
Multi-Concept Alignment and Evaluation

Shenghui Wang1,2, Antoine Isaac1,2,3, Lourens van der Meij1,2, and Stefan
Schlobach1

1 Vrije Universiteit Amsterdam
2 Koninklijke Bibliotheek, Den Haag

3 Max Planck Institute for Psycholinguistics, Nijmegen
{swang,aisaac,lourens,schlobac}@few.vu.nl

Abstract. In this paper we discuss a book annotation translation ap-
plication scenario that requires multi-concept alignment – where one set
of concepts is aligned to another set. Using books annotated by con-
cepts from two vocabularies which are to be aligned, we explore two
statistically-grounded measures (Jaccard and LSA) to build conversion
rules which aggregate similar concepts. Different ways of learning and
deploying the multi-concept alignment are evaluated, which enables us
to assess the usefulness of the approach for this scenario. This usefulness
is low at the moment, but the experiment has given us the opportunity
to learn some important lessons.

1 Introduction

The ontology alignment problem is crucial for many applications. Many meth-
ods and tools have been proposed to assist this task by proposing candidate
correspondences between two ontologies. Yet the application field is largely un-
chartered, and some specific problems remain untouched by the community.

One such problem is multi-concept alignment.4 In these, a given correspon-
dence5 can involve more than one ontological entity on either side. These entities
are possibly combined in expressions – e.g using the boolean operators AND and
OR – as in o1:FruitsAndVegetables→(o2:Fruits OR o2:Vegetables).

However, only a few ontology alignment tools and methods address the pro-
duction and exploitation of complex multi-concept alignment [3]. Similar to the
difficulties in finding complex matches between database schemas [5], dealing
with multi-concept alignment is difficult:

– Finding and using multi-concept alignments have to deal with much more
complex search space. If two ontologies have u and v concepts, respectively,
there are u× v potential 1:1 correspondences. However, there will be a com-
binatorial explosion of the number of possible m : n alignments.

4 This is sometimes referred to as multiple, complex, or a combination of one-to-many
(1:n), many-to-one (m:1), many-to-many (m:n) alignment [3].

5 Here, an alignment between two ontologies is understood as a set of correspondences
– mapping links – between entities – classes, properties or expressions – coming from
these ontologies.

2

– It is unclear how to compare the similarity between two sets of concepts, as
the semantic relations often cannot be stated explicitly as in [2].

– Alignment frameworks and formats do not say much about the semantics
of multi-concept alignment, delegating the problem – and, to an extent,
rightly so – to specific ontology languages and/or alignment applications. A
typical example is the semantic link between several simple correspondences
involving the same entities and a single correspondence involving complex
expressions.6

Also, in practice, most applications in the ontology alignment community
currently focus on rather abstract cases, such as ontology merging or bridging.
This requires finding the one most similar entity in the target ontology to the
one considered in the source ontology. Accordingly, the evaluation of alignments
has relied on purely intellectual assessment of pairs of concepts.

In this paper we will give the applicative motivation for multi-concept align-
ment — an annotation translation case in the National Library of the Nether-
lands.7 As instances – books – are described or annotated by concepts from the
two vocabularies to align, our focus is on using statistical methods exploiting co-
occurrence of concepts in the annotation of the same book [6], such as the Jaccard
similarity measure. Here, we elaborate on this approach from a multi-concept
alignment perspective: we take two statistical similarity measures – Jaccard and
Latent Semantic Analysis (LSA) – and we test different aggregation methods
– clustering and ranking – to build multi-concept alignments with them.

Our goal is to assess the usefulness of these methods for our application
scenario. We explore strategies with different levels of accuracy for applying the
obtained alignment to our data set. We also train these methods on different
sets of annotated objects. The questions we want to answer are the following:

– Do these combinations of statistically-grounded measures and aggregation
techniques perform well enough for our scenario?

– Can we improve the performance by carefully selecting the training sets for
some of the techniques used?

– Is there a benefit using a sophisticated similarity measure (LSA) for instance-
based multi-concept alignment?

In section 2, we present our application scenario – book annotation transla-
tion – and explain why it requires multi-concept alignment. Section 3 explains
the way we use the dually annotated books to compute similarity measures that
are aggregated to obtain multi-concept alignments. In section 4 we detail our ex-
perimental setting, focusing on the different strategies that we apply to translate
book annotations using the rules contained in the alignments, and on how we

6 As in (o2:Fruits→o1:FruitsAndVegetables)u(o1:Vegetables→o1:FruitsAndVegetables)

and o1:FruitsAndVegetables→(o2:Fruits OR o2:Vegetables).
7 Different from classifying documents in hierarchical categories, in our task, a set of

concepts should be aligned to another set of concepts, while both sets represent the
same or very similar semantics.

3

evaluate the results of this process. Section 5 presents the results for the differ-
ent options tested: similarity measures, training sets, aggregation and rule firing
strategies. In sections 6 and 7 we point out some lessons learned and conclude
on the perspectives of this research.

2 Problem description

The library context The National Library of the Netherlands (KB)8 maintains
a large number of collections, among them the Deposit Collection containing all
the Dutch printed publications (one million items), and the Scientific Collection
with about 1.4 million books mainly about the history, language and culture of
the Netherlands.

Each collection is described according to its own indexing system. On the one
hand, the Scientific Collection is mainly described using the GTT, a huge vocabu-
lary containing 35000 general terms ranging from Wolkenkrabbers (Skyscrapers)
to Verzorging (Care). On the other hand, the books contained in the Deposit
Collection are mainly indexed against the Brinkman thesaurus, containing a
large set of headings (more than 5,000) that are expected to be global subject of
a book. Both thesauri have similar coverage but differ in granularity, and pro-
vide the usual lexical and semantic information found in thesauri: broader and
related concept, synonyms and notes.

The co-existence of these different annotation systems, even if historically
and practically justified, is not satisfactory from the interoperability point of
view. KB is therefore investigating ways to combine the two thesauri, trying to
enhance integration while retaining compatibility with the legacy data of both
systems. For this reason, mapping concepts between GTT and Brinkman are
crucially needed.

Finally, it is important to mention that around 250,000 books are common
in both depot and scientific collections, and have therefore been manually anno-
tated with both GTT and Brinkman vocabularies. This allows us to investigate
the co-occurrence information in the dually annotated dataset in order to find
the semantic alignments between concepts from these two thesauri.

A annotation translation scenario The application scenario in this paper is that
one thesaurus (e.g. GTT) would be dropped. In such a case, a huge volume
of legacy data would have to be made compatible with the indexing system
that remains (Brinkman). This requires converting the GTT annotations into
equivalent Brinkman annotations.

A first approach would be to find, for each concept from GTT, the one in
Brinkman which is the semantically closest. Each time this GTT concept would
appear in a book description, the corresponding Brinkman concept could be
added. Yet such a one-to-one conversion is not satisfactory. First, and most intu-
itively, one observes that the two vocabularies do not have the same granularity.

8 http://www.kb.nl

4

Sometimes for a concept in a vocabulary it is impossible to find a corresponding
concept, with the same meaning, in the other vocabulary. This is the case for
instance for the Brinkman gassen ; mechanica (gas mechanics) which has no
equivalent in GTT, while the latter includes both Gassen and Mechanica. This
suggests the necessity to introduce alignment links involving several concepts
from the same vocabulary. This is confirmed by a second aspect which is more
guided by the vocabulary application itself. The GTT annotation process makes
use of post-coordination: multiple concepts found in a same annotation shall not
be considered independent but rather as facets of a more complex virtual subject.
With GTT, if a book is annotated by historische geografie and Nederland
you expect the book to be about a more complex “historical geography of the
Netherlands” subject instead of being about these two individual subjects in
a disconnected manner. Ideally, a conversion algorithm would therefore have to
exploit alignments that involve concepts that are combined together. In this way,
implicit complex subjects would be properly detected and converted when they
occur in an annotation.

3 Multi-concept alignment generation

Closely related concepts form a virtual conceptual entity, and the alignment is
generated in terms of these virtual entities. An intuitive way of generating such
a virtual entity is to group similar concepts together.

3.1 Instance-based similarity measures

We base our concept aggregation on the similarity between concepts. In [6],
some similarity measures we have investigated generate 1:1 mappings between
concepts based on their co-occurrence in annotations of books. In this paper we
further investigate two measures.

Jaccard similarity The Jaccard similarity coefficient is a simple measure for
similarity of sets:

J(A, B) =
|Ai ∩Bi|
|Ai ∪Bi|

where Ai is the set of instances of concept A, in our case, the books which are
annotated by A. If there is a perfect correlation between two concepts A and B,
the measure will have a value of 1, if there is no co-occurrence, the measure is 0.

Latent Semantic Analysis (LSA) [7] was used to analyse the concept-book
co-occurrence matrix and calculate the similarity between concepts. LSA is a
statistical technique developed for extracting and representing the similarity
between words and between documents by analysis of large bodies of text. In
our context we expect the method to provide a measure for the correlation

5

between concepts in annotation (corrected for insufficient data), as well as a
way to distinguish the relevant correspondences between such concepts.

The occurrence of each concept in the annotation of each book is first counted
and stored in a concept-by-book matrix Xc×b. By using the singular value de-
composition (SVD), the matrix Xc×b is decomposed as

Xc×b = Cc×rSr×rB
T
r×b,

where c is the number of concepts, b is the number of books, Cc×r describes
the original concepts as vectors in a space of r derived orthogonal factor values,
BT

r×b describes the original book annotations in the same way, and Sr×r is a
diagonal matrix containing scaling values, which are all positive and ordered in
decreasing magnitude. Using only the k largest eigenvalues, a reduced matrix is
reconstructed as

Xc×b ≈ X̂c×b = Cc×kSk×kBT
k×b,

which is closest in the least squares sense to Xc×b. The aim of this dimension
reduction is to capture the most important structure but reduce noise and vari-
ability in concept usage. We used the percentage of accumulated singular values
to determine k. In our case, we kept 80% accumulation.

The product

Dc×c = X̂c×kX̂T
c×k = (Cc×kSk×k)(Cc×kSk×k)T

gives the paired similarity matrix between concepts [1].
Both methods provide measures of similarity between pairs of concepts. We

will see that different similarity measures group concepts in different ways and
their performance in our evaluation also vary.

3.2 Concept aggregation

Here we introduce two ways of aggregating concepts using the similarity mea-
sures calculated above.

Grouping concepts based on 1:1 mappings For a specific concept C0, a
list of concepts which are the top k ranked in similarity is easily generated, i.e.,

C0 → (C1, C2, . . . , Ck).

This list is not limited to contain the concepts from the different thesauri only,
instead, it contains concepts from both thesauri, ranked by their similarity to
concept C0.

Once a threshold k is chosen,9 the top k concepts together with concept C0

are expected to form a closely related conceptual entity. Dividing this set of
k + 1 concepts into concepts from one thesaurus and the other, the two sets of
9 In our experiments, we chose k = 10.

6

concepts from both thesauri are used to define an n to m mapping between both
thesauri. That is, if

G0 → (B1, G1, . . . , Bm, Gn),

where n + m = k, then a mapping rule

(G0, G1, . . . , Gn)→ (B1, B2, . . . , Bm)

is generated.

Partitioning concepts based on clustering One similarity-based clustering
technique [4] was used to partition the concepts into clusters. If one cluster
contains k concepts

(B1, G1, . . . , Bm, Gn),

where n + m = k, then a mapping rule

(G1, . . . , Gn)→ (B1, B2, . . . , Bm)

is generated.
The clustering technique takes the similarity between all concepts into ac-

count, therefore the generated clusters partition the concepts in a global manner.
In this way, the generated n : m mappings are expected to reproduce the general
correlation between concepts from both thesauri.

4 Evaluation

We use the book annotation translation scenario to evaluate the generated n : m
alignment. The complete set of dually annotated books was divided into two
parts: 2/3 of books was used for training, and the rest 1/3 of books as the
testing data. Using different sampling methods, we have two training data sets:

Train random: randomly selected books (5245 books and 7391 concepts)
Train rich: books with at least a total of 8 annotations from both thesauri

(5288 books and 10382 concepts)

4.1 Evaluation method

From the training data, we learn the alignment rules specifying which set of
GTT concepts should be aligned to which set of Brinkman concepts, that is,

R : Gr → Br,

where Gr is a set of GTT concepts and Br is the corresponding set of Brinkman
concepts. In the testing dataset, each book has its GTT and Brinkman annota-
tion, i.e. Gt and Bt. The GTT annotation was used to fire rules. This results in
a generated set of Brinkman concepts Br

′
. By comparing Bt and Br

′
, we can

evaluate the precision and recall of the learned alignment rules.

7

We now specify how to apply the rules to the GTT annotation and how to
define precision and recall. Given a alignment rule R : Gr → Br and a book
out of the testing data with the annotations Gt and Bt, we define four different
strategies – later denoted by FireIf – for firing rules:

1 Gt = Gr

2 Gt ⊇ Gr

3 Gt ⊆ Gr

ALL Fire in all above three cases.

The different generated Brinkman concepts were distinguished by a sub-
script i: Br

′

i. We consider a book to be matched if its real Brinkman annotation
and the generated set of Brinkman concepts overlap i.e. Bt ∩ Br

′

i 6= 0, i ∈
{1, 2, 3, ALL}.

4.2 Precision and Recall

Precision and recall are calculated at two levels. At the book level, we measure
the performance in terms of the fired books, which were fired by at least one
rule. We define the precision as the fraction of the books in the testing data set
that actually match their real Brinkman annotations, i.e.,

Pb =
#books matched

#books fired
,

and the recall as how many books in the whole testing set are matched, i.e,

Rb =
#books matched

#books testing
.

where #books matched is the number of books whose real Brinkman annotation
overlap the generated set and #books testing is the number of books in the
testing data.

At the annotation level, we measure how well the generated set of Brinkman
concepts match the real annotation, i.e.,

Pa =

∑ #good found

|Br
′
i|

#books fired
, Rb =

∑ #good found
|Bt|

#books testing
,

where #good found is the number of the real Brinkman concepts which are
found in the generated set.

5 Results

Table 1 gives an overview of the relation between the alignment rules, the train-
ing sets and different methods. The number of GTT concepts in these rules is
generally 2 or 3 times bigger than that of Brinkman concepts. This is consistent

8

Similarity Methods Training Set #Rule #GTT #Brinkman

Jaccard
Ranking

random 5669 6.4 4.6
rich 8334 8.6 4.2

Clustering
random 246 15.1 5.8

rich 242 84.2 14.4

LSA
Ranking

random 6916 6.2 4.2
rich 7117 7.6 3.5

Clustering
random 747 3.2 1.8

rich 883 8.2 2.9
Table 1. Generated rules using different training sets and methods

Similarity Methods Training Set Pb Rb Pa Ra

Jaccard
Ranking

random 63.77% 12.26% 12.45% 10.26%
rich 43.41% 12.43% 5.36% 9.83%

Clustering
random 26.87% 3.59% 25.17% 2.42%

rich 5.37% 0.80% 4.16% 0.53%

LSA
Ranking

random 67.55% 17.94% 6.60% 15.16%
rich 62.51% 19.54% 8.10% 16.41%

Clustering
random 39.68% 9.19% 22.06% 6.76%

rich 33.03% 8.01% 10.65% 6.24%
Table 2. Performance overview of different methods

with the way of using GTT concepts for book annotation, i.e., post-coordination,
which indicates several GTT concepts should be combined first and then aligned
to a single Brinkman concept. One GTT concept in different combinations could
also be aligned to different sets of Brinkman concepts.

Note that, when generating rules from the ranked lists, the top 10 most sim-
ilar concepts were grouped with a target concept, therefore, the sum of GTT
and Brinkman concepts is around 11. The ranked lists of different concepts may
contain the same group of concepts, thus the total number of the rules is differ-
ent and less than the total number of concepts. The clustering method creates
partitions of concepts and each cluster generates one rule, so the generated rules
are much less than those from the ranking method.

In Table 2, we compare the performance of different methods using different
training sets, with the firing type ALL. One message from this table is that the
arbitrary choice of using richly annotated books as training data, in general, does
not bring much benefits. Instead, as it is biased towards the richly annotated
books, it is more prone to overfitting the training data, and the performance on
the testing data tends to be worse.

This is confirmed by the results: we notice that using the rich training data
has a detrimental effect on the performance when Jaccard is used as a similarity
measure, but this effect is not observed when LSA is used. This is to be expected,
as LSA is much less sensitive to noise, and thus less prone to overfitting.

9

FireIF type Method Cr Pb Rb Pa Ra

1
Jaccard 47.56% 62.77% 0.65% 60.46% 0.55%

LSA 21.95% 47.00% 0.57% 37.32% 0.44%

2
Jaccard 58.94% 50.43% 3.39% 47.76% 2.27%

LSA 46.05% 36.95% 3.22% 29.98% 1.99%

3
Jaccard 88.21% 11.08% 0.85% 10.14% 0.69%

LSA 82.20% 41.77% 6.53% 18.82% 5.21%

ALL
Jaccard 97.15% 26.87% 3.59% 25.17% 2.42%

LSA 92.90% 39.68% 9.19% 22.06% 6.76%
Table 3. Comparison between Jaccard and LSA in clustering method, where Cr is the
ratio of the fired rules over the total number of rules for the given technique.

5.1 Comparing Jaccard and LSA

By matching type ALL, the LSA similarity outperforms the simple Jaccard mea-
sure, in terms of the precision and recall of both ranking and clustering meth-
ods. Table 3 gives the detailed figures in terms of different rule firing types. On
the one hand, using the simple Jaccard measure, more books were fired with
the exact and subsume match (type 2). This indicates that Jaccard measure is
good at finding explicit similarity from the co-occurrence information.10 On the
other hand, LSA is able to find some potentially similar concepts. Therefore,
by slightly sacrificing in the precision of generated concepts, LSA significantly
improves the precision and recall at the book level, and also gives a higher recall
for annotations.

5.2 Comparing Ranking and Clustering

In Table 2, for type ALL, rules generated from the ranked lists give better preci-
sion and recall than those from clusters, except that the rules from the clusters
have higher precision at the annotation level. Table 4 gives the detailed compar-
ison between rules generated from ranking and clustering. Here, the similarity
measure is LSA.

The rules generated from the clusters have better performance when fired by
type 1 and 2. More than 20% rules were fired by the exact match. This indicates
that those clusters matches the real annotations quite well, at least the GTT
concepts within clusters are highly correlated and matches the real data. The
high precision also guarantees the validity of the generated Brinkman concepts.
The higher recall and lower precision of the rules generated from the ranked
lists are because more concepts, including good candidates and noisy data, are
introduced at the same time. Note that the rules generated from ranking were
not fired at all by FireIf type 1, therefore the first line is empty.

10 This is also confirmed in [6].

10

FireIF type Method Cr Pb Rb Pa Ra

1
Ranking

Clustering 21.95% 47.00% 0.57% 37.32% 0.44%

2
Ranking 0.01% 100.00% 0.01% 50.00% 0.01%

Clustering 46.05% 36.95% 3.22% 29.98% 1.99%

3
Ranking 98.54% 67.55% 17.94% 6.60% 15.16%

Clustering 82.20% 41.77% 6.53% 18.82% 5.21%

ALL
Ranking 98.54% 67.55% 17.94% 6.60% 15.16%

Clustering 92.90% 39.68% 9.19% 22.06% 6.76%
Table 4. Comparison between rules generated from ranking and clustering.

6 Discussion

As shown in Table 1, using simple Jaccard similarity, the average size of clusters
is much bigger compared to other methods. Actually, those clusters have a big
variation in their size. Due to the existence of big clusters, many books are fired
because their GTT annotations are subsumed by the rules (type 3). Because of
the quality of the bigger clusters is somewhat low, the generated sets of Brinkman
concepts are not really good, which decreases the precision and recall. However,
if only counting smaller clusters (the size is equal to or less than 11), 80% of
the clusters if using Train random (59% if using Train rich) contain 1.4 GTT
and 1.2 Brinkman concepts (1.9 : 1.2 if using Train rich). These small clusters
generally contain the concepts which are strongly related, therefore, 1:1 or 2:1
mappings generated from them are more reliable.

Rule size also matters when generating rules from the ranked lists. The choice
of k directly affects the size of the rules. In our case, the choice of 10 involves too
many concepts into the rules. Therefore, many books were fired because their
GTT annotation was subsumed by the rules (type 3) while very few books are
fired by exact (type 1) or subsume matches (type 2). It would be interesting to
investigate the effect of the choice of k on the precision and recall performance.

Another concern is that one GTT concept could well be mapped to differ-
ent sets of Brinkman concepts if it is combined with different GTT concepts.
However, using the clustering methods, concepts are allocated into only one
partition. This limits the number of rules as well as the final performance. We
will investigate some probabilistic clustering techniques in order to allow more
flexible rules.

7 Conclusion

In this paper we have introduced an application that needs multi-concept align-
ment. We have presented and evaluated strategies to generate and deploy such
alignments, using statistical techniques that are expected to take into account
the way concepts are combined in the instance-level annotation data.

At this point we still have to answer the question whether the measures and
techniques we have used perform well for our annotation translation scenario.

11

First, the precision of the generated sets of Brinkman concepts (Pa) (see table 2)
is not encouraging. Ranging from 4.16% to 25.17%, it prevents from trusting the
candidate concepts as a unique source for annotation translation. A scenario
where a user would be proposed these candidates and required to assess them to
produce valid annotation would be more realistic: having to choose among, for
example, 10 Brinkman concepts is already an improvement compared to selecting
among all the Brinkman vocabulary. Additionally, table 4 shows that selecting
the rule firing strategy can improve the precision. Yet, such a scenario seems to be
ruled out by the annotation-level recall (Ra): in the most effective configuration,
16.41% of the correct annotations were found. The book-level recall (Rb) shows
that at most 19.54% of the books in the testing set were given at least one good
candidate. This means that an annotator should add his own concepts on top of
the candidate ones. One single technique is therefore not enough to cope with
the annotation translation for an entire collection.

Section 6 has shown that these weaknesses might be compensated by using
aggregation techniques that approximate better the way concepts are used for
book annotation. The objective there would be to increase the number of the
more reliable rules to produce more valid results (type 1 and 2). Also, different
strategies used here can be combined so as to obtain better performance. These
two options have to be explored further.

Also, an immediate way to improve the results without even changing the
methods could be to revisit the evaluation itself. Our evaluation technique gives
a first and cheap assessment, which is likely to remain generally valid. Yet it
is sensitive to indexing variation, the phenomenon that renders the fact that
several annotators annotating a same book (or a same annotator annotating it
at different time) will select slightly different concepts. Some manual application-
specific evaluation shall be performed to assess the influence of this phenomenon
and eventually compensate for its bias.

References

1. Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and
Richard Harshman. Indexing by latent semantic analysis. Journal of The American
Society for Information Science, 41(6):391–407, 1990.

2. R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. imap: Discovering
complex semantic matches between database schemas. In Proceedings of the ACM
International Conference on Management of Data (SIGMOD), pages 383–394, 2004.

3. Jérôme Euzenat and Pavel Shvaiko. Ontology Matching. Springer-Verlag, 2007.
4. Brendan J. Frey and Delbert Dueck. Clustering by passing messages between data

points. Science, February 16 2007.
5. B. He, K. C.-C. Chang, and J. Han. Discovering complex matchings across web

query interfaces: A correlation mining approach. 2004.
6. Antoine Isaac, Lourens van der Meij, Stefan Schlobach, and Shenghui Wang. An

empirical study of instance-based ontology matching. In Proceedings of the 6th
International Semantic Web Conference, 2007. To appear.

7. T. K. Landauer, P. W. Foltz, and D. Laham. An introduction to latent semantic
analysis. Discourse Processes, 25:259–284, 1998.

