
Ontology Merging using Answer Set
Programming and Linguistic Knowledge

Jürgen Bock1, Rodney Topor2, and Raphael Volz1

1 FZI Forschungszentrum Informatik, Karlsruhe, Germany
{bock, volz}@fzi.de

2 Griffith University, Brisbane, Australia
r.topor@griffith.edu.au

Abstract. With the increasing number of ontologies available on the
web, the problem of merging ontologies from different sources to inter-
operate applications becomes important. This paper presents a novel
approach for merging of light-weight ontologies based on answer set pro-
gramming (ASP) and linguistic background knowledge. ASP provides a
declarative execution environment for intuitive merging rules. WordNet
provides broad linguistic knowledge that is used to identify correspond-
ing concepts. We present a semi-automatic merging algorithm, where
users can choose appropriate results from a set of suggestions.

1 Introduction

Many semantics-based applications are isolated applications utilising single on-
tologies to improve data access and navigation.

The popularity of the Web 2.0 theme has brought high attention to so-called
“mashups”, where data from several applications is combined to provide novel
applications. For example, housingmaps.com combines map data with real es-
tate information to depict houses for sale on a map. Beyond the Web, ontology
merging is also a fundamental task in enterprise data integration. In many cases
data interoperation goes beyond mapping-based translation of data between ap-
plications and a recent trend in large enterprises is to create meta-databases
which holds master data about the schemas (or ontologies) of all applications in
the enterprise.

This paper3 addresses ontology merging, i.e. creating a single, coherent on-
tology out of several different ones, and presents a novel approach for merging of
light-weight ontologies. We present a semi-automatic merging algorithm, where
users can choose appropriate results from a set of suggestions. Our techniques are
based on combining answer set programming (ASP) with linguistic background
knowledge, which brings several benefits for ontology merging:

3 We thank Kewen Wang for useful comments and Roman Schindlauer, the main
developer of dlvhex, for useful information and fruitful web chats. Early discussions
with Marilyn Ford have been very helpful to identify this project.



– Correspondence detection: Linguistic knowledge is used to detect correspon-
dences between concepts based on synonymy

– Merging options: ASP calculates several answer sets which provide merging
options among which the user can choose

– Extensibility: We provide intuitive merging rules that can be easily extended
to capture domain-specific extensions

While our general approach is not language specific, our implementation
currently deals with WordNet [1] as a basic broad linguistic resource that is used
to identify corresponding concepts. Due to our observation on the prevalence of
light-weight ontologies, we concentrate on merging light-weight ontologies based
on the recently proposed SKOS standard for controlled vocabularies.

The problem of ontology merging has been addressed by several authors and
the use of linguistic information is common in these approaches.

The Prompt Suite [2] is a collection of tools, available as a plugin for the
Protégé ontology editor. It incorporates lexical and (optionally) linguistic knowl-
edge to identify similar or synonymous entities. However, the Prompt approach
utilisies linguistic resources only to a limited extent and requires a high degree
of user-interaction.

Ehrig and Sure [3] suggest 17 rules to gain similarity measures between a
number of ontologies to be mapped. Since the rules were “manually formulated
by domain experts”, this approach shows how explicit encoding of intuitive rules
works well for the ontology merging task.

Wang et al. [4] use ASP for ontology merging and alignment of expressive
DL-programs [5]. The paper focuses solely on conflict resolution and maintaining
of consistency throughout the merging/alignment process. We pick up the idea
of using ASP, but follow a more practical approach.

2 Answer Set Programming

We choose Answer Set Programming (ASP) [6] as implementation language for
several reasons. Firstly, it allows very compact encodings for complex problems,
such as the graph colouring problem. Secondly, it is a purely declarative pro-
gramming paradigm, which allows to formulate the problem in terms of “what”
should be done, instead of “how” to compute the solution.

Intuitively, ASP programs are a set of three basic constructs: facts (e.g.:
light), rules (e.g.: light← switchOn), and constraints (e.g.: ← light, daytime).
With particular respect to DLV, atoms can be default (not light) or classically
negated (¬light), and disjunction can occur in rule heads. Refer to Baral [7] for
a formal account.

Using dlvhex as an extension to DLV, we were able to provide an external
atom to access the WordNet database4. The external atom was designed to
be useful for a wider range of applications beyond the scope of this merging
algorithm.
4 http://con.fusion.at/dlvhex/download.php



3 Ontology Merging using ASP and Linguistic Knowledge

The fundamental assumption behind our algorithm is to provide a semi-auto-
matic merging approach, which presents a number of different possible merging
solutions to the user, who can finally choose the one(s) best suitable for her needs.
The ontology merging algorithm itself is designed to follow intuitive rules to make
it not only easy to understand but also extensible. The rule set incorporates
information given by the structure of the ontologies to be merged, as well as
additional linguistic background knowledge and respects the following issues:

– Exploit linguistic information, since ontologies typically follow a human
knowledge model and entities are labeled in natural language terms.

– Allow or forbid different ontology structures, such as trees or DAGs.
– Respect explicit domain knowledge provided by the user via certain flags or

parameters.
– Provide an option for brave merging to further reduce the number of merging

suggestions.

3.1 Formal Design

For two concepts c1 and c2, by c1 ' c2 we denote that their labels are identical
or synonyms. c1 ≺ c2 denotes that a label of c1 is linguistically narrower (i.e. a
direct hyponym or meronym in this approach) of a label of c2. By c1 ≤C c2 we
denote that c1 is defined narrower than c2 in one of the input ontologies.

Concept Melding. Intuitively, two concepts of different ontologies can be
melded, if any of their labels are identical or synonyms5.

meld(c1, c2) ∨ ¬meld(c1, c2) ← c1 ' c2 (1)
← c1 ' c2, not c1 ≺ c2, not c2 ≺ c1, ¬meld(c1, c2) (2)

Since some words can be synonyms, as well as in a linguistical narrower
relation, they do not necessarily have to be melded. This can be expressed by
rule (1). However, if c1 and c2 are not in a linguistic narrowing relation, they
must be melded, which will be forced by constraint (2).

Hierarchy Restructuring. Intuitively, two concepts can be merged in a po-
tential narrowing relation, if they are in a narrowing relation in one of the input
ontologies, or if they are in different ontologies but in a linguistical narrowing
relation.
5 The rules presented in this section are denoted in a formal and simplified way to

demonstrate basic ideas of the algorithm. They violate rule safety and other restric-
tions and cannot be implemented straightforwardly. Definitions of auxiliary atoms
are omitted. Please refer to [8] for the full translation to the implemented set of safe
rules.



For ontologies O1 and O2 and i, j ∈ {1, 2}

pot narr(c2, c1) ← c1 ≤C c2 (c1, c2 ∈ Oi) (3)
pot narr(c2, c1) ← c1 ≺ c2 (c1 ∈ Oi, c2 ∈ Oj , i 6= j) (4)

m narr(c1, c2) ∨ ¬m narr(c1, c2) ← pot narr(c1, c2) (5)

Firstly, narrowing relations given by the input ontologies and linguistic in-
formation are collected in rules (3) and (4). (Without loss of generality, only
atomic concepts are considered in these rules, i.e., concepts that are not yet
melded.) However, a reasonable merging will not contain all potential narrowing
relations due to transitivity and adjustable restrictions to the final structure (see
later in this section). Therefore, a second step identifies appropriate subsets of
all potential narrowing relations to form the different merging proposals. The
main idea is, to either pick a potential narrowing relation for the final merging,
or not (rule (5)).

3.2 User Guidance

To restrict the (so far exponential) number of possible merging solutions to
reasonable ones, constraints are used, which are enabled by several flags, set by
the user, namely no singles, one root, single parent, and always meld.

Let b(c) and n(c) be atoms containing all concepts c that are chosen to
be merged as a broader (b(c)) or narrower (n(c)) concept to any other. A root
concept root(c) is defined as a concept that is broader but not narrower than any
other concept, or an isolated concept. Let chained(c, d) be the transitive closure
of potential narrowing relations that form a chain of at least three concepts.

The following constraints are enabled by the according flags:

← not b(c), not n(c), no singles (6)
← root(c), root(d), c 6= d, one root (7)
← m narr(c, e), m narr(d, e), c 6= d, single parent (8)
← ¬meld(c1, c2), c1 ' c2, always meld (9)
← m narr(c, d), pot narr(c, d), chained(c, d), brave (10)

The no singles constraint (6) does not allow concepts that do not occur as
either a broader, or a narrower concept. The one root restriction (7) constrains
the possible merging solutions to those where only one root concept exists. Note
that one root implies no singles, since every single node is a root. Ontologies,
that are organised in a tree structure require concepts to be connected only
by one single incoming narrowing relation. This can be enforced by setting the
single parent flag, which enables constraint (8). The always meld constraint (9)
disables the generation of multiple answer set by simple disallowing meldable
concepts not to be melded. This can reduce the number of merging suggestion
drastically. The brave constraint (10) makes the algorithm greedy in terms of
preferring a more nested hierarchy to a flatter one. This is achieved by preferring
longer chains of narrowing relations to shortcuts of a single narrowing edge.



4 Conclusion

We have presented a novel approach to ontology merging, incorporating nat-
ural language background knowledge and a direct implementation of intuitive
merging rules. For the algorithm, a number of requirements have been identi-
fied, and formally translated into declarative rules for ASP. This formal design
could be implemented straightforwardly in only 56 logical lines of code (cf. [8])
for dlvhex, which we extended by a new external plug-in to deal with WordNet.
The algorithm addresses the two main aspects of concept melding and hierarchy
restructuring. A possible merging contains a reasonable subset of these potential
narrowing relations by constraining possible solutions according to a number of
(adjustable) conditions.

This work focused mainly on providing a new methodology of computing
ontology mergings, rather than producing an off-the-shelf application.

Early experiments have shown promising results for various flag combina-
tions, and further evaluations will be conducted. Future work also includes the
extension and refinement of the algorithm, such as the use of weak constraints
and aggregates. These would allow for extensions, such as checking for multi-
level linguistic relations, ordering answer sets and discarding answer sets below
a certain confidence threshold, or the use of the linguistic resource also to aug-
ment the merging results by missing concepts. Furthermore, a modularisation of
the algorithm would allow for user interaction for crucial decisions in disjunctive
rules.

References

1. Miller, G.A.: WordNet: A Lexical Database for English. Communications of the
ACM 38(11) (1995) 39–41

2. Noy, N.F., Musen, M.A.: The PROMPT Suite: Interactive Tools For Ontology
Merging And Mapping. Int. J. Hum.-Comput. Stud. 59(6) (2003) 983–1024

3. Ehrig, M., Sure, Y.: Ontology Mapping - An Integrated Approach. In: Proc. 1st
European Semantic Web Synopsium (ESWS). (2004) 76–91

4. Wang, K., Antoniou, G., Topor, R.W., Sattar, A.: Merging and Aligning Ontologies
in dl-Programs. In: Proc. 1st International Conference on Rules and Rule Markup
Languages for the Semantic Web. (2005) 160–171

5. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining Answer Set
Programming with Description Logics for the Semantic Web. Technical Report
INFSYS RR-1843-03-13, Institut für Informationssysteme, Technische Universität
Wien, A-1040 Vienna, Austria (December 2003)

6. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing 9(3–4) (1991) 365–386

7. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press (2003)

8. Bock, J.: Ontology Merging using Answer Set Programming and WordNet. Honours
Thesis, Griffith University (October 2006)


