
Learning Subsumption Relations with CSR: A Classification-
based Method for the Alignment of Ontologies1

Vassilis Spiliopoulos1, 2, Alexandros G. Valarakos1, George A. Vouros1, and Vangelis Karkaletsis2

1AI Lab, Information and Communication Systems Engineering Department, University of the Aegean, 
Samos, 83 200, Greece

{vspiliop, alexv, georgev}@aegean.gr
2Institution of Informatics and Telecommunications, NCSR ”Demokritos”, Greece

vangelis@iit.demokritos.gr

Abstract. In this paper we propose the "Classification-Based Learning of Subsumption 
Relations for the Alignment of Ontologies" (CSR) method. Given a pair of concepts from two 
ontologies, the objective of CSR is to identify patterns of concepts’ features (here, properties)
that provide evidence for the subsumption relation among these concepts. This is achieved by 
means of a classification task using decision trees. For the learning of the decision trees, the 
proposed method generates training datasets from the source ontologies’, considering each 
ontology in isolation. The paper describes thoroughly the method, provides experimental results 
for computing subsumption relations over an extended version of the OAEI 2006 benchmarking 
series and discusses the potential of the method.
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1 Introduction

Although many efforts [1] aim to the automatic discovery of equivalence relations between the 
elements of ontologies, in this paper we conjecture that this is not enough: To deal effectively with 
the ontologies’ alignment problem, we have to deal with the discovery of subsumption relations 
among ontology elements. This is particularly true, when we deal with ontologies whose 
conceptualizations are at different “granularity levels”: In these cases, elements (concepts and/or
properties) of an ontology are more generic than the corresponding elements of another ontology. 
Although subsumption relations between the elements of two ontologies may be deduced by the 
equivalence relations of other elements, in extreme cases where no equivalence relations exist, this 
can not be done. In any case, we conjecture that the discovery of subsumption relations between 
elements of different ontologies may further facilitate the discovery/filtering of equivalence relations, 
and vise-versa, augmenting the effectiveness of our ontology alignment and merging methods [2].

This paper presents the "Classification-Based Learning of Subsumption Relations for the 
Alignment of Ontologies" (CSR) method. CSR computes subsumption relations between concept 
pairs of two distinct ontologies by means of a classification task, using decision trees, and by 
exploiting equivalences between properties. Given a pair of concepts, the supervised machine 
learning method “locates” a hypothesis concerning their relation in a space of hypotheses, which best 
fits (but not restricted) to the training examples [3], generalizing beyond them. Concept pairs are 
represented as feature vectors of length equal to the number of the distinct properties of source and 
target ontologies: Equivalent properties (i.e., properties with equivalent meaning) correspond to the 
same vector component. The training examples for the learning method are being generated from the 
target and source ontologies. 

Although other features may be used, in this paper we study the importance of concepts’ 
properties to assessing the subsumption between concepts: This is an important first step to assessing 
subsumption relations among concepts, since (a) it appeals to our intuition about the importance of 
properties as distinguishing characteristics of classes of entities, (b) it makes the least possible 
commitment to the precision of any method for the discovery of equivalence relations among 
ontology elements, (c) it provides a basic method that can be further enhanced with other concepts’ 
distinguishing features (e.g., concepts in a given vicinity), and can be further combined with other 
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alignment methods: This paper studies the potential of CSR, while leaving further enhancements and 
combinations for future work.

The machine learning approach has been chosen since (a) there are no evident generic rules 
directly capturing the existence of a subsumption relation between ontology elements (e.g., by means 
of their surface appearance) and (b) concept pairs of the same ontology provide examples for the 
subsumption relation, making the method self-adapting to idiosyncrasies of specific domains, and 
non-dependant to external resources. 

Decision trees are used widely in classification problems, since they are robust to noisy data, to 
missing attribute values, and they are capable of learning disjunctive expressions [3]: Features that 
match to the subsumption computation problem. Weka's j48 [3] is the implementation of the widely 
used and state of the art C4.5 [4] decision tree learning algorithm that we have used in this work. 
C4.5 suits perfectly to problems with the above characteristics.

2 Problem Statement and Related Work

An ontology is a pair O=(S, A), where S is the ontological signature describing the vocabulary (i.e.,
the terms that lexicalize ontology elements) and A is a set of ontological axioms, restricting the 
intended meaning of the terms included in the signature [5]. Considering a partition of S let us 
introduce the sets Sp and Sc, denoting the sets of terms lexicalizing ontology properties and ontology 
concepts, respectively.

Ontology mapping from a source ontology O1=(S1,A1) to a target ontology O2=(S2,A2) is a 

morphism f:S1S2 of ontological signatures such that A2 ⊨ f(A1), i.e., all interpretations that satisfy 
O2’s axioms also satisfy O1’s translated axioms. However, instead of a function, we may articulate 
five different kinds of binary relations between the elements of source ontologies: Namely, 
equivalence (≡), subsumption (inclusion) (⊒ or ⊑), mismatch (⊥) and overlapping (⊓). In this case, 
the ontology mapping problem is as follows: Classify any pair (C1,C2) of elements of the input 
ontologies, such that  Ci is a term in Si, i=1,2, to the above relations, consistently.

In this paper we deal with the subsumption computation problem which, given the above generic 
problem, is as follows: Given (a) a source ontology O1=(S1, A1) and a target ontology O2=(S2, A2)
such that S1=S1cS1p and S2=S2cS2p, and (b) a morphism f:S1pS2p from the lexicalizations of the 
properties of the source ontology to the lexicalizations of the properties of the target ontology
(computing properties’ equivalences), classify each pair (C1,C2) of concepts, where C1 is a term in S1c

and C2 is a term in S2c, to two distinct classes: To the “subsumption” (⊑) class, or to the class “R”. 
The class “R” denotes pairs of concepts that are not known to be related via the subsumption2

relation, or that are known to be related via the equivalence, mismatch or overlapping relations.  
Given the above stated problem, to the best of our knowledge only the Semantic Matching

approach [6] deals with the computing of subsumption relations between concepts of ontologies. This
method relies on codified knowledge contained in external dictionaries, and specifically in WordNet, 
transforming the available information into a propositional formula and solving a propositional 
satisfiability problem. Relations that do not satisfy the formula are filtered out and the remaining 
ones are returned in order of semantic strength.

In contrast to Semantic Matching method, CSR is a machine-learning based method that exploits 
the semantics of the input ontologies to assess the equivalence of properties and to generate the 
appropriate examples for the training of the classifier. This makes the proposed method independent 
from any third/external domain resource (lexicon or thesaurus).

3 The Classification-Based Learning of Subsumption Relations (CSR) Method 

As it is shown in Fig 1, given a pair of ontologies O1=(S1, A1) and O2=(S2, A2), expressed in OWL-
DL, the aim of the  CSR method is to classify pairs of concepts (C1,C2), where C1 is a term in S1C and 
C2 is a term in S2C, either in the class “⊑” – assessing the fact that the concept C1 is subsumed by C2

– or in the class “R”.

                                                     
2 This means that a pair of concepts belonging to “R” may belong to the subsumption relation. In conjunction,
“R” includes concept pairs that are not related via the subsumption relation (e.g., disjoint concepts).



Fig. 1. Overview of the CSR method.

The discrete steps of the CSR method, as depicted in Fig. 1, are the following:
 Reasoning services are being used for inferring all facts according to ontologies’ specification 

semantics [7]. This is a necessary step as it affects the generation of the training dataset. 
 The generation of the features is performed by gathering all discrete properties from both 

ontologies:
Given properties’ equivalencies computed by the AUTOMS mapping tool [8], each pair of concepts 
(C1,C2) is represented by a vector whose components range in {0, 1, 2, 3}. Specifically, the value of a 
feature is (a) “0”, if the corresponding property does not appear neither in C1 nor C2, (b) “1”, if the 
corresponding property appears only in C1, (c) “2”, if the corresponding property appears only in C2, 
(c) “3”, if the corresponding property appears in both C1 and C2.
It must be emphasized that (a) by “property appearance” we do not mean the occurrence of the 
property’s lexicalization, but the occurrence of property’s meaning as it is assessed by AUTOMS, 
and (b) feature vectors are not identical for symmetric pairs of concepts, allowing the computation of 
the direction of the subsumption relation.
 The sets of training examples are being generated according to the generic rules specified in the 

following. This step includes the balancing of the training dataset, as well.
Generating the training examples for the class “⊑”.  This set of examples contains all the stated and 
inferred subsumption relations among the concepts in each of the source ontologies.
Generating the training examples for the class “R”. According to the open world semantics, in case 
there is not an axiom that specifies the subsumption relation between a pair of concepts (or in case 
this relation can not be inferred by exploiting the semantics of the subsumption relation), then this 
pair does not belong to the subsumption class and it is included in the generic class “R”. Training 
examples for the class “R” is further enriched by taking into account (a) the stated equivalence 
relations between concepts, and (b) by exploiting the union construct: Concepts defined as the union 
of others, can be substituted by any of their constituents. 

The result of the above rule is the definition of four different training example categories for class
“R”, defined as follows: (a) Concepts belonging to different hierarchies, (b) siblings at the same 
hierarchy level for which no subsumption relation is defined or inferred, (c) siblings at different 
hierarchy levels: If any concept that is in a pair belonging in the ”siblings of the same hierarchy 
level” category is substituted by any of its subsumees, then new pair examples are recursively 
generated, until the leaf concepts of the ontology are reached. Finally, (d) concepts related via an
object property in case no subsumption relation is defined or inferred between them.
Creating a Balanced Training Dataset. It is very important for the performance of the classifier that 
the training examples are balanced: The number of training examples of the two classes must be 
equal, forcing both categories to be equally represented. This is referred as the dataset imbalance
problem. Considering the various techniques the have been proposed towards its solution [9], we 
have adopted an under-sampling method:
1. All the generated training examples for the class “⊑” are used.
2. Duplicate examples across different categories of class “R” are removed.
3. Select randomly n/t examples for each category of training examples of the class “R”, where n is 

the number of examples of class “⊑” and t is the number of different categories of class “R”.
Given that examples are chosen randomly, the under-sampling method introduces non-

determinism into the learning process. Furthermore, as shown in step 3 above, all the different types 
of example categories are equally present among the example pairs for class “R”. This is of 
paramount importance, as a “good” classifier must learn to identify all the different types of 
examples. 

Subsequent steps are as follows:
 The classifier is being trained using the training dataset.
 Concept pairs are being classified by the trained classifier, pruning the search space.

In order to prune the search space, the proposed algorithm firstly checks all the concepts from the 
first ontology with the root concepts (concepts with no subsumer) and unit concepts (root concepts 
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with no subsumees) of the second ontology. If a pair is not classified in the class “⊑”, then the 
hierarchy rooted by the corresponding concept of the second ontology is not being examined by the 
classifier. If a pair is assessed to belong to the class “⊑”, then the concept of the first ontology is 
recursively being tested with the direct subsumees of the corresponding concept in the second 
ontology, until either a pair is assessed to belong in the class “R”, or until the leaf concepts are 
reached. 

4 Experimental Results and Discussion

The testing dataset has been derived from the benchmarking series of the OAEI 2006 contest [10]. As 
our method exploits the properties of concepts, we do not include ontologies with no properties. 
Hence, the compiled corpus consists of 31 out of the 51 OAEI 2006 ontologies, and it is available at 
the URL http://www.icsd.aegean.gr/incosys/csr, together with the gold standard created. All 
benchmarks (101-304) except R1-R4, define the second ontology of each pair as an alteration of the 
same first. The benchmarks can be categorized based on their common features as follows: (a) in A1-
A5 (101-210, 237, 238 and 249) elements’ lexicalizations of the target ontologies are altered in 
various ways (e.g., uppercasing, underscore, foreign language, synonyms and random strings), (b) in 
A6-A7 (225 and 230) restrictions are removed and/or properties are modeled in more detail, (c) in F1-
F2 (222, 237, 251 and 258) the hierarchies are flattened and/or random lexicalizations of elements 
are introduced, (d) in E1-E2 (223, 238, 252 and 259) the same as F1-F2, but the hierarchies are 
expanded and (e) in R1-R4 (301-304) target ontologies are real world ontologies.

Due to the non-determinism introduced by the under-sampling method used, for each ontology 
pair the experimental results have been produced by applying the CSR method 20 times. The set of 
evaluation values produced during the experiments are visualized by using boxplots [11].

Results show the precision and recall of the proposed method as it is applied in the different types 
of ontology pairs. Precision is the ratio #correct_pairs_computed/ #pairs_computed and recall is the 
ratio #correct_pairs_computed/#pairs_in_gold_standard. CSR is compared with a baseline classifier 
which is based on the Boolean Existential Model (BEM), in order to show CSR’s ability to generalize 
successfully from the training examples. The baseline classifier consults the training examples of the 
class “⊑”, testing whether each testing pair matches exactly to any of the training examples.

Fig. 2 and Fig. 3 depict the boxplots for the precision and recall of CSR for the various benchmark 
categories. The CSR method, while trying to generalize, takes into account the training examples of 
both classes. This, in conjunction to the fact that the feature vectors are not the optimum (due to 
errors in the mapping of properties), there are cases where feature vectors of examples for the class 
“R” are the same with examples for the class “⊑” (this happens for instance in cases A7, F1 and F2). 
This affects the discriminating ability of the classifier, resulting to low precision. These problems do 
not apply to the baseline classifier: in cases where the testing concept pairs are almost the same with 
the training pairs this classifier is quite effective. The above argument regarding the behavior of CSR
is strengthened by the results of cases A4, A5 and A6 where the mapping of properties is more 
difficult than in A1 to A3 where the testing concept pairs are almost the same with the training pairs. 
In cases A4 to A6, the training and testing examples are not completely identical (due to the 
replacement of properties’ and concepts’ labels with synonyms and due to the absence of comments 
in some ontologies, which affects the mapping of properties): In these cases CSR outperforms the 
baseline classifier, as it manages to generalize successfully from the training examples.

Categories R1 to R4 include real world ontologies: These cases clearly show that the CSR method 
generalizes over the training examples. For example, in the test case R1 the baseline classifier fails 
completely in terms of both precision (0%) and recall (0%), while the CSR method achieves 25% 
precision and 89% recall. In category R3 the CSR method performs poorly, because properties are 
defined only for the root concepts. As a result, there are many training examples with 0’s in their 
feature vectors that prevent the classifier for generalizing properly.

To further assess the quality of the classification method, we performed ROC analysis [16] (Fig. 
6).  In our case, ROC analysis considers the trade off between how “good” is the classifier in 
classifying testing examples in the distinct classes “⊑” and “R”. By examining the ROC area under 
line values of the CSR method in all test cases it is obvious that the classifier is always above being 
“fair” and in the majority of the test cases (9/15) can be characterized as “excellent”. It must be stated 
that these values depict that, although the performance of the classifier in the class “R” is of no 
evident interest for the ontology alignment problem, the CSR method performs even better there.
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Fig. 2. Precision of CSR in various test cases.
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Fig. 3. Recall of CSR in various test cases.
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Fig. 4. Average precision of CSR and baseline 
classifier.
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Fig. 5. Average recall of CSR and baseline classifier.
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Fig. 6. ROC areas under line in all test cases.

5 Conclusions and Future Work

In this paper we propose the "Classification-Based Learning of Subsumption Relations for the 
Alignment of Ontologies" (CSR) method.  Experimental results for computing subsumption relations 
over an extended version of the OAEI 2006 benchmarking series show the potential of the proposed 
method: CSR generalizes effectively over the training examples, showing (a) the importance of 
properties to assessing the subsumption relation between concepts of discrete ontologies (b) the 
importance of incorporating more precise property mapping methods into the process, (c) the 
potential to further improve the method via the incorporation of more types of features, and via its 
combination with other methods. 
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