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Abstract. As the Semantic Web emerges the problem of semantic het-
erogeneity is becoming more acute. Ontology matching techniques aim at
tackling this problem by establishing correspondences between elements
of the ontologies. These techniques rely on distance metrics, often called
(dis)similarity measures, to assess the similarity of elements within the
ontologies. Most of these approaches are either terminological, structural
and/or extensional. However, recently some proposals for semantics-based
measures have been put forward. We reason that these latter should receive
more attention, since semantics are one of the key advantages of ontologies.
Therefore, we present a set of semantic ontology similarity measures.

1 Introduction and Motivation

Although the Semantic Web will be responsible for the proliferation of ontologies,
it is unrealistic to expect that every Semantic Web agent shares the same set of on-
tologies. Therefore, the need for establishing a consensus among many cooperating
agents arises. This is a key motivation for ontology matching.

Ontology matching techniques take as input a set of ontologies, and output a
set of correspondences between elements of the ontologies. Distance metrics, often
called (dis)similarity measures, are used to estimate the similarity of elements of
the ontologies. There are four kinds of similarity measures: lexical, structural, ex-
tensional and semantics-based. The difference between the latter and the others lies
on the fact that they are sensitive to the logical nature of the knowledge represen-
tation formalism in which the ontologies are formalized. Hence, they are enabled
to resort to deduction services, such as consistency checking. Given that, on the
one hand, modern representation languages have well-defined semantics, and on
the other hand, one of the key advantages of ontologies lies on their semantics, we
believe that this type of measures should deserve more attention from the ontology
matching community.

This paper elaborates on our own work, presented in [2], where we define a purely
semantics based similarity measure. Here, we propose a more refined approach and
extend the proposed measure, which was only sensitive to concept constructs of
ALC (Attributive Language with Complement) – intersection u, conjunction t and
complement ¬, – to deal with role constructs – universal ∀ and existential quantifiers
∃. However, our measure does not yet cover the whole scope of ALC. Though limited
in expressivity, ALC is the foundation of more expressive Description Logics (DLs)
and is already sufficiently expressive to formalize many practical ontologies.



Throughout the rest of the paper, we assume the standard DL notation [3],
except for concept equivalence, C

.= D, to distinguish from TBox equivalence,
T1 ≡ T2 (meaning T1 |= T2 and T2 |= T1). We denote C∗ as the closure of the set
of concept names C under the DL constructs u, t and ¬. We further assume that
every set of concept names C and roles R are finite.

The paper is organized as follows: in section 2 we summarize related work. We
introduce the theory underlying the proposed measures in section 3, followed by
both the concept and role similarity measures, and a toy example. In section 4 we
present the results for real-world examples. We discuss the measures based on our
results in section 5 and finish with conclusions and future directions in section 6.

2 Related Work

The use of similarity measures is not limited to ontology matching. Other uses
include unsupervised or semi-automatic ontology clustering [11], and automated
ontology merging, as performed by prompt [10] and Chimaera [9].

Approaches to similarity measures in DLs can be found in [7, 5, 4, 8]. The mea-
sure presented in [7] is based on extracting and comparing concept signatures: the el-
ements within the ontology that are related to one concept. The work presented in [5]
is an extensional dissimilarity measure that estimates the difference between two
concepts in different ontologies through the set of individuals they share. Borgida et
al. [4] propose the adaptation of known similarity measures to DLs: feature-based
models, the semantic-network approach and information-content models. Finally,
the work presented in [8] defines a similarity measure for each DL construct and
computes the similarity between two concepts by agreggating these values.

3 Theory

We start by presenting the general framework underlying the similarity measures.
Though different from [2], the definitions presented here can be shown as equivalent.

3.1 Foundation

All measures presented here are based on the same idea: counting characteristic
concepts. By characteristic concepts, we mean any concept, formed using standard
concept constructs on a set of concept names, which cannot be any more specific. For
example, given the concept names Man and Woman, the concepts ¬Manu¬Woman
and ¬ManuWoman are two of four possible characteristic concepts. Characteristic
concepts can be seen as propositional models. The formal definition follows.

Definition 1 (Characteristic Concept). Let C be a finite set of DL concept
names. A concept C ∈ C∗ is characteristic iff it is an intersection of n literals, with
n = |C|, and each concept name in C occurs exactly once in it. The set of all possible
characteristic concepts w.r.t. C is ζ(C).

Given a TBox T containing a set of concept names C, we need to determine the
characteristic acceptance set : the sub-set of ζ(C) with only consistent characteristic
concepts w.r.t. T .



Definition 2 (Characteristic Acceptance Set). Let T be a TBox containing a
finite set of DL concept names C. Given a set of characteristic concepts S ⊆ ζ(C),
S is accepted by T iff every C ∈ S is consistent in T (i.e., there exists a model
I of T such that CI 6= ∅). The characteristic acceptance set, Z(T ) ⊆ ζ(C), is the
maximal set accepted by T .

3.2 The Measures

In this section we introduce the measures for comparing concepts and roles. The
former determines the similarity of two TBoxes disregarding any information con-
cerning role restrictions.

Comparing Concepts Given two TBoxes, T1 and T2, we need to determine to
which extent their acceptance sets overlap. In particular, if the ontologies are equiv-
alent, then their acceptance sets are the same [1] and, therefore, their similarity
assessment should be the highest. Although this assumption is rather intuitive for
the maximum value, the same does not apply to the minimum value. The question
of when two ontologies are totally dissimilar does not have a straight answer. One
could consider that total dissimilarity corresponds to the case where the acceptance
sets are disjoint. However, that depends on the interpretation given to similarity,
since when the acceptance sets are disjoint, it means there is no agreement on a
set of consistent characteristic concepts, while there may be agreement on a large
number of inconsistent characteristic concepts.

Let us consider the following TBoxes that represent several typical cases of
overlap between acceptance sets:

E1 = {Man v Person uMale}, E2 = {Man
.= Person uMale},

E3 = {Man v Person,Man
.= ¬Person t ¬Male} .

Their acceptance sets are shown in table 1 (with Zi = Z(Ei)). Each line of the table
is a concept name, and each column is a characteristic concept, and a symbol at
the intersection of a characteristic concept with a concept name indicates that the
concept name occurs as a positive (+) or negative (−) literal.

Table 1. The characteristic acceptance sets for E1, E2 and E3.

Z2z }| { Z3z }| {
Person − + − + + + − −

Man − − − + − + + +
Male + − − + + − + −| {z }

Z1

The coverage measure (γ) determines to which extent one of the ontologies
covers the other, by measuring the percentage of overlap between the acceptance
sets in proportion to the size of the acceptance set of one of the ontologies:

γ(T1, T2) =
|Z(T1) ∩ Z(T2)|
|Z(T1)|

.



Applying coverage to the examples above yields γ(E2, E1) = 100%, because Z(E2)
is a sub-set of Z(E1). This measure is not symmetric, therefore inverting the order
yields a different result, γ(E1, E2) = 80%, because only 80% of Z(E1) is contained
within Z(E2), since they only disagree on the consistency of one characteristic con-
cept, ¬ManuPersonuMale (which is consistent in E1 but not in E2). Given that E2
and E3 are disjoint, γ(E2, E3) = γ(E3, E2) = 0%.

The consistency agreement measure (α+) determines to which extent the ontolo-
gies agree on the set of consistent characteristic concepts. It measures the proportion
of characteristic concepts consistent in both ontologies w.r.t. the set of characteristic
concepts consistent in at least one of them:

α+(T1, T2) =
|Z(T1) ∩ Z(T2)|
|Z(T1) ∪ Z(T2)|

.

Contrary to γ, this measure is symmetric, thus α+(E1, E2) = α+(E2, E1) = 80%.
Again, since E2 and E3 are disjoint, their consistency agreement is 0%. We note
that while coverage measures the overlap between E1 and E3 as 20% and 50%,
the consistency agreement is lesser: α+(E1, E3) = 16.67%. Therefore, consistency
agreement measures the global overlap, while coverage only measures the overlap
of one in relation to the other.

The previous measure only takes into account the set of consistent characteristic
concepts. To measure the inconsistency agreement, the proportion of inconsistent
characteristic concepts in both TBoxes w.r.t. the inconsistent characteristic con-
cepts in at least one of them, we define the following measure:

α−(T1, T2) =
|ζ(C)− (Z(T1) ∪ Z(T2))|
|ζ(C)− (Z(T1) ∩ Z(T2))|

.

Even though all previous measures yield 0% for E2 and E3, this measure yields
25%, due to the fact that even though their acceptance sets are disjoint they agree
that 2 out of 8 characteristic concepts are inconsistent.

The agreement measure (α) combines both consistency and inconsistency agree-
ment, by measuring the proportion of characteristic concepts whose consistency is
the same in both ontologies w.r.t. all possible characteristic concepts:

α(T1, T2) =
|ζ(C)− (Z(T1) ∪ Z(T2))|+ |Z(T1) ∩ Z(T2)|

2|C|
.

Agreement yields 87.50% for E1 and E2, since they agree on the consistency of
7 out of 8 characteristic concepts.

In [6] a set of similarity measures for the automatic evaluation of learnt ontolo-
gies against a gold-standard is proposed. In this context, if we apply the coverage
measure, with, say, T1 as the gold-standard, then γ(T1, T2) can be interpreted as
recall, since it is the proportion of correct learnt characteristic concepts w.r.t. the
total amount of correct characteristic concepts, while γ(T2, T1) can be regarded as
precision, since it measures the proportion of correct learnt characteristic concepts
w.r.t. the set of all learnt characteristic concepts. We can thus define the F1 measure:

F (T1, T2) =
2× γ(T1, T2)× γ(T2, T1)

γ(T1, T2) + γ(T2, T1)
=

2× |Z(T1) ∩ Z(T2)|
|Z(T1)|+ |Z(T2)|

.



Comparing Roles Until this point we have only compared ontologies with con-
cepts built using intersection (u), conjunction (t) and negation (¬). However, this
is very limited in expressiveness, given that standard DLs (at least as expressive as
ALC) allow building concepts with role constructs, namely universal quantification
∀R.C and existential quantification ∃R.C. These constructs allow us to restrict the
domain and range of a role:

∃R.> v C (domain restriction)
> v ∀R.C (range restriction) (1)

The first axiom restricts instances of R to have as source an individual in C, while
the second restricts instances of R to have as destination an individual contained
in C. The power of these constructs is not limited, however, to general domain and
range restriction. They can also be used to restrict the domain and range for a given
concept D:

∃R.D v C (specific domain restriction)
D v ∀R.C (specific range restriction) (2)

This means that the domain and range of R for individuals of D is C.
Given that ALC does not provide any other construct related to roles, it is

reasonable to argue that the domain and range specifications characterize the se-
mantics of a role in this language. Therefore, the task of computing role similarity
can be reduced to comparing these domains and ranges. Since they are concepts,
we can compare them using the measures introduced above.

Let us start by considering the case in (1) where the domain and range of a role
consist of a single concept and they are not related to one another (i.e., it is not
necessary to know the domain of a role to know its range). In this case, given a
role R occuring in a TBox T , we can define the concept δR and ρR as the domain
and range of R respectively, i.e. such that T |= ∃R.> v δR and T |= > v ∀R.ρR.
Given two TBoxes T1 and T2 in which the role R occurs, we can extract the domains
of R, δ1

R and δ2
R, and the ranges, ρ1

R and ρ2
R. To compute the similarity of R, we

can compare δ1
R with δ2

R and ρ1
R with ρ2

R, which can be done by using the set of
measures for concept similarity introduced above, but instead of using Z(T1) and
Z(T2), we use only the sub-set of these that are subsumed by δ1

R and δ2
R, to compare

the domains, and by ρ1
R and ρ2

R, to compare the ranges.
The procedure introduced above can be generalized to deal with specific domain

and range restrictions (2). The problem is that the range of a role depends on the
domain (and vice-versa), so there is no single δR and ρR concepts. The idea is to
construct a different TBox describing the domain and range restrictions of a given
role. Given a TBox T and a role R, our approach is to construct a TBox T R from T ,
such that, for each concept name A occuring in T , we have two concept names in T R:
dA and rA. dA should be seen as the set of role instances which have an individual in
A as source, and rA the ones that have an individual in A as destination. The domain
and range concepts are related through subsumption according to the restrictions
in T . This technique in many ways resembles the reification technique, in the sense
that individuals of T R are not instances of concepts of T , but instances of the role
R. A formal definition of T R follows after the following auxiliary definition.

First we define the domain/range description, which is a TBox describing the
relations between the domain and range of a role. For example, the axiom A v ∀R.B



is described in the domain/range description as dA v rB, and should be interpreted
as “the set of role instances of R that have origin in A is a sub-set of the set of role
instances of R that have destination in B.”1

Definition 3 (Domain/Range Description). Let R be a role occuring in a
TBox T . The domain/range description of R w.r.t. T , drT (R), is defined as:

drT (R) = {δ(C) v ρ(D)|T |= C v ∀R.D} ,

where δ(C) (resp. ρ(D)) is the same as C (resp. D) with every concept name A
occuring in C (resp. D) replaced by dA (resp. rA).

Next we define the domain/range TBox of T , which is essentially the union of
three sets of axioms: (1) the domain/range description of a role R w.r.t. T , (2) a
set of axioms that maintains the semantics of the concepts when acting as domain
of R and (3) another set of axioms when acting as range of R. This TBox should be
seen as describing the role in terms of the relations between its domain and range.

Definition 4 (Domain/Range TBox). Let T be a TBox and R a role. The
domain/range TBox of T w.r.t. R, written T R, is defined as:

T R = δ(T ) ∪ ρ(T ) ∪ drT (R) .

In definition 4, the terms δ(T ) and ρ(T ) ensure that the concepts’ semantics are
maintained when they act as domain and range of the role R. Finally, we define the
role similarity measure, which is simply the employment of any of the previously
defined measures to the domain/range TBoxes.

Definition 5 (Role Similarity). Let T1 and T2 be ontologies, R a role and s
a similarity measure, s ∈ {γ, α+, α−, α, F}. The role similarity measure w.r.t. R
under s, %R

s : O ×O → [0, 1], is defined as:

%R
s (T1, T2) = s(T R

1 , T R
2 )

It is arguable that this solution is somewhat cumbersome, for three reasons:

1. the meaning of the prefixed concepts dA and rA is not clear;
2. it is necessary to define a domain/range TBox for each role, where the only

variable is the domain/range description;
3. the computation of drT (R) requires a full prover.

A more elegant solution would be to effectively reify the relations. This could be
achieved by extending the formalism with a rule mechanism (e.g., AL-log). In this
case, we could simply add a rule base to the original TBoxes to relate the domain
and range of any role. For example, the following rule could belong to such a rule
base:

range(marriedTo,Woman)← domain(marriedTo,Man) .

However, this solution does not fit as well with the previously defined measures.
Moreover, it would be necessary to deal with a hybrid DL and rule-based formalism.
In effect, we would be shifting from one problem to another.

Let us illustrate all measures with a more complex example. Consider the fol-
lowing ontologies, T1 and T2. Table 2 shows Z(T1) and Z(T2) (written Z1 and Z2).
1 Note that ∃R.D v C is equivalent to ¬C v ∀R.¬D, so this definition captures domain

as well as range restrictions.



T1 T2

¬Male v Female Female
.
= ¬Male

Man
.
= Person uMale Man

.
= Person uMale

Woman
.
= Person u Female Woman

.
= Person u ¬Man

MaleCat
.
= Cat uMale MaleCat v Cat uMale

> v ∀marriedTo.Person > v ∀marriedTo.Person
¬Person v ∀marriedTo.⊥ ¬Person v ∀marriedTo.⊥

Man v ∀marriedTo.Woman
Woman v ∀marriedTo.Man

Table 2. The characteristic acceptance sets for T1 and T2.

Z1 − Z2 Z1 ∩ Z2 Z2 − Z1

Person + − − + + + + + − − − − + −
Man + − − + + + − − − − − − + −
Male + + + + + + − − − − + + + +

Woman + − − + − − + + − − − − − −
Female + + + + − − + + + + − − − −

Cat + + − − + − − + − + − + + +
MaleCat + + − − + − − − − − − + − −| {z }

Z1| {z }
Z2

Table 3 shows the results of applying the similarity measures to the example.2

We observe that one of the main differences between T1 and T2 is that in the former
every individual is required to be either Male or Female or both, but in the latter they
have to be either one or the other exclusively. If this were the only difference, then
Z(T2) would be totally contained within Z(T1), but the difference in the definition
of Cats and MaleCats accounts for the two characteristic concepts in Z(T2) and not
in Z(T1). The fact that more of Z(T2) is contained within Z(T1) than vice-versa is
responsible for the lower coverage result between T1 and T2 than the inverse. Indeed,
we can observe that more of what can be modeled in T2 can also be modeled in
T1 than vice-versa, so these results are rather intuitive. The consistency agreement
result comes from the number of agreed consistent characteristic concepts, 8, in
proportion to the number of characteristic concepts in the table, 14. This result
is also intuitive, since the ontologies have a reasonable overlap, i.e. most concepts
are similar in both ontologies. On the other hand, the inconsistency agreement is
the number of agreed inconsistent characteristic concepts, i.e., the ones that do not
appear in table 2, 128 − 14 = 114, in proportion to the number of inconsistent
characteristic concepts in at least one of the ontologies, 128− 8 = 120. This shows
that, although there is a considerable difference on what can be modeled in the
ontologies, there is a substantially higher similarity concerning what can not be
modeled in none of the ontologies. The result obtained for the agreement measure is
a consequence of the fact that 8+114 = 122 characteristic concepts, out of 128, have
the same consistency in both TBoxes. It is slightly higher than the inconsistency
agreement, since it also takes into account the consistency agreement.

The results for role similarity show us that there is a low coverage between T1
and T2, since T1 is much more permissible regarding the marriage relationship. In
2 For the sake of readability, we refer to marriedTo as simply m.



Table 3. Results of applying the similarity measures to T1 and T2.

γ(T1, T2) γ(T2, T1) α+(T1, T2) α−(T1, T2) α(T1, T2) F (T1, T2)

66.67% 80.00% 57.14% 95.00% 95.31% 72.73%

%m
γ (T1, T2) %m

γ (T2, T1) %m
α+(T1, T2) %m

α−(T1, T2) %m
α(T1, T2) %m

F (T1, T2)

22.22% 66.67% 20.00% 99.80% 99.80% 33.33%

this TBox, both men and women can marry any person of any gender. In T2, men
can only marry women and vice-versa. On the other hand, many of the possible
marriage relations in T2 are covered in T1, which accounts for the higher coverage
between T2 and T1. What keeps it from being 100% is the fact that women and men
are exclusively female and male in T2, respectively, while in T1, men and women
can have both genders, so the characteristic concepts subsumed by dManudWoman
or rMan u rWoman are inconsistent in T marriedTo

2 but consistent in T marriedTo
1 (the

domain/range TBoxes w.r.t. marriedTo).

4 Experimental Results

Evaluating similarity measures is a difficult task since it requires a standard defi-
nition of similarity, which is highly subjective. Therefore, it is hard to use common
metrics such as precision and recall. In the following, we present and discuss two
experiments conducted applying the similarity measures to two datasets: BibTeX
and Directory.

BibTeX The first experiment used the BibTeX dataset extracted from OAEI.3 We
used a sub-set of three of those ontologies: the reference, Bref , and the ones from
Karlsruhe, Bk, and INRIA, Bi. Each ontology presents a different perspective on
what bibliographic references are. All ontologies are formalized in OWL. Since the
measures we propose are only applicable to ontologies with the same set of concepts,
we need to align them. The ontologies are bundled with a set of alignments, between
the reference ontology and the other two, which we use to merge them. These
alignments contain not only equalities but also inclusion alignment relations. We
discarded the latter since we focus on what is equal on both ontologies. Figure 1
shows a relevant section of the ontologies. Most concept names have the same (or
similar) label in all ontologies, except Reference, which is Publication and Entry in
Bk and Bi respectively, and School, labeled as University in Bk.

In this experiment we compared the reference ontology to the other two. For
that, we focus only on the concept names that are present in both ontologies (the
reference one and the other), by trimming out the ones which are not involved in
the alignment. Table 4 shows the results of applying the similarity measures to the
ontologies.4

Coverage results show that Bref |= Bk. In fact, we can observe that, if we focus
on the concept names that appear in both ontologies, every axiom in Bk is either

3 http://oaei.ontologymatching.org/2006/.
4 We refer to the school role as s.
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Fig. 1. BibTeX ontologies.

Table 4. Results of applying the measures to the BibTeX ontologies.

γ(Bref ,Bk) γ(Bk,Bref) α+(Bref ,Bk) α−(Bref ,Bk) α(Bref ,Bk) F (Bref ,Bk)

100% 75.00% 75.00% 86.96% 90.63% 85.71%

%s
γ(Bref ,Bk) %s

γ(Bk,Bref) %s
α+(Bref ,Bk) %s

α−(Bref ,Bk) %s
α(Bref ,Bk) %s

F (Bref ,Bk)

100% 44.99% 44.99% 94.96% 95.16% 62.06%

γ(Bref ,Bi) γ(Bi,Bref) α+(Bref ,Bi) α−(Bref ,Bi) α(Bref ,Bi) F (Bref ,Bi)

85.44% 50.62% 46.60% 96.69% 96.79% 63.58%

%s
γ(Bref ,Bi) %s

γ(Bi,Bref) %s
α+(Bref ,Bi) %s

α−(Bref ,Bi) %s
α(Bref ,Bi) %s

F (Bref ,Bi)

72.51% 20.50% 19.02% 99.88% 99.88% 31.97%

also present in Bref or is a logical consequence of it. The 75% result in the coverage
between Bk and Bref can be explained by the fact that Proceedings is a subclass of
Book in the latter, but not in the former. Therefore, the set of characteristic concepts
consistent in Bk but not in Bref are the ones that contain Proceedingsu¬Book. These
are also the only characteristic concepts which are not agreed by the ontologies,
which explains the very high consistency agreement.

Regarding the similarity of the role school, although it would seem that it has
the same domain and range in Bref and Bk, and, therefore, it should be assessed as
totally similar, it is not exactly that case. In Bref , the domain and range of school
are modeled as general domain and range restrictions:

∃school.> v Academic t LectureNotes ,

> v ∀school.School .

This means that there cannot be any instance of the school role that does not start
in Academic or LectureNotes or end in School. In Bk, we have:

MasterThesis t PhDThesis v ∀school.University .

This only restricts the range of school for instances in the domain of MasterThesis
or PhDThesis. Since MastersThesis and PhDThesis are subclasses of Academic, the
former two axioms entail the latter one, but the contrary does not hold. The fact that
LectureNotes is in the domain of the role does not affect the similarity assessment
since this concept is not present in Bk, and is, therefore, trimmed out. Although the
INRIA ontology also uses the general domain and range restriction, we can observe
that LectureNotes has different semantics.



We note that the reference ontology is assessed as more similar to the INRIA
one than to the Karslruhe one regarding their inconsistency. This results from the
fact that the more concept names an ontology has, the stricter it is likely to be,
since every concept name is usually involved in some axiom, which restricts its char-
acteristic acceptance set. The inconsistency agreement and the agreement measures
suffer from this problem. However, for a set of ontologies sharing exactly the same
concepts, which is not the case with this dataset, these measures would be helpful
in determining which ones were more similar.

Directory We also took the Directory ontologies from the OAEI dataset. These
ontologies were extracted from the Google, Yahoo and Looksmart web directories.
The source ontology comprises over 2,000 concept names while the target ontology
more than 6,000. Both ontologies contain only inclusion statements (taxonomies)
and are biased towards the task of easily finding a set of web sites. Since there
was no reference alignment available, we performed one using a semi-automatic
algorithm.

Due to space constraints, we only present the basic idea of the algorithm. It is
composed of (1) an automatic phase and (2) a manual one. In (1) we use a deriva-
tion of the terminological overlap measure using a notion similar to the semantic
cotopy [6]. For each concept name in each ontology, its cotopy is extracted from the
ontology and augmented with its WordNet cotopy. The algorithm chooses the pairs
of concept names that maximize the terminological overlap of their cotopies. Phase
(2) is composed of two steps: filtering out wrong mappings and adding correct ones.
The final result is a set of 580 concept mappings. Since there is no reference map-
ping available, we estimate the precision of the automatic phase of the algorithm
w.r.t. our notion of correct or incorrect mappings: 51.56%.

We compared the ontologies w.r.t. the set of concept names involved in the
extracted mapping. Because of the previously identified problem concerning the
relation between the number of concept names and the inconsistency agreement,
this measure, along with the agreement one, assessed the ontologies as almost 100%
similar. In contrast, the ontologies were given a very low similarity assessment,
close to 0%, w.r.t. coverage and consistency agreement. A closer inspection revealed
that out of the 585 axioms present in each of the ontologies, 150 of them differed,
revealing that at least such amount of concept names assume a different position in
the taxonomy. If these differences are in higher-level concept names, that can have
a deep impact on the similarity assessment. This leads us to conclude that either
(1) the mapping is inaccurate or (2) the ontologies are indeed very different. Since
the manual filter was introduced to improve the precision of the mapping, the first
hypothesis is not very plausible.

5 Discussion

The results for the BibTeX ontologies show that the proposed measures bear rele-
vant information concerning the similarity of the ontologies. Moreover, the different
measures are to some extent independent, which is an important feature of similar-
ity measures identified in [6]. From the results we can conclude that the measures



are more trustworthy when applied to ontologies with the same set of concept names
(as opposed to the BibTeX dataset, where Bref shares less concept names with Bk

than with Bi). This comes from the fact that the more concept names the ontologies
share, the more likely there are differences in them.

One of the problems we clearly identify is the growth of the inconsistency agree-
ment in proportion to the number of concept names. Therefore, this measure, along
with the agreement one, is only useful for ontologies with few concept names or
when comparing a set of (three or more) ontologies with exactly the same set of
concept names. In the BibTeX results presented, the set of concept names differed
among the three ontologies, so the results of comparing Bref to Bi are not directly
comparable to the similarity results between Bref and Bk, because Bi and Bk don’t
share the same concept names. If all ontologies shared the same set of concept
names, and even if the results of the inconsistency agreement are very high, they
are in the same scale, and can thus be compared with each other.

Given that our measures require a previous mapping, instead of comparing char-
acteristic concepts, an alternative approach would be to compare their set of con-
sequences. Though countable, we should stress that this set is infinite. Nonetheless,
the acceptance set can be seen as a finite set of consequences.

Contrary to related work, the concept similarity measures focus on the ontologies
as wholes, which may hinder their usefulness. Local similarity measures are often
used to support the matching process of individual concepts. Therefore, the concept
similarity measures presented here are not directly useful in this task. However, they
can be used to determine the global a posteriori quality of a given mapping.

We should also note that the concept similarity is not affected by roles. These
measures assess the following TBoxes as equal:

T1 = {A v ∀R.A}, T2 = {A v ∀R.¬A} ,

although the role similarity measures do not. This is naturally undesirable and
should be revised in the future. Since the role similarity measures focus on each role
individually, they can be used to perform role matching given a previous mapping
of concepts.

The question of which measure is the most useful is only sensible in view of
the purpose it is used for. If we are comparing a learnt ontology against a gold-
standard, as discussed earlier, the coverage operator corresponds to precision and
recall, and can therefore be used as such. If we are only concerned with what can be
represented with the ontologies, then the agreement operator is a good indication
of similarity. Naturally, the different operators can be combined within a unique
operator that suits a particular purpose, but this is outside the scope of this work.

Regarding efficiency, although |ζ(C)| is exponential to |C|, it can be shown that
#SAT solvers, used to compute the size of acceptance sets, perform well in prac-
tice [2]. Finally, although it is not shown here, the measures satisfy the set of criteria
identified in [6].



6 Conclusions and Future Work

In this paper we proposed a set of similarity measures to assess the similarity of
ontologies based on the notion of characteristic concept. We applied them in two
experiments using real ontologies yielding intuitive and very promising results.

Extending the measures to more expressive DLs is one of the directions for future
work. Further developments should tackle the problem regarding the weak relation
between the concept and role similarities. Other future developments include in-
tegration of the measures in a system, for example to perform (semi-)automatic
evaluation of learnt ontologies against a gold-standard. It should also be interesting
to research into the usage of characteristic concepts for the assessment of the sim-
ilarity of concept names instead of ontologies. This could then be used to create a
novel matching algorithm.
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