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Abstract. While lots of research in ontology matching is related to the issue of
computing and refining similarity measures, only little attention has been paid to
question how to extract the final alignment from a matrix of similarity values. In
this paper we present a theoretical framework for describing extraction methods
and argue that the quality of the final matching result is highly affected by the
extraction method. Therefore, we discuss several extraction methods and apply
them to some of the results submitted to the OAEI 2006. The results of our ex-
perimental study show that the proposed strategies differ with respect to precision
and recall. In particular, theoretical considerations as well as emprirical results
indicate that methods that additionally make use of information encoded in the
ontologies result in better extractions compared to state of the art approaches.

1 Motivation

Automated matching systems have to be applied to detect semantic relations between
ontologies representing overlapping domains. The majority of matching systems ap-
proach this problem by computing similarities between the entities (concepts, roles,
ect.) to be matched. While similarities can be obtained by comparing the matchable en-
tities one by one, structure and semantic based techniques use more sophisticated ways
to compute, propagate and refine similarities by taking the context of these entities into
account. As a final step of the matching process an alignment has to be extracted. Since
the similarities computed in the first phases of the matching process suggest a diver-
sity of matching hypotheses, the final result will be highly affected by the extraction
process. Obviously, it makes sense to use the structural and semantic information in
the process of similarity computation. We argue that the same holds for the extraction
process. Therefore, we propose a theoretical framework to distinguish between sev-
eral extraction methods and present as well as evaluate some extraction algorithms that
make use of the additional information encoded in the ontologies to be matched.

1.1 Problem Statement

In accordance to Euzenat and Shvaiko [1] the problem of ontology matching can be de-
fined as follows. For each ontology T there is a function Q(T ) that defines matchable
elements of T . Given ontologies T1 and T2, the task of matching is to determine cor-
respondences between Q(T1) and Q(T2). Correspondences can be defined as 4-tuples



〈e, e′, r, v〉 where e ∈ Q(T1) and e′ ∈ Q′(T2), r is a semantic relation, and v ∈ [0, 1]
is a confidence value. In this paper, we only consider the simple case where Q(T ) are
the concepts of T and r is the equivalence relation. Given correspondence c we use the
functions source(c) and target(c) to refer to the aligned concepts, rel(c) to denote the
semantic relation, and conf (c) to refer to the confidence value.

The extraction problem we address is a subproblem of the matching problem. A
process that solves this problem takes a mapping M (a set of correspondences) and
two ontologies T1 and T2 as input and returns a mapping M′ ⊆ M as result. In many
matching systems the final mapping is extracted from a similarity matrix S. Notice that
for each similarity matrix S there exists a mapping M, such that each correspondence
in M corresponds to a cell in S. The methods we propose to solve this problem will
thus be relevant for the large class of matching systems that first compute similarity
matrices or comprehensive intermediary mappings and thereafter extract alignments as
final outcome. An optimal solution to an extraction problem is a mapping M′ ⊆ M
such that each c ∈ M′ truly reflects the semantic relation rel(c) between source(c)
and target(c), and there exists no c̄ ∈ M \M′ such that c̄ truly reflects the semantic
relation rel(c̄) between source(c̄) and target(c̄).

1.2 Related Work

The extraction problem has only been of minor interest in research related to ontology
matching. Euzenat and Shvaiko [1] spend five pages on the topic in their comprehensive
book ’Ontology Matching’. They mainly discuss thresholds and a greedy startegy as
well as several methods that optimize the results of a one-to-one extraction. Some of
these approaches are taken up and extended in the following sections. In opposite to
our approach Euzenat and Shvaiko model the extraction problem to be independent
of the ontologies to be matched. To our suprise, the papers submitted to the OAEI
2006 contest describing the matching systems of the participants contain only minor
information on extraction. We believe that the importance of the extraction problem is
highly underestimated in research and that extraction methods have strong effects on
characteristics and quality of the resulting mappings.

In prior work [7] we applied the notion of mapping consistency to eliminate poten-
tially erroneous correspondences from automatically generated mappings. Not being
aware of the applicability to the more general problem of mapping extraction we re-
ferred to this process as repairing of mappings. This approach has been extended and
modified towards an extraction technique in [6] where it has been evaluated on syn-
thetic data sets. The main contribution of these approaches compared to state-of-the-art
extraction methods is based on the fact that knowledge endcoded in the ontologies can-
not only be used for computing similarities but also plays a crucial role in the final
extraction process.

1.3 Outline and Contribution

In section 2 we introduce the notion of an extraction function and describe several
distinctive properties of extraction functions. In particular, we distinguish between on-
tology dependent functions that make use of the additional knowledge encoded in the



ontologies and ontology independent functions. In section 3 we take up this distinction
and present several algorithmic implementations of both ontology independent (section
3.1) and ontology dependent extraction functions (section 3.2). We implemented these
algorithms and conducted several experiments on some of the results submitted to the
OAEI 2006. The experimental results (section 4) indicate that certain extraction meth-
ods, in particular ontology dependent methods, yield better solutions compared to naive
approaches. Nevertheless, our main contribution is to emphasise the importance of the
extraction problem and to point out that different extraction techniques have strong ef-
fects on the characteristics and the quality of the final matching result.

2 Preliminaries

We understand the extraction process as the application of a sequence of extraction
functions to an input mapping and the ontologies to be matched. Therefore, we first have
to define the notion of an extraction function as well as some properties of extraction
functions. For all of the following definitions let T denote the set of ontologies and let
M denote the set of possible mappings between two ontologies T1, T2 ∈ T.

Definition 1 (Extraction function). A function f : T× T×M → M is an extraction
function iff for all T1, T2 ∈ T and for all M∈ M we have f(T1, T2,M) ⊆M.

Some extraction functions solely rely on the input mapping M, while some func-
tions make use of the information encoded in T1 and T2. We take this distinction into
account by refering to functions of the first type as ontology independent, while refering
to functions of the second type as ontology dependent.

Definition 2 (Independence). An extraction function f is ontology independent iff for
all T1, T2 ∈ T and for all mappingsM∈ M between T1 and T2 we have f(T1, T2,M) =
f(∅, ∅,M) where ∅ denotes an ontology with no axioms. Otherwise f is ontology de-
pendent.

In this work we focus on extraction functions that yield one-to-one mappings. A
one-to-one mapping respectively a one-to-one extraction function can straight forward
be defined as follows.

Definition 3 (One-to-one mapping and extraction function). A mappingM is a one-
to-one mapping iff for all correspondences c ∈M there exists no c′ 6= c ∈M such that
source(c) = source(c′)∨ target(c) = target(c′). An extraction function f is a one-to-
one extraction function iff the codomain of f is constrained to be the set of one-to-one
mappings.

As mentioned above, the extraction process can be understood as applying a se-
quence of extraction functions, in other words, applying the composition of several
extraction functions. Since domain and codomain of an extraction function are not the
same, we have to redefine composition with respect to extraction functions in the fol-
lowing self-evident way.



Definition 4 (Composition of extraction functions). Given extraction functions f and
g. The composition f ◦ g : T × T × M → M is defined as (f ◦ g)(T1, T2,M) =
f(T1, T2, g(T1, T2,M)).

Some matching systems are extracting the final mapping by applying a threshold
on the similarity matrix. This way to extract is obviously not a one-to-one extraction.
Nevertheless, it is an important component in the extraction process. Therefore, we
define the application of a threshold as threshold extraction function.

Definition 5 (Threshold extraction function). An extraction function ft with t ∈
[0, 1] is a threshold extraction function iff for all T1, T2 ∈ T and for all mappings
M∈ M between T1 and T2 we have ft(T1, T2,M) = {c ∈M|conf (c) > t}.

In most cases a one-to-one mapping will be obtained by the composition of a thresh-
old function ft and a one-to-one extraction function f . The order of applying these func-
tions can have effects on the results depending on f . Therefore, we have to introduce
the following property.

Definition 6 (Threshold commutative). An extraction function f is threshold commu-
tative iff f ◦ ft = ft ◦ f for all t ∈ [0, 1].

Obviously, threshold extraction functions are threshold commutative. This follows from
the fact that ft1 ◦ ft2 = fmax{t1,t2} = ft2 ◦ ft1 .

The most interesting class of extraction functions are, from a theoretical perspective,
optimization functions. These functions are defined by an objective function and extract
a final mapping that is optimal with respect to the chosen objective function.

Definition 7 (Optimization function). An extraction function fo is an optimization
function iff for all M∗ ⊆ M we have o(M∗) ≤ o(fo(T1, T2,M)) with o : M → R
being an objective function.

We will see that the considerations of this section are not only of theoretical in-
terest but constitute a useful framework to describe and distinguish between different
extraction techniques.

3 One-to-one extraction algorithms

In this section we describe several algorithms that are implementations of different types
of extraction functions. Some of these algorithms have to iterate over the elements of
a mapping according to the ordering of confidence values. Therefore, we deal with
mappings as sequences of correspondences in the following.

3.1 Ontology independent extraction algorithms

First, we focus on the algorithmic implementation of ontology independent extraction
functions. These functions do not make any use of the information encoded in the on-
tologies to be aligned. At the end of this subsection we present a small example that
compares the behavior of the introduced algorithms.



Algorithm 1
NAIVEDESCENDING(M)
1: M′ ← ∅
2: SORTDESCENDING(M)
3: whileM 6= ∅ do
4: c← REMOVEFIRSTELEMENT(M)
5: M′ ←M′ ∪ {c}
6: for all c′ ∈ GETALTERNATIVES(M, c) do
7: REMOVEELEMENT(M, c′)
8: end for
9: end while

10: return M′

Naive descending extraction Algorithm 1 can be described as naive greedy strategy
that transforms a many-to-many mapping into a one-to-one mapping by iterating over
the elements of M in descending order. The algorithm consists of a sequence of local
decisions. First, the correspondences in M are sorted descending due to their confi-
dence value. Then the algorithm iterates over M removing step by step elements from
M. In each iteration correspondence c with the hightest confidence value is removed
and added to the extraction result M′. The reduced M is checked for alternative corre-
spondences, where GETALTERNATIVES(M, c) is defined to return the set of all corre-
spondences that have the same source or target concept in common with c. All alterna-
tives are removed from M and will thus also not be contained in the extracted mapping
M′. Notice that this naive extraction function is threshold commutative and has been
implemented by several participants of the OAEI 2006, for example by Falcon-AO [2]
and RiMOM [4].

Naive ascending extraction Algorithm 2 is similar to algorithm 1 but more restric-
tive. While algorithm 1 accepts correspondences and removes their alternatives in de-
scending order, algorithm 1 dismisses correspondences due to the existence of alter-
natives with a higher confidence value. The major difference is based on the princi-
ple that correspondences are dismissed if better alternatives exist even though these
alternatives are also dismissed in one of the following iterations. Therefore, we have
NAIVEDESCENDING(M) ⊇ NAIVEASCENDING(M) for all M∈ M.

Hungarian extraction Algorithms 1 and 2 are implementations of extraction func-
tions that are based on sequences of local decisions. Contrary to these approaches, an
optimization extraction function extracts a solution that is optimal from a global point
of view, selecting the one-to-one subset M′ of M that is optimal with respect to some
objective function o. Choosing objective function o(M′) =

∑
c∈M′ conf (c), the prob-

lem to find M′ can be solved using the hungarian method. The hungarian method is a
combinatorial optimization algorithm which solves assignment problems in polynomial
time [3]. To use the algorithm in the context of mapping extraction a few modifications
have to be applied. Due to the lack of space we cannot give a detailed description. Such



Algorithm 2
NAIVEASCENDING(M)
1: M′ ← ∅
2: SORTASCENDING(M)
3: for all c ∈M do
4: if GETALTERNATIVES(M, c) = ∅ then
5: M′ ←M′ ∪ {c}
6: end if
7: end for
8: return M′

a description can be found in [6] in section 3.1. We refer to this algorithm as HUNGAR-
IANEXTRACTION(). Notice that the function implemented in HUNGARIANEXTRAC-
TION() is our first example for a function that is not threshold commutative. A proof for
this claim can be given by counter example. Example 1 provides a counter example and
illustrates the differences between the three proposed extraction functions.

Example 1. Given a mapping M = {c1, c2, c3, c4} between T1 and T2 based on a
similarity matrix S. The following table describes S respectivelyM in detail. Applying
the extraction functions presented above we obtain different results.

2 : X 2 : Y
1 : A c1 = 〈1: A, 2: X, =, 0.9〉 c2 = 〈1: A, 2: Y,=, 0.8〉
1 : B c3 = 〈1: B, 2: X, =, 0.7〉 c4 = 〈1: B, 2: Y,=, 0.5〉

– NAIVEDESCENDING(M) = {c1, c4}: The algorithms first adds c1 to the resulting
mapping M′. By making this choice c2 and c3 are removed from M since they are
alternatives with a lower confidence value. Finally, c4 is added to M′.

– NAIVEASCENDING(M) = {c1}: The algorithm starts with c4. Since there are
more probable alternatives available c4 is discarded. The same holds for c3 and
c2. Finally, only c1 is left and accepted to be part of M′.

– HUNGARIANEXTRACTION(M) = {c2, c3}: The hungarian method finds the best
one-to-one mapping M′ with respect to the objective function o(M) =

∑
c∈M′ c.

Notice that correspondence c1 is not an element ofM′ contrary to the results of the
greedy approaches.

What if we apply threshold function f0.75 to this problem? Now we have HUNGARIAN-
EXTRACTION(f0.75(M)) = {c1} and f0.75(HUNGARIANEXTRACTION(M))= {c2}.
Thus, we can conclude that our implementation of an optimizing extraction function is
not threshold commutative.

3.2 Ontology dependent extraction algorithms

We now introduce two straight forward extensions for each of the algorithms presented
above. The resulting algorithms are implementations of ontology dependent extraction
functions. First, we discuss how to use the additional information encoded in T1 and
T2 by introducing the notion of a merged ontology (definition 8). Merging T1 and T2

results in the union of T1 and T2 using M as nexus.



Definition 8 (Merged ontology). Given a mapping M between ontologies T1 and T2.
The merged ontology T1∪MT2 of T1 and T2 connected viaM is defined as T1∪MT2 =
T1∪T2∪{t(c) | c ∈M} with t being defined by t(〈1: C, 2: D,=, c〉) = 1: C ≡ 2: D
converting equivalence correspondences into equivalence axioms of T1 ∪M T2.

Adding the correspondences of M as equivalence statements results in an ontology
that is structured by subsumption relations connecting concepts of both ontologies. A
concept of T1 is thus positioned in the taxonomy of T2 and vice versa. This can result in
subsumptions between concepts of T1 or T2 that cannot be derived from T1 respectively
T2 without taking M into account. We define the according property as instability of a
mapping (also defined in [5] in the context of DDL).

Definition 9 (Stability of a mapping). Given a mapping M between ontologies T1

and T2. M is stable iff there exists no pair of concepts 〈i : C, i : D〉 with i ∈ {1, 2}
such that Ti 6|= i : C v i : D and T1 ∪M T2 |= i : C v i : D. Otherwise M is instable.

The additional subsumption statements introduced by a mapping are major topic
of distributed description logics (compare for example [9]). In this context, additional
subsumption statements are equated with additional knowledge which has a positive
connotation. Nevertheless, we think that - as far as we are concerned with automat-
ically generated correspondences - additional subsumption statements introduced by
M indicate that some of the correspondences in M are erroneous. Furthermore, we
introduce the stronger property of mapping consistency (based on the corresponding
definitions in [10], [5], and [7]).

Definition 10 (Consistency of a mapping). Given a mapping M between ontologies
T1 and T2. M is consistent iff there exists no concept i : C with i ∈ {1, 2} such that
Ti 6|= i : C v ⊥ and T1 ∪M T2 |= i : C v ⊥. Otherwise M is inconsistent.

Obviously, some of the correspondences of an inconsistent mapping M have to be
incorrect, because we would not accept a mapping that imposes restrictions on T1∪MT2

making some of the concepts in T1∪MT2 unsatisfiable. By postulating that the extracted
mapping M′ has to be stable respectively consistent, we impose additional constraints
on extraction functions. Notice that both properties are subject to criticism.

– Mapping stability: Extracting stable mappings makes only sense if all (or most of
all) subsumption statements have been specified (directly or indirectly via entail-
ment) in both T1 and T2. If one of the ontologies has been poorly structured by
the ontology engineer the additional subsumption statements imposed by M will
indeed introduce new acceptable knowledge.

– Mapping inconsistency: Inconstencies will only occur if T1 respectively T2 con-
tain disjointness statements. Evaluation of ontologies show that these statements
are often missing [13]. Thus, even a completely incorrect mapping will often be
consistent.

Even though there are extraction problems where stability is too restrictive while con-
sistency is not restrictive at all, we believe that applying these properties will in most
cases have positive effects on the extraction results. Therefore, we introduce the notion
of a minimal conflict set. A minimal conflict set is an instable respectively inconsistent
subset ofMwhich contains no real subset that is also instable respectively inconsistent.



Definition 11 (Minimal conflict sets). Given a mappingM between ontologies T1 and
T2. A subset C ⊆ M is a minimal conflict set with respect to stability (consistency), if
C is instable (inconsistent) and each C ′ ⊂ C is stable (consistent).

From a more general point of view we can abstract from the conflicts introduced
in this paper and define the class of conflict based extraction functions as subclass of
ontology dependent extraction functions.

Definition 12 (Conflict based extraction function). An extraction function fg is con-
flict based iff for all C ∈ g(M) there exists a correspondence c ∈ C∧c /∈ fg(T1, T2,M)
where g : M → 2M is a conflict function defined by g(M) = {C ⊆M|C is a minimal
conflict set}.

Using a conflict based approach origins from its application in the context of di-
agnosis, as introduced by Reiter [8]. It has already been applied by the authors to the
problem of automatically repairing mappings in [7] and partially to the problem of
mapping extraction in [6]. Notice that related approaches can be found in [12] where
Wang and Xu propose similar mapping properties. These properties are used supporting
humans in semi-automatic repairing of mappings.

As decribed in [6] stability and consistency ofM can be efficiently checked for each
dual-element subset of M using a straight forward approach.1 Therefore, we restrict
ourselves to pairwise consistency and stability and have to define a conflict pair as a
dual-element conflict set.

Definition 13 (Conflict pair). Given a mappingM between ontologies T1 and T2. C is
a stability (consistency) conflict pair, if |C| = 2 and C is a minimal conflict set with re-
spect to stability (consistency). Correspondence c1 ∈M conflicts with correspondence
c2 ∈M iff {c1, c2} is a conflict pair.

The extraction algorithms we propose as approximate conflict based extensions of
algorithms 1 and 2 remove at least one correspondence from each conflict pair which
results in an extracted mapping that will be pairwise stable respectively consistent. Both
algorithms can be extended in a natural way by replacing GETALTERNATIVES(M, c)
by calling a method that returns all alternatives for c as well as all correspondences that
conflict with c. Obviously, the results of these extended algorithm are pairwise consis-
tent respectively stable. For the experimental study we have implemented both variants.
Notice that pairwise stability (consistency) is only an approximation of stability (consis-
tency). Nevertheless, due to our experience most conflict sets turned out to be minimal
conflict pairs.

The same approach cannot be applied to extend the hungarian method. Instead of
that it is possible to search for an optimal solution that is free of pairwise conflicts.
Due to the lack of space we have to omit a description of the algorithm which has
already been described in detail in [6]. There we claimed that conflict based extrac-
tion not only increases precision but in some cases also increases recall. We have been
critizised for this point of view, because it seems that solving a conflict is established

1 In [6] this has only been described for consistency, but this approach can be modified in a
self-evident way for stability.



by dismissing correspondences. That is only half the truth. Solving conflicts forces
the hungarian method to rearranage parts of or even the whole assignment. Consider
again example 1. Suppose now c2 conflicts with c3. Obviously, c2 and c3 cannot be
both elements of the final extraction. But since alternatives are available, the final re-
sult of the extended hungarian extraction will be {c1, c4} instead of {c2, c3}. Thus, it
is possible that the conflict-based extraction increases both precision and recall. The
same kind of argument can be applied to NAIVEDESCENDING() even if a rearrange-
ment will only affect parts of the results due to the greediness of the algorithm. Con-
trary to this, increasing recall is not possible by extending algorithm 2. For this al-
gorithm we have NAIVEASCENDING(M) ⊇ NAIVEASCENDINGConsistency (M) ⊇
NAIVEASCENDINGStability (M).

4 Experiments

In the following we present some emprirical results by applying the one-to-one extrac-
tion algorithms presented above on real world matching problems. Before going into
details it makes sense to bring together the theoretical considerations of the last sec-
tions and resume them as hypotheses.

– H1: One-to-one extraction functions exceed threshold extraction functions with re-
spect to the harmonic mean of precision and recall (f-measure).

– H2: Ontology dependent extraction functions (implemented as conflict-based algo-
rithms) will result in better extractions compared to alternative approaches.

– H3: Optimization extraction functions will result in better extractions compared to
alternative approaches.

4.1 Experimental Settings

We evaluated the presented algorithms using automatically created mappings between
ontologies of the ontoFarm data set. The ontoFarm data set consists of a set of ontolo-
gies in the domain of conference organization that has been created by the Knowledge
Engineering Group at the University of Economics Prague [11] and has been subject of
the conference track at the Ontology Alignment Evaluation Initiative 2006.

Amongst the participants that submitted results for all pairs of ontologies only two
matching systems generated many-to-many mappings that can be used as input to our
one-to-one extraction procedures. We refer to these systems as system A and B. We
were also able to refactor another matching system (system C) to generate many-to-
many mappings while not modifying any other parameters that have been used to gen-
erate the submitted results. Thus, we could apply and evaluate our algorithms as final
step of three matching systems. To evaluate the extraction results we had to manually
construct reference mappings consisting of equivalence correspondences for all pairs of
ontologies. Since this task is extremly time-consuming we decided to choose a subset
of eight ontologies of the ontoFarm Dataset, thus creating 28 reference mappings. In
our experiments we evaluated the extraction algorithms presented above for all match-
ing systems and for all matching problems. Thus we had to evaluate 9× 3× 28 = 756
different extraction results. Therefore, we cannot present the results in detail but have
to focus on aggregated values.



4.2 Results

To examine hypothesis H1 we computed precision and recall aggregated over all match-
ing problems for both the many-to-many input mappings and the extraction results
based on applying the simplest one-to-one extraction algorithm NAIVEDESCENDING().
The resulting differences are listed in table 1. The extraction method NAIVEDESCEND-

Matcher ∆ Precision ∆ Recall ∆ F-Measure
System A + 2.2% 0.0% + 1.3%
System B + 25.8% - 3.9% + 13.3%
System C + 27.4% - 3.0% + 16.6%

Table 1. Many-to many mappings vs. one-to-one mappings.

ING() is already implemented as extraction method of system C. Thus, we compare
against the intermediary many-to-many mapping of this system. System A has been
applied with a setting that results in an extraction close to a one-to-one mapping but
also adds correspondences that have nearly (specified by a certain range) the same con-
fidence as the best match. Therefore, for system A the effects of a one-to-one extraction
are only marginal. System B does not extract one-to-one mappings. The resulting map-
ping can be optimized to a significant degree. While we gain about 26% precision, we
loose only 4% recall. Nevertheless, even for system A we get slightly better results. We
conclude that hypothesis H1 has been verified by our experiments.

Hypothesis H2 is concerned with the issue wether the information encoded in the
ontologies can be used to optimize the extraction result. We proposed two ways to ex-
tend extraction functions to be ontology dependent, in particular conflict based. Thus,
we compare for each extraction function the ontology independent algorithm with the
variants generating consistent respectively stable extraction results. Figure 1 presents
the mean values aggregating over matching systems and matching problems. Each col-
umn describes in how far precision, recall, and f-measure has been increased or de-
creased by applying one of the extraction methods compared to the many-to-many input
mapping. For all three extraction methods and their extensions we can observe a similar
pattern. The ontology independent variant is less precise than the ontology dependent
variant using consistency which is again less precise than the variant using stability. A
similar pattern with a negative influence of ontology dependency can be observed for
recall. But notice that the negative effects are smaller compared to the positive effect
on precision. This can also be derived from the third group of columns describing the
f-measure. Only for algorithm NAIVEDESCENDING() we have slightly worse results
by extending it to an ontology dependent approach. We have already argued above that
extending this algorithm will not result in an rearrangement of the extracted assignment.
We can conclude that hypotheses H2 has been verified by our experiments.

Finally, we have to consider hypotheses H3. We have claimed that an extraction
function that finds an optimal extraction with respect to an appropriate objective func-
tion yields better results than a greedy approach. This hypothesis cannot be verified



Fig. 1. Comparison of three basic extraction methods and their ontology dependent extensions.

by the experimental results. If we compare the f-measures of NAIVEDESCENDING()
and HUNGARIANEXTRACTION() we observe that the greedy approach surprisingly
extracts slightly better solutions in average. There is some evidence that choosing an
additive objective function has not been the best choice. Understanding confidence
values as probabilities, it seems to be more natural to use an objective function like
o(M′) =

∏
c∈M′ conf (c) which possibly will result in better extractions. But notice

also that using additional conflict information has the strongest positive effect on the
optimization approach. We have argued above that an optimization approach is more
flexible with respect to rearrangements of assignments. Therefore, taking additional
conflicts into account in the context of an optimization approach will strongly influ-
cence the quality of the extraction results, while algorithm NAIVEASCENDING() can
use information on conflicts only to a very limited extent.

5 Summary and Outlook

We introduced a framework for describing and distinguishing between methods to ex-
tract a one-to-one mapping from a similarity matrix. In particular, we introduced the
notion of an ontology dependent extraction function as well as the notion of an opti-
mization extraction function. From a theoretical perspective we have argued that these
types of extraction functions should result in better solutions to the extraction problem
than naive approaches. We stated several algorithms as implementations of naive and
more sophisticated extraction functions. To extend these algorithms towards ontology
dependency, we introduced the concepts of mapping consistency and stability based on
prior work. All in all, we stated nine different extraction methods. Thus, we had for
each important type of extraction function at least one implementation.

In order to proove the hypothesis derived from theoretical considerations, we per-
formed several experiments. In these experiments we could verify that ontology de-
pendent functions yield better results than their ontology independent counterparts. We



could not proove that our implementation of an optimization extraction function per-
forms better than the naive approaches and argued that the choice of objective function
is a crucial point. We also observed that extending optimization functions results in a
significant improvement compared to the ontology independent counterparts. In future
work the combination of optimization and conflict based extractions has to be exam-
ined. In particular, understanding confidences as probabilities seems to be an promising
approach. Besides arguing that certain methods result in better solutions compared to
naive approaches, the main contribution of this paper is to highlight the importance of
the extraction problem as a self-contained subproblem of ontology matching.
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