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Abstract. Numerous ontology alignment algorithms have appeared in the 
literature in recent years, but only a few make use of the semantics enclosed 
within the ontologies in order to improve the accuracy. In this paper, we present 
the Automated Semantic Mapping of Ontologies with Validation (ASMOV) 
algorithm for ontology alignment. We first provide a brief overview of the 
algorithm followed by an analysis of its results on the 2007 Ontology 
Alignment Evaluation Initiative tests. We conclude the paper by identifying the 
specific strengths and weaknesses of ASMOV, while pointing out the necessary 
improvements that need to be made.  

1  Presentation of the System 

In recent years, ontology alignment (or ontology mapping) has become popular in 
solving interoperability issues across heterogonous systems in the semantic web. 
Though many techniques have emerged from the literature [1] [6], the distinction 
between them is accentuated by the manner in which they exploit the features within 
an ontology.  

ASMOV, an algorithm that automates the ontology alignment process while 
optionally accepting feedback from a user, uses automatically-adjusting weights 
based on four features of the ontologies; a more complete description of ASMOV has 
been presented in [4]. ASMOV computes similarity measures by analyzing the 
entities in the manner in which they are modeled in the ontology, and the iterative 
alignments produced by ASMOV are validated by a number of rules and a mapping 
validation process.  

1.1  State, Purpose, General Statement 

ASMOV is an automatic ontology matching tool which has been designed in order to 
facilitate the integration of heterogeneous systems, using their data source ontologies. 
The OAEI tests help us validate that ASMOV produces ontology alignments with 
high accuracy and that little user interaction is needed to correct these results.  The 
current ASMOV prototype produces both class-to-class and property-to-property 
mappings, including mappings from object properties to datatype properties and vice 
versa. 



1.2  Specific Techniques Used 

The ASMOV algorithm iteratively calculates the similarity between concepts for a 
pair of ontologies by analyzing four features: textual description (id, label, and 
comment), external structure (parents and children), internal structure (property 
restrictions for classes; types, domains, and ranges for properties), and individual 
similarity. The measures obtained by comparing these four features are combined into 
a single confidence value using a weighted sum in a similar manner to [2]. In the case 
of ASMOV, the initial weights were chosen arbitrarily, and have been optimized 
based on the benchmark test results. During an automated pre-processing phase, 
ASMOV contains a mechanism that automatically adjusts the weights based on the 
information contained in the ontologies. For example, when analyzing the textual 
information in the pre-processing phase, if ASMOV cannot find meaningful words, it 
decreases the textual similarity weight based on predetermined rules. These rules are 
static and have not been adjusted for any of the OAEI 2007 tests. 

 
Fig. 1. The Mapping process of ASMOV 

Fig. 1 illustrates the Mapping process of ASMOV. The whole process is fully 
automated.  

In the pre-processing phase, the ontologies are loaded into memory using Jena [5]. 
Each class and property is wrapped and tagged with the meaning of its id and label(s). 
The meaning of these texts is retrieved using UMLS Metathesaurus [7] for the 
anatomy test and WordNet [8] for the other tests including the benchmark tests. 
Through a configuration parameter, a user can force the ASMOV system to use either 
one, neither, or both of the lexical systems. During the pre-processing phase, a quick 
analysis of the ontologies being mapped is performed. This analysis entails checking 
for the presence of properties and meaningful words within the textual description of 
the classes and properties; the weights are adjusted depending on the result of this 
analysis.  



The second phase of the algorithm is the iterative process. During this phase, pairs 
of entities (classes and properties) are compared using the four features described 
earlier, with the resulting overall similarity measure (or confidence value) being 
stored in a 2-dimensional matrix. At the end of each iteration, a pruning process 
eliminates the invalid mappings by analyzing two semantic inconsistencies: crisscross 
mappings and many-to-one mappings. A crisscross mapping occurs whenever a 
source entity (SEp) and its child (SEc) are mapped to a target entity (TEc) and its 
parent (TEp) respectively. Many-to-one mappings are inconsistent if it cannot be 
asserted through the ontology that all the classes in a many-to-one mapping are either 
equivalent or if each of the classes is subsumed into another. The iterative process 
stops when the difference in confidence values for two subsequent interations is 
below a given threshold and no inconsistencies are found by the pruning process, or 
until a cyclic situation is detected.  

After the iterative process is completed, a mapping validation starts. This 
validation process performs a structural analysis using graphs built from the 
alignment and information from the ontologies. The validation is performed in three 
phases: class validation, property validation, and concept-property validation. If any 
inconsistency is found by this process, the iterative process restarts at the end of the 
validation process. The inconsistent mappings discovered by the mapping validation 
process and the pruning process are retained so that ASMOV does not try to align 
those same entities in subsequent mappings. 

1.3  Adaptations Made for the Evaluation 

No special adaptations have been made to the ASMOV system in order to run the 
2007 OAEI tests; however, four Java classes have been added in order to respectively 
run the benchmark series of tests, the anatomy tests, the director test and the 
conference tests, and output the results in the OAEI alignment format. Although the 
rules stated clearly that all alignments should be run from the same set of parameters, 
ASMOV was unable to run the anatomy tests under the same conditions due to its 
iterative nature and the large size of the anatomy ontologies. Two changes had to be 
made: UMLS was used instead of WordNet as the lexical reference system and the 
iterative process was stopped when 90% (instead of 100%) of the mappings in the 
similarity matrix were unchanged in two subsequent iterations. These changes were 
supplied to the system via properties of a parameters file and required no changes in 
the coding implementation of ASMOV.  

1.4  Link to the ASMOV System 

The ASMOV system (including the parameters file) can be downloaded from 
http://support.infotechsoft.com/integration/ASMOV. A document detailing our 
approach can also be found there. 



1.5  Link to the Set of Alignments Produced by ASMOV 

The results of the 2007 OAEI campaign for the ASMOV system can be found at     
http://support.infotechsoft.com/integration/ASMOV. 

2  Results 

The 2007 Ontology Alignment Evaluation Initiative campaign consists of four tracks 
which include: (a) a comparison track, (b) expressive ontologies, (c) directories and 
thesauri, and (d) a consensus workshop track. Although ASMOV was able to 
participate in all four tracks, only one out of four tests of the directories and thesauri 
track was able to be performed due to the large size of the ontologies in the other 
tests. ASMOV is a Java implementation which uses Jena to parse the RDF and OWL 
files. All tests were carried out on a PC running Windows XP Professional with a 
dual-core Intel Pentium processor (2.8 GHz) and 3 gigabytes of memory. 

2.1  Benchmark  

Because ASMOV’s overall similarity calculation (or confidence value) is based on a 
weighted sum and the weights are automatically adjusted based on the structure of the 
ontologies being aligned, all tests were ran under the same conditions, the system’s 
default configuration. For the analysis of the results, the benchmark tests are divided 
into three groups: tests 101-247, tests 248-266, and tests 301-304. The precision, the 
recall, and the time cost for the individual tests are listed in the Appendix.  

2.1.1  Test 101-247  

ASMOV performs very well in this set of tests, producing an overall precision and 
recall of 99%. The less accurate results were produced by the tests 202, 209 and 210. 
In test 202, although the identifiers of the entities were replaced by random strings 
and their labels and comments suppressed, ASMOV was still able to leverage other 
semantic information of the ontologies (namely the hierarchical information, the 
internal structure of the entities, and the similarity between individuals) in order to 
generate an alignment of 88% accuracy in both precision and recall.  By our analysis, 
nine out of the eleven incorrectly mapped properties are as accurate as the ones 
provided within the gold standard, since these properties can only be differentiated by 
their lexical information (id, label, and comment) and the target ontology (202) has 
this information suppressed or replaced by random strings for its entities. In test 209, 
the identifiers and labels were replaced by synonyms and the comments suppressed; 
the obtained precision and recall were respectively 92% and 90%. In this test, 
ASMOV suffers mostly because of the measure produced by the similarity 
calculation. For example, the property ‘abstract’ has been mapped to the property 
‘rights’ instead of the property ‘summary’; the latter was due to the fact that the 
lexical similarity measure between ‘abstract’ and ‘rights’ is 0.94 whereas the 



measure between ‘abstract’ and ‘summary’ is 0.92. In test 210, ASMOV found four 
incorrect mappings, producing a 97% precision and 95% recall. These errors were due 
to the fact that the lexical information was in French, which is not supported by 
WordNet. 

2.1.2 Test 248-266  

ASMOV’s accuracy decreased in these tests. Both the lexical information and the 
structure of the target ontologies have been heavily changed. As stated in [3], these 
tests are the most challenging ones, and it was extremely difficult to recognize the 
correct alignments. For these tests, the precision ranges from 0.77 to 0.91 and the 
recall was between 0.24 and 0.89.  

2.1.3 Test 301-304  

These tests represent four real-world ontologies of bibliographic references. Although 
there is a high lexical and structure similarity between these tests and the reference 
ontology, ASMOV encountered some difficulties in the mapping of datatype 
properties to object properties and vice versa. The overall precision and recall were 
respectively 85% and 82%.  
 
The following table shows the average performance of ASMOV in terms of the 
groups of tests described above. The total time cost is also included. 

Table 1. Overall Performance on the Benchmark Tests 

  101-247 248-266 301-304 H-mean Time (sec) 
Precision 0.99 0.85 0.85 0.95 

Recall 0.99 0.68 0.82 0.90 2654.001 

2.2  Anatomy  

ASMOV’s implementation relies on Jena [5] in order to parse the ontologies to be 
aligned. We have encountered a few memory issues and found out that Jena does not 
scale well with large ontologies due to its reasoner. We have thus implemented 
solutions in ASMOV so that queries that involve the Jena reasoner are bypassed. For 
example, in order to answer a query for sub-classes or sub-properties, Jena needs to 
run its reasoner, which is not efficient when dealing with ontologies with large 
hierarchical structures; the solution to this issue was to maintain a map of parent-child 
relationships and query this map in order to retrieve the sub-classes and sub-
properties. Also, in order to improve the accuracy of the alignment, we have 
implemented an adapter interface to the UMLS Metathesaurus [9]. With this, the 
semantic distance between the lexical information within entities (classes and 



properties) was calculated more accurately, ultimately improving the alignment 
produced by the system. An alignment was created for the anatomy ontologies using 
three different configurations: standard configuration, optimal precision 
configuration, and optimal recall configuration.  
 Due to the large size of the anatomy ontologies and the iterative nature of the 

ASMOV algorithm, three parameters of the standard configuration had to be 
changed in order to generate an alignment in an acceptable time frame. The 
iterative threshold has been changed form 1.0 to 0.9, which means that the 
iterative process of ASMOV converges once 90% of the mappings do not change 
in two subsequent iterations. Also the ‘ignoreIdInLexicalSim’ parameter was 
set to false; this parameter setting indicates that the lexical matcher will ignore 
the local name of the entities. Since the anatomy ontologies deal with the 
biomedical domain, the UMLS Metathesaurus is more suitable than WordNet. 
Moreover, since querying the UMLS Metathesaurus for each of the thousands of 
labels is time-consuming, we have pre-processed the ontologies and stored the 
semantic information retrieved from the UMLS Metathesaurus into two separate 
database tables: the first storing the indexed words retrieved (An indexed word is 
an object that represents a word tied to its semantic meaning or UMLS concept), 
the second containing the hierarchy of the hypernym relationships from the 
indexed word in question to a fixed root chosen a priori. Only a subset of the 
UMLS was used, containing concepts from the NCI Thesaurus and the required 
dependencies. 

 In order to obtain an optimal overall precision, the threshold of valid mappings 
was adjusted, from 0.5 in the system standard configuration, to 0.7. This 
threshold indicates the acceptable confidences for valid mappings. A value of 
70% means that a mapping is deemed acceptable if its confidence value ranges 
from the best confidence value to 70 % of that value.  

 A similar approach was used to obtain the optimal overall recall. However, in 
this case, the threshold of valid mappings was set to 0.0.   

Due to the lack of a gold standard in this case, our evaluation was performed by 
textual analysis of the mappings within the resulting alignments. In this analysis, a 
correct mapping is a mapping where the entities are equivalent or synonyms, 
according to their labels and the UMLS Metathesuarus. The results of this analysis are 
illustrated by the table below in terms of precision and time cost. 

Table 2. Performance of ASMOV in the Anatomy test 

 Precision Time (sec) 
Standard configuration 0.82 

 
  54943.656 

Optimal Precision 0.89 145382.953 

Optimal Recall 0.75 87339.437 



2.3  Directory  

The standard configuration of ASMOV was used in order to run the directory tests. 
It took 44 minutes and 27 seconds to run and produced alignments that seem accurate 
for the most part. As a gold standard for these tests is not available, we are not yet 
able to report accuracy measures such as precision, recall, and F1-measure.  

2.4  Food  

The food ontologies were too large to be run using the current prototype 
implementation of ASMOV. It took over an hour for Jena to parse the ontologies, and 
since ASMOV calculates similarity calculations for every pair of entities (class-to-
class and property-to-property), the time cost for the alignment is prohibitive. We 
therefore opt-out of this track; we are currently working on mechanisms to improve 
the performance of ASMOV. 

2.5  Conference  

This collection of tests dealing with conference organization contains 14 ontologies. 
ASMOV was able to create 91 alignments from the ontologies. These ontologies were 
not analyzed in terms of precision and recall since no gold standard alignments were 
available. 

3  General Comments 

3.1  Comments on the Results  

ASMOV performed well in the 2007 OAEI tests: the precision and recall of the 
benchmark tests are higher than those obtained by all entrants in OAEI 2006. This has 
been achieved by the use of multiple different ontology features and the ability of 
ASMOV to auto-adjust its weights to the characteristics of the ontologies, which 
enabled ASMOV to recognize correct alignments even when some information such 
as lexical similarity was absent.  In addition, the use of a semantic validation process 
enables the algorithm to reject invalid mappings, and improves the overall precision 
and recall by 5% and 4% respectively. 

The main weakness of the algorithm, in its current implementation, is its inability 
or inefficiency when processing large ontologies such as the anatomy and the food 
ontologies. We are currently working in mechanisms to improve the performance of 
the algorithm itself and of its implementation. 
 



3.2  Discussions on the Way to Improve ASMOV  

The mapping validation is source dependent, making the alignment process a 
directional one. Let’s consider two ontologies O1 and O2; what the alignment produces 
when O1 is the source and O2 is the target may be different than the one obtained when 
the reverse occurs. As our future work, we intend to improve the mapping validation 
process so that it does not favor the source ontology. Also, the use of Jena as a parser 
seems not to be ideal, especially when the ontologies are large. For our 
implementation, we had to bypass some of the methods of Jena that forced calls to its 
reasoner and caused performance issues. We are currently investigating the use of 
other parsers such as the OWL-API or more powerful ones, as well as the use of RDF 
data stores. Although ASMOV will always converge in linear time, the amount of 
time needed for convergence may be too great when dealing with large ontologies. 
Also, the use of a checksum to stop the iterative process may cause the algorithm to 
converge prematurely. Thus, the convergence aspect of ASMOV needs also to be 
revisited. As stated earlier, ASMOV is to be used as an integration tool; consequently, 
the confidence values need to be accurate. This accuracy is dictated by the weights 
which need to be optimum. Therefore, extensive testing of the weighted calculations 
need to be done to improve the accuracy of ASMOV. In its current state, the user 
interaction component of ASMOV has not been implemented yet; ASMOV will be 
extended to be able to present the user with a graphical interface, facilitating system-
user interaction. 

3.3  Comments on the OAEI 2006 Test Cases  

The testing phase of ASMOV was done using the benchmark tests, which were 
crucial in identifying coding issues and wrong assumptions made in the design phase. 
In future campaigns, we would like see a benchmarking of larger ontologies so that 
systems can address scalability issues. Also a benchmark test in different domains 
such as the biomedical domain (anatomy track) would be useful for systems targeting 
such domains. 

4  Conclusion 

In this report, we provided a brief description of an automated alignment tool named 
ASMOV and analyzed its performance at the 2007 Ontology Alignment Evaluation 
Initiative campaign. The test results show that ASMOV is effective in the ontology 
alignment realm, and because of its flexibility, it performs well in multiple ontology 
domains such as bibliographic references (benchmark tests) and the biomedical 
domain (anatomy test). We concluded the paper by indicating the strengths and 
weaknesses of ASMOV, and by stating the direction of our future work.   
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Appendix: Raw Results  

The OAEI 2007 tests were carried out on a PC running Windows XP Professional 
with a dual-core Intel Pentium processor (2.8 GHz) and 3 gigabytes of memory. 

Matrix of Results  

The following table includes the results of ASMOV in the benchmark series of tests. 
It illustrates the performance of the system in terms of precision (Prec.), recall (Rec.) 
and processing time (Time). The processing is calculated as follows: ontology parsing 
time + ASMOV computational time + time involved in the generation of the 
alignment. For the benchmark tests, the following configuration was used: 
 The lexical Similarity is calculated using WordNet and Levenshtein Distance. 
 The semantic distance between words was calculated using Lin’s equation. 
 The threshold used to stop the iteration process was set to 1.0.  
 The threshold indicating that similarity measures have not changed was set to 0.0. 
 The valid mappings were the ones that had a confidence value greater or equal to 

50 % of the best calculated confidence value. 
 The weights associated with missing features were re-distributed proportionally 

so the similarity measure stayed uniformed. 
Note that the same setting was used to run the directory and the consensus tests. 
 
 



# Name Prec. Rec. Time 
(hh.mm.ss.mms) 

101 Reference alignment 1.00 1.00 0.4.7.734 
102 Irrelevat ontology NaN NaN 0.1.6.828 
103 Language generalization 1.00 1.00 0.0.55.015 
104 Language restriction 1.00 1.00 0.0.54.563 
201 No names 1.00 1.00 0.0.52.687 
202 No names, no comments 0.88 0.88 0.0.40.985 
203 No comments 1.00 1.00 0.0.35.203 
204 Naming conventions 1.00 1.00 0.1.0.453 
205 Synonyms 1.00 1.00 0.1.15.203 
206 Translation 1.00 0.99 0.0.55.937 
207  1.00 0.99 0.0.53.563 
208  1.00 1.00 0.0.37.093 
209  0.92 0.90 0.1.4.578 
210  0.97 0.95 0.0.47.532 
221 No specialisation 1.00 1.00 0.0.59.687 
222 Flatenned hierachy 1.00 1.00 0.0.55.766 
223 Expanded hierarchy 1.00 1.00 0.1.3.719 
224 No instance 1.00 1.00 0.0.39.281 
225 No restrictions 1.00 1.00 0.0.53.0 
228 No properties 1.00 1.00 0.0.38.906 
230 Flatenned classes 0.99 1.00 0.1.1.438 
231  1.00 1.00 0.0.53.844 
232  1.00 1.00 0.0.39.875 
233  1.00 1.00 0.0.41.672 
236  1.00 1.00 0.0.23.797 
237  1.00 1.00 0.0.40.75 
238  1.00 1.00 0.0.54.297 
239  0.97 1.00 0.0.39.11 
240  0.97 1.00 0.0.43.171 
241  1.00 1.00 0.0.24.766 
246  0.97 1.00 0.0.24.156 
247  0.94 0.97 0.0.28.312 
248  0.86 0.82 0.0.50.922 
249  0.89 0.89 0.0.36.328 
250  0.91 0.30 0.0.22.281 
251  0.83 0.77 0.1.27.407 
252  0.87 0.87 0.0.40.734 
253  0.85 0.81 0.0.46.203 
254  0.83 0.30 0.0.22.031 
257  0.91 0.30 0.0.22.36 
258  0.82 0.76 0.1.25.047 
259  0.87 0.87 0.0.42.828 
260  0.78 0.24 0.0.22.407 
261  0.91 0.30 0.0.25.578 
262  0.83 0.30 0.0.22.281 
265  0.77 0.34 0.0.22.734 
266  0.91 0.30 0.0.25.485 
301 BibTeX/MIT 0.93 0.82 0.0.50.343 
302 BibTeX/UMBC 0.68 0.58 0.1.20.563 
303 Karlsruhe 0.75 0.86 0.2.42.141 
304 INRIA 0.95 0.96 0.0.53.406 
 
 


