OntoMediate
Ontological Mediation and Semantic Gateways for Domain/Enterprise Translations

Gianluca Correndo, Harith Alani, Nigel Shadbolt
Outline

• Introduction
 • Aims & Objectives
 • Issue Tackled
 • Related Work

• OntoMediate Approach
 • Community Driven Data Integration
 • System Features
Aims & Objectives

• Exploit social and collaborative processes for easing the ontology matching task for integrating data
 • Give the community the power to drive the integration process, explicitly addressing causes of semantic misunderstanding among parties

• Facilitate the dynamic construction of shared ontologies for data integration

• Enable the gradual and flexible alignment of ontologies
 • instead of an One ontology fits all approach

• Mediate between different formats, encodings, meanings, etc.
Task (data integration) Issues

- Difficulty of agreeing in ontologies definition for ‘open’ communities of interest
 - Communities can group loosely related entities
 - Standard bodies procedures can be slow (e.g. balloting, survey)
- Necessity of addressing model mediation and evolution
 - Application requirements can change over time and can be different for different sub communities
 - New data sources type can eventually become available

Accessible data

Standard Ontology

Data Source

Data Source

Data Source

Data not compliant with adopted ontology
Collaborative approaches

• Historically the Knowledge Sharing Effort is the first attempt to open knowledge authoring to communities

• Technologies and tools address issues like:
 • orchestrate collaborative efforts,
 • assure global consistency
 • reach consensus?
 • enhance understanding?
Collaborative approaches

- New technologies (social web, micro formats, web 2.0) are fuelling web applications allowing people to create and share content and knowledge more easily.

- How to exploit social interactions for creating formal artefacts (e.g. ontologies, ontology alignments)?

- Can we use the social approach for easing user tasks (e.g. data integration) within community of practice?
Collaborative approaches

• Proposals have been done for addressing communities for:
 • Ontology population (OntoWiki, DBin)
 • Collaborative ontology authoring (Hozo, Collaborative Protégé)
 • Collaborative construction of less formal knowledge (SOBOLEO, BibSonomy)

• Few proposals so far for exploiting collaboration for managing ontology alignments
 • Zhadanova and Shvaiko addressed alignment reuse using groups and user profiles
 • OntoMediate
OntoMediate proposal
OntoMediate Approach

SOCIAL & COLLABORATIVE
- Community support for the evolution of an agreed structured vocabulary by means of argumentation of changes, discussion of proposal, voting on change proposals, etc.
- Minimal shared ontological commitment

ONTOLOGY MAPPING
- Semi-automatic ontology mapping and mediation tools for supporting different information representations and meanings

INFORMATION NETWORK
- Integration via a network of different ontologies
- No requirement for changing the local vocabulary
Community Data Integration (Vision)
Community Data Integration (Process)

- **Local Ontologies editing/extraction**
- **Discovery of suitable community reference ontologies**
- **Alignment toward collaboratively managed ontologies**
- **Browsing of Local Mappings**
- **Changes to alignments/Shared Models**
- **Feedback Change Proposal**
Community Data Integration (Approach)

- Data integration requires an agreed data vocabulary
 - But agreement over metadata definition must be fostered and (if possible) measured against community needs

- Users (data owners/administrators) can provide:
 - Local data vocabularies
 - Data sources valuable to the community
 - Alignments toward agreed upper vocabularies
 - Feedback

- Feedback – building block of collaboration
 - Community correction of inevitable human/machine mistakes/omissions
 - Agreement reaching upon the desired shape of shared ontologies
OntoMediate Features

- Ontology and datasets management
 - Ontology/Dataset add/delete/browsing
 - Ontology mapping (integrated FalconOA, CMS, INRIA)

- Ontology discussion
 - Browse ontologies and their mappings
 - Propose changes to mappings
 - Propose changes to ontology evolution

- Proposal discussion and voting

- Data integration and querying
Collaborative Mapping Management
Mapping Management

- Every user is allowed to browse ontologies
 - concepts descriptions are enhanced with information from other users (e.g. mappings to other concepts, community messages)

- Every user is allowed to issue change proposals if the user disagrees with the existing mapping

- The community is notified of new change proposals via RSS feeds

- Community can then discuss/agree/disagree those proposals in the forums
Collaborative Ontology Evolution
Ontology Evolution

• Users can actually drive the definition of shared ontologies by proposing concepts refinement

• Users can propose extensions to shared hierarchies
 • So far, only subclass addition is permitted

• Axioms can be used to logically define the refinement
 • Coverage - \(C \equiv C_1 \cup C_2 \cup \ldots \cup C_n \)
 • Pair wise disjoint - \(i \neq j : C_i \cap C_j \equiv \emptyset \)
Data Integration
Data Integration

- The system encodes the alignments as n:1 relationships that can produce the rules for decoding/encoding of queries and data if needed

- Query translation algorithm implemented
 - RDF-based representation of alignments (i.e. works with every RDF vocabulary: OWL, DAML-OIL, SKOS)
 - Extendible via XML technologies: XQuery/XPath functions
PREFIX soton: <http://rdf.ecs.soton.ac.uk/ontology/ecs>
SELECT ?name ?home WHERE {
?X a soton:Person.
?X soton:hasGivenName ?1.
?X soton:hasFamilyName ?2.
LET (?name = afn:concat(?1,afn:concat(" ",?2))).
LET (?home = ?3).
FILTER startsWith(?home, "http://www.ecs.soton.ac.uk/")}
Future Work

- Instance mapping and disambiguation
- Support for user profiling and social network exploitation
 - Ontology alignment support
 - Data discovery
- Integration with NITELIGHT
Conclusions and Demo

- Flexible approach to data integration
- Social features for community driven management
- Query translation approach to data integration