ASMOV results for OAEI 2008

Yves Reginald Jean-Mary Mansur R. Kabuka INFOTECH Soft, Inc.

This work is funded in part by the National Institutes of Health (NIH) under grant R43RR018667.

November 10, 2008

Innovative Healthcare Solutions

1

Automated Semantic Mapping of Ontologies with Verification (ASMOV)

- ASMOV is an alignment tool which leverages the semantic knowledge enclosed in pairs of ontologies in order to extract correspondences between their entities.
- Implementation:
 - JAVA 1.5
 - Adapter to thesaurus (WordNet, UMLS,...)
- Applications:
 - Integration of heterogeneous systems using their data source ontologies (NIH Grant).
 - Automated Semantic Cataloging (Lockeed Martin)
- Demo:
 - http://support.infotechsoft.com/integration/ASMOV/OAEI-2008

ASMOV Algorithm

November 10, 2008

Innovative Healthcare Solutions

ASMOV Algorithm (Semantic Verification)

Domain and range incompleteness

OAEI 2008 Results (Benchmark)

Level		ASMOV 2008		ASMOV 2007			
	Precision	Recall	Time (sec)	Precision	Recall	Time (sec)	
0	1.00	1.00	8.60	1.00	1.00	103.55	
1	1.00	1.00	4.91	1.00	1.00	67.06	
2	1.00	0.99	6.06	1.00	1.00	70.11	
3	0.98	Journal	Per	iodical .99	0.98	143.65	
4	0.99		· · · · Journa	.00	0.96	197.09	
5	0.96		Magazi).98	0.89	222.43	
6	0.94	T (0)).92	0.82	203.65	
7	0.93	1 ests 22 0.83	23, 238, 240, 247 7.60	0.89	0.77	194.56	
8	0.90	0.71	6.65	0.84	0.72	183.82	
9	0.78	0.46	2.61	0.70	0.44	79.38	
10	0.40	0.04	0.54	0.38	0.05	17.96	
Зхх	0.81	0.77 3.42		0.82	0.82	130.72	
All	0.95	0.86	75.78	0.93	0.84	1,613.97	

OAEI 2008 Results (Anatomy)

System	Runtime	BK	Precision	Recall	Recall+	F-value
ASMOV			0 787	0.652	0 246	0 713
ASMOV-NV			0.716	0.680	0.289	0.697
ASMOV-NV-NP			0.861	0.343	0.115	0.490
ASMOV-REV		-	0.740	0.689	0.287	0.713

OAEI 2008 Results (Anatomy)

Tasks #2 & #3

• Threshold problem because of weight selection.

Task #4
• The partial reference alignment is used effectively by ASMOV since the overall accuracy increased in this task.

Task #2			Task #3			Task #4			
Prec	Rec	F-Measure	Prec	Prec Rec F-Measure		Prec	Rec	F-Measure	
0.944	0.044	0.084	0.763	0.647	0.700	0.85	0.648	0.732	

OAEI 2008 Results (FAO)

agrafsa & fishbio

• ASMOV is designed for OWL-DL and does not consider mapping between classes & individuals.

agrorgbio

 Because of a misunderstanding, the correspondences between individuals were excluded from the alignments submitted.

	agrafsa	agrorgbio	fishbio
submitted	1	0	5
actual	28	423	13

OAEI 2008 Results (Directory)

- The increase in precision is also tied to a major decrease in recall.
 - Weight issues.
 - Implementation errors.

	20	07	2008				
Prec	Rec	F-Measure	Prec	F-Measure			
0.59	0.44	0.50	0.64	0.12	0.20		

OAEI 2008 Results (Conference)

- 62 alignments evaluated (76 submitted)
 - Parser issue.
- Two evaluations
 - Manual labeling
 - The highest precision is achieved in the higher stratum
 - Reference Mappings:
 - Subsumption: naïve classification algorithm

P (0,0.3)		P (0.3,0	.6) P (0.6,1)			P*			rrecall	
21% +/- 12% 51% +/-		12%	% 68 +/- 12%		34%	34% +/- 10%			18%	
ASMOV		66.2%	55.4%	60.4%	80.3%	26.6%	40.0%	91.9%	18.5%	30.8%
ASMOV*		70.8%	40.8%	51.7%	86.7%	21.2%	34.1%	92.6%	13.6%	23.7%
ASMOV (17-10-0	8)	44.2%	33.3%	38.0%	54.5%	10.5%	17.6%	100%	17.6%	6.8%

Observation & Future Work

- Weights
 - Re-adoption of last year's weight adjustment technique.
- The verification process rules are too strict
 - Bi-directional verification
 - The invalidation process should not reset the confidence values in the matrix.
- Convergence issue for large Ontologies

ASMOV results for OAEI 2008

Yves Reginald Jean-Mary Mansur R. Kabuka INFOTECH Soft, Inc.

12

This work is funded in part by the National Institutes of Health (NIH) under grant R43RR018667.

November 10, 2008

