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Abstract. In the general field of knowledge interoperability and ontol-
ogy matching, instance matching is a crucial task for several applications,
from identity recognition to data integration. The aim of instance match-
ing is to detect instances referred to the same real-world object despite
the differences among their descriptions. Algorithms and techniques for
instance matching have been proposed in literature, however the prob-
lem of their evaluation is still open. Furthermore, a widely recognized
problem in the Semantic Web in general is the lack of evaluation data.
While OAEI (Ontology Alignment Evaluation Initiative) has provided a
reference benchmark for concept matching, evaluation data for instance
matching are still few. In this paper, we provide a benchmark for instance
matching, with the goal of taking into account the main requirements
that instance matching algorithms should address.

1 Introduction

The increasing popularity of Semantic Web technologies makes the ontology
matching process a crucial task. Ontology matching [1] aim is to (semi) auto-
matically detect semantic correspondences between heterogeneous ontologies. It
can be performed at two different levels: schema matching and instance match-
ing. The objective of schema matching [2] is to find out a set of mappings between
concepts and properties in different ontologies, while the aim of instance match-
ing is to detect instances referred to the same real-world object. When compar-
ing different knowledge representations, ontologies’ schemas should be merged,
in terms of concepts and properties describing the domain. Then, mappings be-
tween different descriptions (i.e., ontologies’ instances) of the same object should
be discovered, in order to achieve the goal of providing a data integration system
over Semantic Web sources.
Instance matching is also crucial in projects like OKKAM1 [3], where the main
idea is that real-world objects’ descriptions could be retrieved, univocally iden-
tified and shared over the Web.
Most research has been focused on schema level matching, while instance match-
ing problem has been mainly studied in the database field, in which it is more
? This paper has been partially funded by the BOEMIE Project, FP6-027538, 6th EU

Framework Programme.
1 http://www.okkam.org/.



specifically called record linkage problem [4–6]. However, as shown in the paper,
instance matching brings new problems in comparison to record linkage and
requires specific technologies.

2 The Instance Matching Problem

The instance matching problem is defined as follows. Given two instances i1 and
i2, belonging to the same ontology or to different ontologies, instance matching
is defined as a function Im(i1, i2)→ {0; 1}, where 1 denotes the fact that i1 and
i2 are referred to the same real-world object and 0 denotes the fact that i1 and
i2 are referred to different objects.
In order to find out properly if two individuals are referred to the same real-world
object, an instance matching algorithm should satisfy different kinds of require-
ments. As shown in Figure 1, those can be divided in three main categories.

Requirements
(management of:)

Data value differences Structural heterogeneity Logical heterogeneity

- Typographical errors
- Use of different standard
  formats

- Use of different levels of
  depth for properties
  representation
- Use of different aggregation
  criteria for properties
  representation
- Missing values specification

- Instantiation on different
  sub-classes of the same
  super class
- Instantiation on disjoint
  classes
- Instantiation on different
  classes of a class hierarchy
  explicitly declared
- Instantiation on different
  classes of a class hierarchy
  implicitly declared
- Implicit values specification

Fig. 1. Instance matching requirements

Data value differences. An instance matching algorithm is required to recog-
nize, as better as possible, corresponding values, even if data contain errors or
are represented using different standard formats. This issue has been addressed
in the field of record linkage research, and the problem of comparing instances’
property values is the same as comparing records’ attribute values.



Structural heterogeneity. Instances belonging to different ontologies can not
only differ within their properties values, but they can also have different struc-
tures. While in record linkage the structure of records is usually given and schema
and record matching are different problems, in instance matching, schema and
instances are more strictly related. Thus, besides the capability to evaluate the
level of similarity between property values, instance matching techniques have
to go beyond heterogeneous individual representations by identifying the pairs
of matching properties between two considered instances.

Logical heterogeneity. A specific ontologies’ matching problem, which is not
taken into consideration in record linkage process, is the need to infer implicit
knowledge, typically referred to concepts hierarchy within the ontologies.

3 Design of a Benchmark for Instance Matching

A widely recognized problem in the Semantic Web is the lack of evaluation data.
While OAEI (Ontology Alignment Evaluation Initiative)2 [7] has provided a ref-
erence benchmark for concept matching, evaluation data for instance matching
are still few. Further works dealing with concept matching evaluation are those
published in ESWC 2008 [8, 9]. In particular, they argue that ontology match-
ing techniques cannot be evaluated in an application independent way, since the
same matching technique can produce different quality results based on the end-
to-end application that exploits the alignments.
In this paper, we provide a benchmark for instance matching. The aim of our
benchmark is to take into account all the main requirements presented in the
previous section and to provide a complete set of tests for instance matching
algorithms evaluation. A contribution of our work is not only the definition of
a specific benchmark, but also the definition of a semi-automatic procedure for
the generation of several different benchmarks. In Figure 2, the overall process
of benchmarks generation is shown. As an example of this general procedure,
we describe in the following a specific instantiation of it, that is the creation
of a specific benchmark for instance matching. That benchmark is available at
http://islab.dico.unimi.it/iimb/.

3.1 Reference ABox Generation

First of all, we chose a domain of interest (i.e., the domain of movie data), and we
created a reference (ALCF(D)) TBox for it, based on our knowledge of the do-
main. The reference TBox is available at http://islab.dico.unimi.it/ontologies/-
benchmark/imdbT.owl. This contains 15 named classes, 5 object properties and
13 datatype properties. The reference TBox is then populated by automatically
creating a reference ABox. Data are extracted from IMDb 3 by executing a query
2 http://oaei.ontologymatching.org/2007/benchmarks/.
3 http://www.imdb.com/.
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Fig. 2. Benchmarks generation

Q of the form:

SELECT ∗ FROM movies WHERE title LIKE ′%X%′

where X is a variable specifying a word of our choice. Thus, all selected movies
contain the word X in their title. The corresponding individuals in the reference
ABox are referred to similar objects, but each of them represents a distinct object
in the real world. As a consequence, each instance can be univocally identified.
In order to get our reference ABox, we put X = Scarface. The reference ABox
obtained in that way contains 302 individuals, that is all the movie objects
matching the query and all the actors in the movie cast.

3.2 Modified ABoxes Generation

Once the reference ABox is created, we generate a set of modified ABoxes, each
consisting in a collection of instances obtained modifying the corresponding in-
stances in the reference ABox. Transformations introduced in benchmark ABoxes
can be distinguished into three main categories. In particular, each modification
category simulates a specific problem that can be found when comparing ontolo-
gies’ instances, that is the issues discussed in section 2. Modifications belonging
to different categories are also combined together within the same ABox.

4 Generating Instance Modifications

In this section, we describe the Modifier module of our benchmarks generation
procedure, that is the way the modified ABoxes of benchmarks are generated.
Given the reference ABox as input, and a user specification of all the transfor-
mations to apply on it, the Modifier module automatically produces the corre-
sponding modified ABoxes. In the following, all the modifications that can be
applied on the reference ABox are presented.



4.1 Data Value Differences

The goal of this first category of modifications is to simulate the differences that
can be found between instances referred to the same object at the property value
level. Those include typographical errors, use of different standard formats to
represent the same value, or a combination of both within the same value.

Typographical errors. Real data are often dirty. That is mainly due to typo-
graphical errors made by humans while storing data.
In order to simulate typographical errors, we use a function that takes as input
a datatype property value and produces as output a modified value. This kind
of transformation can be applied to each datatype property value (e.g., string
value, integer value, date value). The modifications to apply on the input value
are randomly chosen between the following:

– Insert character. A random character (or a random number, if the property
has a numerical value) is inserted in the input value at a random position.

– Modify character. A random character (or a random number, if the property
has a numerical value) is modified in the input value.

– Delete character. A random character (or a random number, if the property
has a numerical value) is deleted in the input value.

– Exchange characters’ position. The position of two adjacent characters (or
two adjacent numbers, if the property has a numerical value) is exchanged
in the input value.

For example, the movie title “Scarface” can be transformed in the modified value
“Scrface”, obtained deleting a random character from the original string.
In addition, it is possible to specify the level of severity (i.e., low, medium or
high) in applying such transformations. Anyway, the number of transformations
introduced in the input value is proportional to the value’s length. If the number
of transformations to apply is greater than one, the corresponding value can be
modified combining different transformations.
Typographical modifications can be applied to “identifying properties”, “non-
identifying properties” or both. That classification is based on the analysis of
the percentage of null and distinct values specified for the selected property. In
particular, properties with an high percentage of distinct values and a low per-
centage of null values are classified as the most identifying.
Of course, the total amount of modifications applied to each modified ABox has
to change the reference ABox in a way that it is still reasonable to consider
the two ABoxes semantically equivalent. In other words, a modified ABox is
included in the benchmark only if a human can understand that its instances
are referred to the same real-world objects as the ones belonging to the refer-
ence ABox. Thus, in order to evaluate the distance between the reference ABox
and each modified ABox, we introduce a measure that takes into account the
number of modifications applied to the same ABox, the kind of the properties
(i.e., “identifying properties” or “non-identifying properties”) which have been



modified, and the level of severity of the modifications (i.e., low, medium or
high). However, this measure does not affect the instance matching results in
a deterministic way, since they depend on the weight that the tested algorithm
gives to each kind of modification. Anyway, we assume that a modified ABox can
be considered semantically equivalent to the reference ABox only if it changes
no more than 20% of each instance description.

Use of different standard formats. The same data within different sources
can be represented in different ways.
In order to simulate the use of different standards within different sources, we
use a function that takes as input a property value which allows standard mod-
ifications (e.g., person name) and produces as output a modified value, using a
different standard format. For example, the director name “De Palma, Brian”
can be transformed in the modified value “Brian De Palma”, which is another
standard format to specify a person name.

4.2 Structural Heterogeneity

Another kind of situation that is simulated in our instance matching benchmark
is the comparison between instances with different schemas. In fact, even as-
suming that concept mappings are available, the same individual feature (i.e.,
each instance property) can be modeled in different ways. Moreover, different
descriptions of the same real-world object can specify different subsets, eventu-
ally empty, of all the possible values for that property. Combinations of different
transformations belonging to this class of modification are also applied in the
benchmark.

Use of different levels of depth for properties representation. A first
example of this class of heterogeneity is shown in Figure 3. The two instances

movie_1

Scarface

1983

De Palma, Brian

USA
HasTitle

Year HasDirector

Country

movie_2

Scarface 1983

De Palma, Brian

USA

HasTitle

Year HasDirector

Country

title_1

HasValue

Fig. 3. Use of different levels of depth to represent the same property

movie 1 and movie 2 are both referred to the same film, but the movie title
property is modeled in two different ways. In fact, the title of movie 1 is spec-
ified directly through a datatype property value, while the title of movie 2 is



specified through a reference to another individual which has a property with
the same title value (i.e., “Scarface”). In particular, in the first representation,
the property HasTitle is a datatype property, while in the second one it is an
object property and its value is the reference to title 1 instance.
In order to simulate the comparison between instances with different schemas,
we use a function that takes as input a datatype property and produces as out-
put an object property with the same name. Moreover, the function creates a
new attribute to the generated object property, whose value is the same as the
original datatype property.

Use of different aggregation criteria for properties representation. In
an analogous way, the name of a person can be stored all within the same
property, or it can be split into different properties such as, for example, Name
and Surname. Figure 4 shows two different ways of modeling the name “Pacino,
Al”. In the first representation the whole value is stored within the property

actor_1

Pacino, Al

M

1940-04-25

Name

Gender
DateOfBirth Sonny

Nickname

actor_2

Al

M

1940-04-25

Name

Gender
DateOfBirth Sonny

Nickname

Pacino

Surname

Fig. 4. Use of different aggregation criteria to represent the same property

Name, while in the second one the string is split into the two values “Pacino”
and “Al”, referred to the properties Name and Surname respectively.
In order to simulate the comparison between properties modeled in different
ways, we use a function that takes as input a datatype property value that can
be split and produces as output two new datatype properties, each specifying a
different part of the original value.

Missing values specification. A further example of structural heterogeneity
is shown in Figure 5. The two instances movie 1 and movie 2 are both referred
to the same film, but the two different descriptions specify different subsets of
values on the property Genre.
In order to simulate the comparison between different sets of values referred to
the same property, we use a function that takes as input the set of values specified
for a selected property and produces as output a subset, eventually empty, of
it. This kind of transformation can be applied to each property. Moreover, if a
property allows multiple values, it is possible to specify if deleting all the values
of the selected property or a random number of them.
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Fig. 5. Specification of different subsets of values on the same multi-values property

4.3 Logical Heterogeneity

Finally, instance matching process should take into account the need to use some
kind of reasoning, in order to find out correctly instances to be compared. In
fact, ontologies’ individuals referring to the same entity can be instantiated in
different ways within different ontologies. In the following we describe five kinds
of situations that we develop in our benchmark, that can also be combined
together. Each requires some kind of reasoning. Examples of those are shown in
Figure 6.

Reference TBox

Movie v Item
Film v Item

Product v Item
Action v Movie

Movie u Product v ⊥
Movie ≡ ∀p.G
SubM ≡ ∀p.SubG
SubG v G

Reference ABox

movie 1 : Movie
movie 2 : Movie
movie 3 : Movie
movie 4 : Movie
movie 5 : Movie

(movie 5, “Scarface′′) : HasT itle

Modified ABox

movie 1 : Film
movie 2 : Product
movie 3 : Action
movie 4 : SubM
movie 5 : Movie
movie 5 : (∃HasT itle.“Scarface′′)

Fig. 6. Examples of logical heterogeneity

Instantiation on different subclasses of the same superclass. This trans-
formation is obtained instantiating identical individuals into different subclasses
of the same class. For example, in our benchmark, all the movie objects are
instances of class Movie in the reference ABox. Instead, in one of the modified
ABoxes, we change the type of those individuals, making them instances of class
Film. Classes Movie and Film are both subclasses of Item. In Figure 6, movie 1



is instance of Movie in the reference ABox, while it is instance of Film in the
modified ABox. Instance matching algorithms are thus required to recognize
that those two instances are referred to the same object, even if they belong to
different concepts.

Instantiation on disjoint classes. This transformation is obtained instantiat-
ing identical individuals into disjoint classes. For example, in one of the modified
ABoxes, we change the type of all the movie objects, making them instances of
class Product. Classes Movie and Product are defined as disjoint classes in the
reference TBox. In Figure 6, movie 2 is instance of Movie in the reference ABox,
while it is instance of Product in the modified ABox. In this case we want that
tested algorithms would be able to recognize that instances belonging to dis-
joint classes cannot be referred to the same real-world object, even if they seem
identical.

Instantiation on different classes of a class hierarchy explicitly de-
clared. This transformation is obtained instantiating identical individuals into
different classes on which an explicit class hierarchy is defined. For example, an
individual representing a movie can be classified as an instance of the general
concept Movie, as it is in the reference ABox, or it can be classified as an in-
stance of a more specific subclass of it, such as Action, Biography, Comedy or
Drama, depending on the value that the movie instances specify on the property
Genre. In Figure 6, movie 3 is instance of Movie in the reference ABox, while
it is instance of its subclass Action in the modified ABox, since it is an action
movie. Instance matching algorithms are thus required to recognize that those
two instances are referred to the same object, even if they belong to different
concepts within the class hierarchy. This explicit class hierarchy declaration can
be recognized using a RDFS reasoner.

Instantiation on different classes of a class hierarchy implicitly de-
clared. A further modification that we apply in the benchmark is the instan-
tiation of identical individuals into different classes on which an implicit class
hierarchy is defined. Such an implicit class hierarchy declaration can be obtained
through the use of restrictions. For example, the restrictions specified on classes
Movie and SubM in the reference TBox, implicitly declare that SubM is a sub-
class of Movie. In Figure 6, movie 4 is instance of Movie in the reference ABox,
while it is instance of SubM in the modified ABox. Instance matching algorithms
are thus required to recognize that those two instances are referred to the same
object, even if they belong to different concepts which are not explicitly related.
This implicit class hierarchy declaration can be recognized using a DL reasoner.

Implicit values specification. Another use of restrictions that requires a
reasoning process, is the comparison between an explicit specified value and an
implicit specified one, that is using an hasValue restriction. This kind of situation



is simulated in our benchmark by adding a new type for each instance of the
modified ABox. This type is a class that (implicitly) specifies property values
through an hasValue restriction. In Figure 6, in the reference ABox, movie 5 is
instance of Movie and its value on the property HasTitle is “Scarface”; in the
modified ABox, movie 5 is as well instance of Movie, but it is also instance of
the restriction class that implicitly specifies the value “Scarface” for its HasTitle
property. Instance matching algorithms are thus required to recognize that those
two instances are referred to the same object, even if some property values of
the modified instance are implicitly defined.

5 Benchmark at Work

In this section, we describe how the generated benchmark is used to evaluate
instance matching algorithms. Each execution of the evaluation process takes as
input a couple of ABoxes, that is the reference ABox and one of the modified
ABoxes, and produces the set of instance mappings found by the tested algo-
rithm. The output mapping alignment is then compared with the expected one,
which is given together with each modified ABox. That reference alignment is au-
tomatically generated by specifying a mapping for each couple of corresponding
instances, that is the one belonging to the reference ABox and the one obtained
by applying to it one or more of the modifications discussed in section 4.
Instance matching algorithms are evaluated according to the following parame-
ters.

– Precision: the number of correct retrieved mappings / the number of re-
trieved mappings.

– Recall: the number of correct retrieved mappings / the number of expected
mappings.

– F-measure: 2 · (precision · recall) / (precision + recall).
– Fall-out: the number of incorrect retrieved mappings / the number of non-

expected mappings.
– Execution time: time taken by the tested algorithm to compare the two input

ABoxes. This parameter measures how well the tested algorithm scales.

As an example, the results obtained by two instance matching algorithms are
reported. Figure 7 shows the precision and recall evaluation of the two instance
matching algorithms over the generated benchmark, distinguishing the results
obtained in the three main classes of problems simulated in our benchmark
(i.e., data value differences, structural heterogeneity, logical heterogeneity) and
the ones obtained executing each algorithm without using any reasoner and
using a (DL) reasoner (i.e., Pellet). The results obtained comparing the reference
ABox with modified ABoxes simulating data value differences are higher than the
ones obtained in the other categories, since string matching techniques are quite
consolidated. The results obtained comparing the reference ABox with modified
ABoxes simulating structural heterogeneity are not very high because neither the
first nor the second algorithm can manage the use of different aggregation criteria
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Fig. 7. Precision and recall evaluation

for properties representation. The results obtained comparing the reference ABox
with modified ABoxes simulating logical heterogeneity are greatly affected by the
use of a reasoner.
Finally, in Figure 8, the overall results obtained executing the two algorithms
(with reasoner) on our benchmark are reported. That test had been executed
on a Pentium 4 (2.00 GHz) with 512 MB of RAM. For each pair of compared

IM Algorithm Precision Recall F-measure Fall-out Execution time

algorithm 1 0.88 0.79 0.81 0.05 50 sec

algorithm 2 0.94 0.92 0.93 0.01 31 sec

Fig. 8. Overall evaluation of two instance matching algorithms

instances, the first algorithm [10] analyzes all their property values, while the
second algorithm [11] checks only the values specified for the “most identifying”
properties. That is why the execution time of the first algorithm is greater than
the execution time of the second one. Moreover, the recall of the second algorithm
is higher than the recall of the first one due to the fact that all the modifications
applied to “non-identifying” properties are ignored. A more detailed description
of the two algorithms is available in [10, 11].

6 Concluding Remarks

In this paper, we provided a benchmark for instance matching, taking into ac-
count the main requirements that instance matching algorithms should address.



A contribution of our work is not only the definition of a specific benchmark, but
also the definition of a semi-automatic procedure for the generation of several
different benchmarks.
Future works include the creation of further benchmarks dealing with data be-
longing to different sources and different domains. In particular, we would like to
create a benchmark in which data belonging to different sources but referred to
the same real-world objects are compared. For example, it can include a mapping
between movie descriptions in IMDb and Amazon. In that case, the expected
alignments have to be done manually, so the benchmark dimension cannot be
significant for a real benchmark. However, it would be interesting to compare
the results obtained by the same algorithms executing that benchmark and our
semi-automatically generated one, in order to evaluate the quality of our bench-
mark generation itself.
Another possible development would be the definition of a set of rules that au-
tomatically choose the modifications to apply, for each modified ABox, to the
reference ABox.
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