements. This is a contextual 
approach to the ontology mapping problem, where at first, ontology elements are 
transformed into vectors according to specific rules [3] that exploit elements’ vicinity
(e.g., labels, comments, instances, properties, super/sub elements, domain and range 
of properties etc.) with respect to the semantics of the specifications. The vectors’ 
length corresponds to the number of the distinct words in both input ontologies and 
each entry holds the frequency of each word in the vicinity of the corresponding 
element. Exploiting this representation of ontology elements, the method computes 
latent features that express the intended meaning of ontology elements. This is done 
by applying the reverse generative process of the Latent Dirichlet Allocation (LDA) 
[8] model. Doing so, each element is represented as a distribution over latent features, 
and similarities between elements’ pairs of the two ontologies is computed by means 
of the Kullback-Leibler divergence [9] measure. This measure estimates the 
divergence of distributions over latent features i.e., the divergence of elements’ 
approximated intended meaning. 

The major advantages of this approach are as follows: The use of latent features
helps to deal with problems of imprecise and vague ontology elements’ descriptions, 
as well as with cases of polysemy and synonymy. Also, the proposed approach does 
not presuppose the existence of any external resource, as it exploits words in the 
vicinity of ontology elements.

Vector Space Model (VSM) Matcher: The third method is a standard Vector Space 
Model [10] based technique where ontology elements are represented as vectors of 
weights. Each weight corresponds to a word and is being calculated using the TF/IDF 
measure. The similarity between two vectors is being computed by means of the 
cosine similarity measure. Element pairs with cosine similarity above a predefined 
threshold (0.2 in our experiments) are returned as matched pairs. The rules used for 
the extraction of words from ontology elements are the same as in the latent features’ 
based matcher.

Instance Based Matcher: The fourth mapping method of SEMA is a lexical 
matching method exploiting the instances of classes. Specifically, two classes are
considered to match if the percentage of their mapped instances is above a predefined 
threshold (10% in our experiments). Two instances match if the percentage of their 
matched properties is above a predefined threshold (10% in our experiments). Two 
properties of two distinct classes’ instances match if their values are assessed to match
by the COCLU lexical matcher.

Structural Based Matcher: The fifth method of SEMA is a structural matching 
method, which utilizes the mappings produced by the above described matching 
methods. According to this method, if two classes have at least a pair of matched 
super classes and a pair of matched sub class, then they are also considered to match.

Property Based Matcher: Similarly to the previous structural method, this one 
utilizes the properties’ mappings produced by the other methods in order to locate 
new matching pairs of classes. Specifically, two classes are considered to match, if 
the percentage of their mapped properties is above a predefined threshold (90% in our 
experiments).



Iterative Execution: The above mentioned matching methods, performed in the 
specified sequence, compute matching pairs by taking into account the vicinity of 
each ontology element, as well as its features (local name, label and comments). The 
vicinity includes the elements directly related to this element, together with their 
features. However, performing iteratively, the vicinity of each element can be 
extended to include its matching element in the target ontology.

This introduces a recursive dependency, which as it is pointed in [6], requires non-
standard computational means. This problem has been approached by Bisson [5] and 
Euzenat et al [6].

As it has been proposed in [6], given the recursive nature of these computations 
and aiming to compute the intended meaning of classes, we can still find the intended 
meaning of each class through an iterative process that finds the most nearest 
reachable fixed point of a vector function. Based on this work, SEMA, aiming to 
compute matching pairs of the input ontologies, performs an iterative computation as 
follows:

Repeat the following process until there is no change in the mapping pairs between the input 
ontologies.
1. For each element E do the following:
1.1. For each element in the vicinity of E
In case there is no mapping element associated to this element                 
compute the initial mapping based on its features.
1.2. Repeat the following until there is no change in the mapping computed for the element E

1.2.1 Compute the mapping of E using the mappings of 
                         elements in its vicinity

1.2.2 Re-compute the mappings of elements in its vicinity       
                    changing only the mapping for E

Performing iteratively, SEMA improves its precision, as it manages to propagate 
mappings to elements’ vicinity, while also achieving a high degree of individual 
methods’ combination: The results of each method feed the input of the other methods 
in the next iteration. In the current SEMA version the methods that contribute to the 
iterative computation are the VSM matcher, the property based matcher and the 
structure based matcher. The latent features matcher is executed only in the first 
iteration due to its requirements of high computational resources. 

1.3 Adaptations made for the evaluation

Since SEMA is built on top of AUTOMS-F framework [2], as already mentioned 
above, there was no need for particular adaptations in order to run SEMA on the 
benchmark test cases and output the resulting mappings in the requested format. 
AUTOMS-F provides specific classes and methods for this purpose. 

1.4 Link to the system and parameters file

http://iit.demokritos.gr/~vspiliop/SEMA.zip



1.5 Link to the set of provided alignments (in align format)

http://iit.demokritos.gr/~vspiliop/SEMA_results.zip

2 Results

Results produced by SEMA are grouped and discussed below. SEMA is implemented 
as a stand-alone Java programme and was executed on a dual core Ubuntu Linux PC 
(2 x 2.44 GHz cores, 1.5GB memory). Although, two cores where available no multi-
threading mechanism was exploited.

2.1 Benchmark

2.1.1 Tests 101 to 104

In these test cases the target ontologies have no major differences (except test 102) 
from the common source ontology. All mapping pairs are produced by the COCLU 
lexical matching method. In 102, where the target ontology is irrelevant to the source 
ontology, no mappings are returned.
Tests H-mean Precision H-mean Recall

101-104 1.0 1.0

2.1.2 Tests 201 to 210

In these test cases ontology elements’ features such as local names, labels and 
comments in the target ontologies have been changed in various ways (e.g., using 
uppercase letters, underscores, translating in foreign language, using synonyms, 
random strings or being suppressed). It is evident from the table below that the recall 
harmonic mean value drops significantly, comparing to the previous test category. 
This is due to tests 202, 209 and 210, where except from the fact that many source 
ontology elements’ labels have been replaced by elements having completely 
different lexicalizations (foreign language, synonyms or random strings) in the target 
ontology, the comments are suppressed, limiting the common features of the input 
ontologies. However, even in test 202, where comments are suppressed and 
ontologies do not share much of lexical information, SEMA manages to achieve 74% 
precision and 30% recall. This is achieved by exploiting a small fragment of 
instances’ common lexical information and by propagating similarity through the 
iterative execution of methods. However, as we will see in test cases 248-266 the 
propagation is not so effective and improvements should be considered.

It must be noticed that the exploitation of WordNet by the lexical matcher helps 
SEMA to perform 82% in terms of precision and 61% in terms of recall, even when 
no comments are available and labels are replaced by synonyms (test 209).

Tests H-mean Precision H-mean Recall
201-210 0.91 0.80



2.1.3 Tests 221 to 247

In these tests the changes made in the target ontology concern the hierarchy, the
properties, the instances and the number of properties defined in classes. As we can 
see from the overall results, there is a minor decrease in terms of both precision and 
recall (comparing to test case 101). This performance is due mainly to test case 230 
where SEMA performs 75% in terms of precision and 100% in terms of recall. The 
methods that introduce false mappings in this test (in order of negative influence) are 
the property based matcher, the VSM matcher and the latent features matcher. The 
first is due to the introduction of much more properties in the target ontology. The 
second is due to the noise introduced in the feature vectors representing classes and 
properties. More specifically, if elements different in meaning contain common words 
(resulting to similar representation vectors), then the VSM matcher may introduce 
false positives. Although, the latent features matcher is more tolerant to such noise, as 
it statistically generates latent features that focus on the significant statistical 
correlations between the elements of the two input ontologies, still it generates some 
false positives. It must be also pointed that as the latent features matcher is executed 
before the VSM matcher, it acts as a filter against such phenomena (since elements 
matched by the latent features matcher are not tested by the VSM matcher).

Tests H-mean Precision H-mean Recall
221-247 0.96 0.99

2.1.4 Tests 248 to 266

These are the most difficult tests of the benchmark track since local names, labels, 
and comments have been removed or replaced by random strings and only in some 
cases a fragment of the lexical features of instances is not altered from the target 
ontologies. SEMA relies totally on its instance based matcher to locate mappings 
between classes and properties. The iterative execution of SEMA does not manage to 
propagate similarity efficiently and restrain itself mainly in correcting some false 
positive mappings. By examining the raw results we observe that SEMA performs 
indifferently to the (non) existence of a class hierarchy. It must be pointed that the 
lexical matching method contributes only one mapping, i.e., the “lastName = 
lastName”. Concerning the recall values, they range in [25, 31], while the precision 
values range in [65, 100].

Tests H-mean Precision H-mean Recall
248-266 0.75 0.27

2.1.5 Tests 301 to 304

In the real world tests SEMA performs relatively satisfactory in terms of recall, but its 
precision definitely needs improvement. The main reason for the low precision is the 
low threshold value (0.2) of the VSM matcher. The threshold has been tuned in order 
to maximize the overall (101-304) precision and recall values. But this threshold is 
not the optimum if the evaluation is narrowed to tests 301-304. On the other hand, as 



it has been explained, the latent features matcher has a better discriminating ability 
and introduces very few false positives.

Tests H-mean Precision H-mean Recall
301-304 0.67 0.79

2.2 Anatomy, Directory and Food

We were not able to run these tests due to technical problems in parsing these 
ontologies.

2.3 Conference

Several experiments were performed using various ontologies provided in the 
Conference track. The main lesson learned is that SEMA tends to “confuse”
subsumption relations between elements of different ontologies with equivalence 
ones. For example, when mapping ekaw.owl to Conference.owl there where such 
cases, such as “Research_Topic=Topic” or “Assigned_Paper=Paper”. This is mainly 
due to the low threshold value (0.2) of the Vector Space Model mapping method. On 
the other hand, in other ontology pairs (e.g. ekaw.owl – crs_dr.owl) there is no such a 
phenomenon: all mappings assessed to be equivalences are indeed equivalences.

3 General comments

3.1 Comments on the results

The major advantages of SEMA are:
(i) The extensive exploitation of all linguistic features of the input ontologies through   
different methods.
(ii) The aggregation of results and methods’ combination via iteration, leading to the 
correction of false positive mappings of previous iterations and simultaneously 
performing propagation of similarities.
(iii) The use of latent features as a way to overcome the problems introduced by the 
phenomena of synonymy and polysemy, and finally,
(vi) The efficient and effective lexical similarity assessment performed by the 
COCLU lexical matcher.

The major weaknesses of SEMA are: 
(i) Its dependence on threshold values. This leads SEMA to “confuse” subsumption 
relations with equivalence mappings (as noticed in the real world cases of the 
Consensus Workshop Track). This phenomenon has been also reported by others in 
the OAEI 2006 contest [11].
(ii) The inability of SEMA to parse large ontologies.



3.2     Discussions on the way to improve the proposed system 

The ways to improve SEMA directly derive from its weaknesses, as follows: 
(i) SEMA’s parsing abilities must be enhanced in order to be tested in all tracks of the 
OAEI contest. 
(ii) Advanced mapping policies must be specified, so as to exploit input ontologies’ 
characteristics, deciding on the mapping methods to be applied. We believe that this 
will lead to an improvement of the precision values of SEMA. 
(iii) We plan to introduce a matcher that locates subsumption relations [12] as a way 
to filter subsumption relations that are “confused” as equivalence relations.

3.3 Proposed new measures

We believe that systems should be able to locate not only equivalences between 
elements of distinct ontologies, but also other types of relations such as subsumption 
(inclusion) (⊒ or ⊑), mismatch (⊥) and overlapping (⊓) and still be able to 
discriminate among them. This is of particular importance in the case of real world 
ontologies, where different conceptualizations make the complete alignment of 
ontologies very difficult. As a result, a new measure could be the number of false 
positive pairs assessed to belong in the equivalence relation, while belonging to an 
other relation (e.g., to the subsumption relation). 

4 Conclusion

Our participation in the OAEI 2007 contest with SEMA tool has been a significant 
experience. We have actually been able to identify pros and cons of our tool, and 
improve several of its aspects. The organizers’ feedback and the comparison with the 
other tools will also contribute to future improvements of the tool.
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Appendix: Raw results 

Matrix of results

# Name Prec. Rec. Time (sec)
101 Reference alignment 1 1 10
102 Irrelevat ontology NaN NaN 36
103 Language generalization 1 1 9
104 Language restriction 1 1 8
201 No names 0,92 0,98 9
202 No names, no comments 0,74 0,3 11
203 No comments 1 1 5
204 Naming conventions 0,95 0,96 8
205 Synonyms 0,93 0,96 9
206 Translation 0,94 0,97 11
207 0,92 0,97 11
208 0,89 0,8 6
209 0,82 0,61 9
210 0,81 0,47 10
221 No specialisation 1 1 8
222 Flatenned hierachy 0,96 1 9
223 Expanded hierarchy 0,97 0,98 10
224 No instance 1 1 7
225 No restrictions 1 1 8



228 No properties 1 1 16
230 Flatenned classes 0,75 1 8
231 1 1 8
232 1 1 7
233 1 1 16
236 1 1 12
237 0,96 1 6
238 0,97 0,97 9
239 0,94 1 16
240 1 1 22
241 1 1 12
246 0,94 1 12
247 0,94 0,94 12
248 0,73 0,3 11
249 0,73 0,28 12
250 1 0,27 14
251 0,65 0,26 11
252 0,65 0,25 11
253 0,71 0,28 11
254 1 0,27 15
257 1 0,27 14
258 0,66 0,25 12
259 0,68 0,26 14
260 1 0,31 14
261 1 0,27 18
262 1 0,27 14
265 1 0,31 14
266 1 0,27 18
301 BibTeX/MIT 0,7 0,75 8
302 BibTeX/UMBC 0,62 0,6 5
303 Karlsruhe 0,55 0,8 9
304 INRIA 0,76 0,93 6


