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Abstract Traditional ontology mapping techniques are not strictly ap-
plicable in a dynamic and distributed environment (e.g. P2P and per-
vasive computing) in which on-the-fly alignments are sought after. We
propose an approach that collaborates the logic formalisms with collabo-
ratively created web repositories. A logic conceptualisation based “signa-
turing” algorithm is to discover, from concept definitions, the “feature”
vectors that uniquely identify concepts; web repositories are used to un-
derstand the implications of these features. Such a combination solidi-
fies an on-demand and approximate mechanism that emerges a context-
dependent and task-specific consensus among heterogeneous participants
of an information exchange task.

1 Introduction

The prevalence of the Internet has made it possible to access a large amount
of data. It has been commonly agreed that attaching machine-understandable
semantics to web resources gives birth to “smart” applications and thus benefits
ordinary web users by partially relieving them from routine tasks [3]. Thus far,
the semantics is mainly depicted using ontologies. Due to a lack of universal
standards and the diversity of human perspectives, it is inevitable that ontolo-
gies describing the same domain of discourse present semantic disagreement to
some extent. Therefore, one of the primary tasks to facilitate the envisioned
“smart” use of resources becomes establishing a mutual understanding among
different ontology-driven, semantics-enhanced systems. This mutual understand-
ing should faithfully reveal the intended meaning of different ontological entities.

Clearly, in order to have a mutual understanding, all the participants in-
volved in an information exchanging task must agree upon a list of words as
the semantics carriers and the meanings of these words must “pick out the same
individuals in the same context” [14]. In other words, ontological entities pass
meanings by not only values but also context-dependent referents. We refer to
the structural and naming information attached to a concept the value of the
concept while classified instances the referents. For example, we might use the
sentence “give me a French” to ask for a French wine or a French movie de-
pending on the conversational context. Current ontology mapping capability
performs well in identifying task-independent semantic equivalences. While such
techniques are good in generic ontology mapping scenarios, their applicability is



suspect in certain circumstances. Let’s take the peer-to-peer (p2p) environment
as an example. In such a setting, when trying to establish a consensus, two ma-
jor obstacles have prevented us from taking the conventional ontology mapping
route. On the one hand, data owners would be more incline to well-targeted and
task-specific solutions that allow them to share data within the context of a par-
ticular conversation instead of large scale and broad sense consensuses offered
by some centralised authorities. On the other hand, the quality of a consensus
is largely decided by the data that each individual holds. In many cases, such
data might be so diverse, ambiguous and incomplete. Any consensuses stemmed
therefrom demonstrate a certain degree of imperfectness, which is a function of
the data possessed by a data provider. These two characteristics are, of course,
not unique to p2p environments. Any applications aiming to provide on-the-fly
semantic alignments present such characteristics.

In this paper, the first issue is accommodated by reinterpreting ontology
mapping as a task situated in the background knowledge of a particular con-
versation: concepts are first decomposed into semantics-bearing signatures and
are reenforced as feature vectors based on web encyclopedia repositories. When
a particular conversation is to be conducted, we generate the corresponding
feature vectors so as to reduce the network traffic and the subsequent computa-
tional burden (Section 3). During this process, Latent Semantic Analysis (LSA)
is leveraged to alleviate the influence of modelling idiosyncrasy. In Section 3 and
throughout the rest of this paper, the “Wine Ontology”1 is used to detail our
approach. LSA also leads to a feasible solution to the second topic of this paper.
In a p2p or a similar environment, the consensus established w.r.t. a particu-
lar conversation should not be pealed off from the data that is held by each
individual. The uncertainty of an answer is, therefore, defined as the degree of
satisfaction, i.e. to what extent a request can be satisfied based on the local data
that the query handling individuals possess. We propose a probabilistic model
to quantify such satisfaction and regulate how an appropriate answer should be
screened out from other candidates (Section 4). Finally, in Section 5, we conclude
the paper with issues worth further discussion and investigation.

2 Preliminaries

Description Logic (DL) is a family of knowledge representation and reasoning
formalisms. It has attracted substantial research interest recently, especially after
the endorsement of DL-based ontology modelling languages (e.g. OWL [12]) by
the Semantic Web initiative [3]. DLs are based on the notions of concepts (i.e.
unary predicates) and properties (i.e. binary relations). Using defined constructs,
complex concepts can be composed from primitive ones. In the context of DLs,
an ontology is normally a 4-tuple 〈CN,PN, C,P〉 where CN is a set of concept
names, PN a set of property names, C a set of concepts and P a set of properties.
Let C and D be arbitrary concepts, P be a property, n be a non-negative integer,

1 Available from http://www.schemaweb.info/schema/SchemaDetails.aspx?id=62



oi (1 ≤ i ≤ n) be instances and ⊤, ⊥ denote the top and the bottom. A SHOIN
DL concept is: (SHOIN is the underlying logic of OWL-DL)

CN | ⊤ | ⊥ | C ⊓ D | C ⊔ D | ¬C | ∃R.C | ∀R.C | ≥n R.⊤ |≤n R.⊤ | {o1, . . . , on}

An interpretation I is a couple (∆I , ·I) where the nonempty set ∆I is the
domain of I and the ·I function maps each concept to a subset of ∆I and each
property to a subset of ∆I × ∆I .

Latent Semantic Analysis (LSA) [6] is an approach to document indexing.
For a large corpus of text documents, LSA assumes the existence of an under-
lying semantic model that can be captured using a term-document matrix with
rows corresponding to terms and columns to documents. It then discovers such a
model by projecting the original term-document matrix into a lower-dimensional
vector space with effectively reduced noise. LSA has been found capable of sim-
ulating a variety of human cognitive phenomena and thus emulating the “mean-
ing” discovering process. The advantage of LSA lies in the fact that the resulting
correlation between an arbitrary pair of items (terms or documents) is not iso-
lated from the rest of the representation system. The enabling technique of LSA
is Singular Value Decomposition (SVD). SVD decomposes an M×N matrix M

and represents it as an approximation, M̂, at a lower dimensionality k:

M ≈ M̂ = USV T = (u1 · · ·uk)







δ1

. . .

δk













v1

...
vk






(1)

where S is an K ×K diagonal matrix of singular values, U is an M ×K matrix
of eigenvectors derived from the term-term correlation matrix given by MM

T,
and V is an N ×K matrix of eigenvectors derived from the document-document
correlation matrix given by M

T
M. Recently, methods based on LSA have been

successfully applied to detect synonyms and acronyms [4].

3 Situating concept interpretation in WikipediA

Establishing consensus implies aligning different local ontologies. General ontol-
ogy mapping has been extensively studied recently [2]. In this paper, we take an
eclectic approach drawn from both the formal logics realm and Web2.0 applica-
tions. More specifically, we i) produce signatures that explicitly and quantita-
tively characterise the intensional restrictions of concepts, ii) retrieve web doc-
uments according to concept signatures as virtual instances, which are niched
in the context of a particular “topic”, and iii) generalise the signatures into
individual-independent and task-specific feature vectors based on the landscape
of their respective virtual instances. Similarity among concepts is then reduced
to the similarity among their respective feature vectors.



3.1 Signaturing Concepts

In an ontology O, semantics of concepts are concealed in the inter-concept re-
lationships introduced through subsumptions and property references. The first
step towards establishing consensus, therefore, becomes making explicit the se-
mantics hidden behind the concept constructs. In order to reveal such “hidden”
semantics, we recursively unfold concepts against their constructs till no further
actions can be taken. In this paper, we focus on ontologies that can be repre-
sented with OWL-DL. More specifically, we restrict ourselves to SHOIN (D)
DL [10]. This restriction is due to both theoretical and practical considera-
tions. On the one hand, SHOIN (D) is Beth-definable. Although reasoning w.r.t.
SHOIN (D) is NExpTime-complete, it has been demonstrated [10] that deter-
ministic complexity can be achieved by restricting the concept constructs to a
carefully selected subset of SHOIN (D) and/or translating SHOIN (D) into the
less expensive SHIN (D) whose satisfiability reasoning is ExpTime [1]. On the
other hand, after examining the available ones from the Internet, we observe that
many ontologies can be or have already been rewritten in RDF(S) or OWL-DL,
both of which are recommended by W3C. Methods developed for SHOIN (D)
is, therefore, applicable to those ontologies based on less expressive languages.

If cyclic definitions are not allowed—no primitive concept (property) appears
on both sides of an introduction axiom, and all definitions are in their Negation-
Normal Form—the negations are applied only to concept names, it is possible to
fully unfold the righthand side of all concept introduction axioms and guarantee
the termination of such an unfolding process.

WhiteBordeaux
.
= Bordeaux ⊓ WhiteWine

Bordeaux
.
= Wine ⊓ ∃ locatedIn.{BordeauxRegion}

Wine ⊑ =1 hasBody⊓ =1 hasColor

⊓ =1 hasFlavor ⊓ =1 hasMaker ⊓ =1 hasSugar

⊓ ∀ hasMaker.Winery ⊓ ∃ locatedIn.Region

⊓ ≥1 madeFromGrape

WhiteWine ⊑ Wine ⊓ ∃hasColor.{White}

Region ⊑ ⊤ Winery ⊑ ⊤

Figure 1. The WhiteBordeaux example

We adopt the construct transformation rules [1] to facilitate the concept un-
folding. In Fig. 2, we demonstrate how concept WhiteBordeaux (defined in Fig. 1)
is unfolded by repetitively applying the transformation rules. There are cases
that concepts are only partially defined with necessary conditions (inclusions)
instead of fully defined with both necessary and sufficient conditions (equali-
ties). Before unfolding, inclusions (i.e. axioms in the form C ⊑ D) are rewritten
in equalities (i.e. axioms in the form C

.
= D). This is achieved by introducing

a new primitive concept to represent the difference between C and D. For in-
stance, we introduce C-spec ⊑ ⊤ and rewrite C ⊑ D into C

.
= D⊓C-spec. In this



paper, we assume that the set of newly introduced primitive concept names is
disjoint with CN∪PN and bears clues to the original partially defined concepts.
The unfolding process stops when no transformation rules are applicable. It has
been demonstrated that by carefully selecting a set of admissible constructs, a
termination of unfolding is guaranteed w.r.t. acyclic ontologies.

ΠWB
1 = { x : Bordeaux ⊓ WhiteWine }

· · ·

ΠWB
1 =

8>>>><>>>>: x : (=1 hasBody⊓ =1 hasColor⊓ =1 hasFlavor
⊓ =1 hasMaker⊓ =1 hasSugar
⊓∀hasMaker.Winery ⊓ ∃locatedIn.Region
⊓ ≥1 madeFromGrape)
⊓∃locatedIn.{BordeauxRegion}
⊓∃hasColor.{White} ⊓ WhiteWine-spec
⊓Wine-spec

9>>>>=>>>>;
· · ·

ΠWB
1 =

8><>: 〈x, y0〉 : hasBody, 〈x, y1〉 : hasColor,
〈x, y2〉 : hasFlavor, 〈x, y3〉 : hasMaker,
〈x, y4〉 : hasSugar, y3 : Winery,

〈x, y5〉 : locatedIn, y5 : BordeauxRegion-spec,
〈x, y6〉 : madeFromGrape, y1 : White-spec

9>=>;
Figure 2. Unfolding concept WhiteBordeaux

As illustrated in Fig. 2, WhiteBordeaux is completely unfolded into its semantics-
bearing signature, ΠWB

1 . In order to reduce the computational complexity, when
unfolding we introduce primitive concepts to substitute nominal individuals.
For instance, the fragment “. . .⊓∃locatedIn.{BordeauxRegion}⊓ . . .” of Bordeaux

in Fig. 1 refers to instance BordeauxRegion of concept Region. We introduce
primitive concept BordeauxRegion ⊑ Region accordingly and modify the above
fragment into a set of equations as:

WhiteBordeaux
.
= . . . ⊓ ∃ locatedIn.BordeauxRegion . . .

BordeauxRegion
.
= Region ⊓ BordeauxRegion-spec

Effectively, the resulting signature is composed by DL ABox assertions gener-
ated formally according to the conceptualisation. We regard them as semantics-
preserving breakdowns of the constraints that are satisfied by any instances
belonging to a concept. Fully breaking down into primitive concepts and prop-
erties, in some cases, is difficult to achieve. For instance, universal property
value restrictions (UPVRs) can only be further expanded when in the same sig-
nature, there are elements defined over the quantified property. In Fig. 3(b),
“x : ∀hasSex.Male” is not unfolded due to the absence of “〈x, y〉 : hasSex”.
It is different from “∀hasMaker.Winery” in Fig. 2 because of the presence of
“=1 hasMaker” in the latter case. “x : ∀hasMaker.Winery” would have been left
unexpanded if otherwise.

It is possible that a concept has more than one signature, if it is defined
as the disjunction of other concepts. Applying the non-deterministic unfolding
rule of disjunction construct (⊔) results in alternative signatures, each of which
captures a part of the intended meaning of the original concept. For instance, in
Fig. 3, Human is unfolded into two different signatures.



Human
.
= Man ⊔ Woman

Man
.
= . . . ⊓ ∀ hasSex.Male ⊓ . . .

Woman
.
= . . . ⊓ ∀hasSex.Female ⊓ . . .

(a)

ΠMan
1 = { . . . , x : ∀hasSex.Male, . . . }

ΠHuman
1 = { . . . , x : ∀hasSex.Male, . . . }

ΠHuman
2 = { . . . , x : ∀hasSex.Female, . . . }

(b)

Figure 3. Rewriting BordeauxRegion

3.2 Weighting signature elements

Signaturing concepts can be seen as a process that gradually makes the semantic
restrictions (expressed via concept constructs) explicit. As a result, each concept
is associated with finite sets of formulae, being the primitive concepts, primitive
properties and unexpanded universal property value restrictions. The initial fea-
ture vector is extracted from these formulae.

Πx
i is subject to two “tuning” actions. Firstly, suffixes of X-spec concepts

are removed. For instance, “y1 : White-spec” in our example is rewritten as
“y1 : White” and is considered the same as those featured by “White”. Secondly,
residual UPVRs are simplified. The unexpanded UPVRs are dissected into prop-
erties and concepts. For instance, “x : ∀hasSex.Male” in ΠHuman

1 is expanded into
“〈x, y〉 : ∗hasSex” and “y : ∗Male”. The new signature elements generated there-
from are marked as optional to be differentiated from the others.

Obviously, different signature elements contribute differently to shaping the
final semantics of concepts. In order to evaluate the significance of individual sig-
nature elements, a weighting schema is conceived. Basically, we consider concepts
that contribute directly to the construction of others more important than those
that impinge on others indirectly through properties or chains of properties. This
is to emphasis on those elements that are semantically more significant than oth-
ers. For instance, Bordeaux and WhiteWine are equally important in shaping the
meaning of WhiteBordeaux (see Fig. 1) while BordeauxRegion is less significant
than Wine w.r.t. Bordeaux as Bordeaux should be narratively interpreted as a
special Wine first before narrowing it down to those that are produced in a par-
ticular geographic region. Our interests of Bordeaux, therefore, are arguably more
in the former than the latter. In order to reflect such a difference in different
restrictions and thus different signature elements of a concept, we introduce the
weight adjusting coefficient β. βe of signature element e is estimated as follows:
we split an element as the head (e.g. “x” and “〈x, y0〉”) and the tail (e.g. Region

and hasBody) separated by a colon.

– if e is a first-class signature element headed by “x”, βe = ωc;
– if e is a first-class signature element headed by “〈x, yi〉”, βe = ωp;
– if e is a non-first-class signature element introduced in ΠC

i through a property
P or a property chain P1 · · ·Pn:

βe = βP ∗ ωc or βe =
∏

i

βPi
∗ ωc;

– if e is restricted by Negation, βe = −βe;



– if e is an optional element introduced through unfolding residual universal
property value restrictions, βe = 0.5βe.

The weight of an arbitrary e then relies on two initial values ωc and ωp

corresponding to the first-class element featured by a primitive concept and a
primitive property respectively. The exact values of ωc and ωp are obtained by
either i) assigning manually based on one’s domain knowledge and expectation or
ii) adopting the tf-idf weighting schema used in Information Retrieval (IR) with
the assumption that an element appearing in every concept is less significant than
those appearing only in a handful of concepts. Weight adjusting coefficients are
memorised for each signature element. We then simplify the signatures to a set
of terms/phrases. We extract the bodies of signature elements and apply Natural
Language Processing (NLP) methods to tokenise and stem the bodies [11]. Those
resulting terms or short phrases that appear more than once in a signature are
collapsed into one with an aggregative weight as the sum of those corresponding
to every occurrence, i.e. βtotal

e =
∑

i βi
e. When merging multiple appearance,

we observe the disjointness between primitive concepts and primitive properties.
For convenience, we denote the set of weighted terms/phrases obtained at this
stage as γ.

3.3 Generalising Signatures

Terms or short phrases in γ are individual-specific, presenting interindividual
variation. Therefore, in order to emerge a consensus among individuals each
holding a different local ontology—possibly in different natural languages, it is
necessary to situate the interpretation of those terms/phrases stemmed from
concept signatures of different ontologies into the same background knowledge.
A straightforward approach to drawing such information is treating web repos-
itories as the source of common background knowledge. For instance in order
to exploit the feature vectors of WhiteBordeaux, one has to understand all the
words (i.e. Color, Flavor, etc.) appearing therein. Such an understanding should
not rely on a particular ontology or vocabulary and should reflect the general hu-
man cognition of the words. In this paper, inspired by existing studies (e.g. [9]),
we juxtapose terms/phrases against the titles of WikipediA articles and repre-
sent each concept as a vector of weighted WikipediA article titles, referred to
as a wiki-enhanced feature vector. Note that hereafter we use bold font to denote
the wiki-enhanced feature vectors.

WikipediA is a very appealing and probably the largest source of ency-
clopaedic knowledge. As a collaboratively edited document repository, it seems
reasonable to conjecture that WikipediA presents most of the modelling (e.g.
naming) variation that one will expect in independently developed ontologies.
Meanwhile, the great diversity of wikipedians’ background ensures that the con-
tents published on WikipediA generally has better quality than other non-peer-
reviewed web resources.

We assume that every conversation or an information exchange task focuses
on a particular topic. For instance, when one asks others about “the taste of



white Bordeaux”, the topic of this incident is “Wine”. If we denote the main
WikipediA article as t, we compute the enhanced feature vector as in Fig. 4. In
Step 1), when harvesting “virtual instances” from WikipediA, we utilise three
different types of articles to pool a well targeted text corpus: i) the main article
(ΛMain) together with other articles that are the m neighbours of t (ΛNeigbr), ii)
the List of xxx page π and WikipediA articles directly linked to π and their m

neighbours (ΛList), and iii) the corresponding articles in other languages (ΛLang).
WikipediA articles are retrieved from the following URL patterns:

URL for τ = http://〈ln〉.wikipedia.org/wiki/〈t〉
URL for π = http://〈ln〉.wikipedia.org/wiki/List of 〈xxx〉

where 〈ln〉 is the language code (e.g. “en” for English and “fr” for French).
When a particular topic does not have corresponding WikipediA entry, one
has to manually specify the correct keywords to find the appropriate articles.
Outbound links from ΛMain are followed to retrieve articles that are closely
related to ΛMain. In many topics, WikipediA maintains the so-called “List of ”
pages, e.g. the “list of wine producing countries”. Articles referred to from such
collective pages are normally well-situated. For instance, “France” in “List of
wine producing countries” leads to the WikipediA article titled “French Wine”.
Links to collective pages might also be available from within the main article. In
our approach we gather both types of collective pages and their m-neighbours
in ΛList. Pooling all the WikipediA articles together, we have a well-targeted
corpus of text documents, Λ = ΛMain ∪ ΛNeigbr ∪ ΛList. Harvested WikipediA

articles are parsed to remove WikipediA specific tags and commands. In Step
4), the SVD operation helps to reduce modelling variation and discover the latent
semantics—unrevealed correlations between terms and articles. Similarly, SVD
is performed again in Step 6) to optimise the weights of WikipediA articles
w.r.t. concepts in O.

If multiple natural languages are involved when establishing the consensus,
c (see Step 8 in Fig. 4) needs to be translated into other languages. Although
the cross-lingual capability of LSA has been investigated [8], we would rather
avoid experimenting with such an approach and opt for a simple solution: when
constructing Mac in Step 5), instead of the articles in the same language as the
local ontology O, we retrieve those corresponding WikipediA articles in the tar-
get languages as Λx

Lang, links to which normally present in the English articles.
x will be decided by the context in which the consensus is to be established.
For instance, if an individual is expected to communicate with French-speaking
groups, ΛFr

Lang is populated. One example of such articles is the French correspon-
dence of “Wine” available at “http://fr.wikipedia.org/wiki/Vin”. Subsequently,
Step 6) and 7) are carried out based on the new matrix.

After signaturing and generalisation, an arbitrary concept C ∈ O is associ-
ated with a WikipediA-enhanced and semantics-enriched feature vector, c, that
represents the context within which C is to be interpreted. Note that the ele-
ments in the final enhanced feature vector is not specific to the naming habit of
an individual ontology engineer. That is to say that c contains those terms that



1) harvest relevant WikipediA articles against t and pool them into Λ;
2) index every article a ∈ Λ with a list of terms, la, and weight t ∈ la based on tf-idf

schema as w〈ti,a〉;
3) construct the term-article matrix Mta with WikipediA articles as columns and

assign cell entries as

cij =

�
βkw · w〈ti,a〉, if ti = tkw ∈ γ;
0, if ti /∈ γ.

4) perform SVD on Mta and compute the correlation, σ〈γ,a〉, between γ and every
indexed WikipediA article as the cosine of the angle between γ and article term
vectors;

5) construct an article-concept matrix Mac with WikipediA articles as rows, concepts
from O as columns, and cell cij = σ〈γ,a〉;

6) condense the dimensionality of Mac into M̂ac with SVD;
7) associate every C ∈ O with a vector of WikipediA articles, denoted as c.
8) (Optional) go to Step 5) and translate c into other languages based on Λx

Lang.

Figure 4. Algorithm for generating wiki-topic vectors

might not appear in O but are frequently correlated with parts of the restrictions
of concept C. Such extras are pulled out from the referenced web repository, in
our case WikipediA. This is consistent with the observation on inter-individual
modelling variability: people tent to use different terms (e.g. synonyms and/or
hypernyms) to refer to the same object [6].

4 Answering queries approximately

When trying to establish consensus, a key task is to find the local substitutes
of those foreign concepts. In this occasion, we expect that all the individuals
have already done their “homework” off-line and trained their article-concept
matrix (M̂ac) against the same web repository, namely WikipediA. Acquiring
the similarity between a foreign concept C and the local ones requires the query
handling peer to incorporate the foreign feature vector c of C into its local
M̂ac. Constructing M̂ac from scratch w.r.t. every received foreign feature vector
is undesirable due to the high cost in recomputing SVD. A cheap solution is
the so-called folding-in [6] operation. Let M̂ac = USV T be the reduced matrix
of the query handler, pqh. Every input c is projected onto the span of U as
(c)TUS−1. Once feature vectors of the foreign concepts are put juxtaposed with
those local ones, similarity measures such as the cosine angle can be employed
to compare the foreign concepts against the local ones. Since both the query
submiter p0 and the query handler pqh train and obtain their local interpreation
vectors based on the same web repository, the folding-in approach is applicable.
Alternatively, a more sophisticated and slightly more expensive approach, the
SVD-updating method, can be used. Thus far, a few fast updating algorithms
have been investigated. Our experience suggested that the one proposed in [15]
outperformed many others.



4.1 LSA-based probability

There is a very little opportunity for individuals with independently developed
ontologies to find perfect equivalences among themselves. In a majority of cases,
we might need to rewrite Q0 into Qqh:“[...]the list of French WhiteWine from
Boreaux” and attach to it similarity values. When more than one foreign concept
is involved, there is not a plausible model to combine the multiple similarities. In
order to tackle this daunting prospect of query rewriting with multiple foreign
terms, we adopt the probability model of LSA [7] and a similarity approximation
of probability [5]. If C is a concept appearing in Q0 with c, answers to Qqh can be
regarded as a faithful answer to Q0 with a probability of p (C | C′) = p (c | c′, u′

i)
where C′ is the local translation of C in Oqh and u′

i are the left singular vectors
computed based on Oqh (see Equation 1).

p (c | c′, u′
i) can be derived from two probabilities, p (c′ | u′

i) and p (c | u′
i) [5].

p (c | u′
i) is given by a probability variation of LSA model [7]. In this model,

the author demonstrated that with some relaxations, an LSA-based similarity
can be presented as the probability of a particular document (a column of a
term-document matrix M) in the term-space (rows of M) based on document-
document similarities [7]. This probability is computed as

p (c′ | u′
i) = e(c′·u′

1
)2+···+(c′·u′

k
)2 / Zk (2)

where Zk is the normalisation constant2. Similarly, p (c | u′
i) is computed. De-

riving p (c | c′,u′
i) from p (c′ | u′

i) and p (c | u′
i), on the other hand, is not

straightforward. In this paper we use a similarity emulation of probability [5],

p ( c | c′,u′
i) = p ( c′ | u′

i)
ǫ, where ǫ =

(

1 − c · c′

1 + c · c′

)1−p (c|u′

i
)

(3)

where c · c′ gives the similarity value of concepts C and C′ computed from their
respective feature vectors.

4.2 Fidelity of query rewriting

Since u′
i can be seen as a representation of pqh’s local data, we define to what

extent pqh can understand p0 as fidelity of the query-specific consensus between
p0 and pqh as: fid (Q0 | QTr) = p ( c1, . . . , cn | c′1, . . . , c

′
n,u′

i), where ci are the
respective feature vectors of concepts in Q0 while c′i are feature vectors of the
corresponding concepts in the translation QTr. One possible way of continuing
the derivation of the fidelity function would be approximating p ( c1, . . . , cn |
c′1, . . . , c

′
n,u′

i) with Equation 3. We collapse vectors c1, . . . , cn to their centroid
cc while c′1, . . . , c

′
n to c′c and apply Equation 3. Hence, we have fid (Q0 | QTr

i ) ≈
p ( cc | c′c,u

′
i). The computation of the fidelity requires only limited information

from query submitting individuals: the actual queries and those feature vectors

2 Please refer to [7] for details of how Zk is defined.



associated with the queries. Meanwhile, computation is localised to each query
handler and characterised by its local ontology.

The fidelity, fid (Q0 | QTr), can be regarded as a criteria for judging the ca-
pability of query handlers. Let QTr

i be the translation of Q0 in the local ontology
Oi of pi, the query rewriting fidelity reflects how good an answer to Q0 drawn
from QTr

i is and thus how well pi can handle Q0 based on its local knowledge.
The higher the fidelity is, the greater chance the original query is satisfactorily
answered by the query handler. Such a probabilistic model paves the way for
a ranking mechanism of candidate query handlers. A feasible scenario could be
that every pi in a group G estimates its own fidelity based on the local transla-
tion of QTr

i , the original Q0 and the incoming foreign feature vectors. A group
coordinator can then allocate the query handling task to the one with the highest
estimated fidelity value.

5 Concluding Remarks

In a loosely regulated environment, global consensus may not be enforced. It
is more likely that each individual or a small group of peers maintains a lo-
cal ontology. For an outsider to query an established group and retrieve useful
information, conventional ontology mapping techniques (e.g. discussed in [13])
are not sufficient. Dynamic and on-the-fly methods for establishing on demand
consensuses becomes more desirable. In the meantime, exact equivalences have
given way to those less perfect ones. In this paper, we propose a mechanism to
emerge and exploit imperfect consensuses among heterogeneous data holders. We
situate an alignment task in the background knowledge drawn from public web
repositories, e.g. WikipediA. We combine the strength of both representation
formalisms and collaboratively created web repositories when discovering seman-
tics. Our semantic alignment approach also gives birth to a probabilistic model
to evaluate approximate query answering by identifying the most appropriate
individual to handle the query and ranking candidate answers returned from the
chosen one. There are two sources of complexity w.r.t. the proposed approach: i)
signaturing concepts using DL transformation rules (NExpTime for expressive
DLs) and ii) SVD dimensionality reduction. We, however, would like to make
the following argument. On the one hand, DL-based reasoning is very expen-
sive in itself. Any methods aiming to manipulate semantics embedded therein,
therefore, have to pay the price of high complexity. Meanwhile, high complexity
is normally associated with a set of “culprit” DL constructs. Introducing sub-
stituting constructs and/or alternative modelling techniques might help us to
find a route around the complexity issue. Meanwhile, construct transformation
rules are implemented and optimised in many DL systems and the empirical
evaluation has confirmed the performance of such systems in tackling real-life
ontologies [1]. On the other hand, LSA has been extensively studied in IR. We
share the optimistic expectation with those dedicated researchers regarding the
practical value of LSA/SVD in latent semantics discovery.



Finalising the implementation and evaluating it against real-life scenarios are
our immediate future work. The evaluation will focus on the following aspects:
i) the applicability of WikipediA w.r.t. topics of different popularity, ii) the
scalability of the signaturing and weighting algorithms and their applicability
in the current landscape of ontologies, and iii) the performance of the proposed
probability mechanism for query handling.
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