OntoMediate

Ontological Mediation and Semantic Gateways for Domain/Enterprise Translations

Southampton

School of Electronics and Computer Science

Gianluca Correndo, Harith Alani, Nigel Shadbolt

Outline

- Introduction
 - Aims & Objectives
 - Issue Tackled
 - Related Work
- OntoMediate Approach
 - Community Driven Data Integration
 - System Features

OntoMediate project

Aims & Objectives

- Exploit social and collaborative processes for easing the ontology matching task for integrating data
 - Give the community the power to drive the integration process, explicitly addressing causes of semantic misunderstanding among parties
- Facilitate the dynamic construction of shared ontologies for data integration
- Enable the gradual and **flexible alignment** of ontologies
 - instead of an **One ontology fits all** approach
- Mediate between different formats, encodings, meanings, etc.

Task (data integration) Issues

- Difficulty of agreeing in ontologies definition for 'open' communities of interest
 - Communities can group loosely related entities
 - Standard bodies procedures can be slow (e.g. balloting, survey)
- Necessity of addressing model mediation and evolution
 - Application requirements can change over time and can be different for different sub communities
 - New data sources type can eventually become available

Data not compliant with adopted ontology

School of Electronics and Computer Science

Collaborative approaches

- Historically the Knowledge Sharing Effort is the first attempt to open knowledge authoring to communities
- Technologies and tools address issues like:
 - orchestrate collaborative efforts,
 - assure global consistency
 - reach consensus ?
 - enhance understanding?

School of Electronics and Computer Science

Collaborative approaches

- New technologies (social web, micro formats, web 2.0) are fuelling web applications allowing people to create and share content and knowledge more easily
- How to exploit social interactions for creating formal artefacts (e.g. ontologies, ontology alignments)?
- Can we use the social approach for easing user tasks (e.g. data integration) within community of practice?

Collaborative approaches

- Proposals have been done for addressing communities for:
 - Ontology population (OntoWiki, DBin)
 - Collaborative ontology authoring (Hozo, Collaborative Protégé)
 - Collaborative construction of less formal knowledge (SOBOLEO, BibSonomy)
- Few proposals so far for exploiting collaboration for managing ontology alignments
 - Zhadanova and Shvaiko addressed alignment reuse using groups and user profiles
 - OntoMediate

School of Electronics and Computer Science

OntoMediate proposal

OntoMediate Approach

- SOCIAL & COLLABORATIVE
 - Community support for the evolution of an agreed structured vocabulary by means of argumentation of changes, discussion of proposal, voting on change proposals, etc.
 - Minimal shared ontological commitment
- ONTOLOGY MAPPING
 - Semi-automatic ontology mapping and mediation tools for supporting different information (representations and meanings
- INFORMATION NETWORK
 - Integration via a network of different ontologies
 - No requirement for changing the local vocabulary

Community Data Integration (Vision)

Community Data Integration (Process)

Community Data Integration (Approach)

- Data integration requires an agreed data vocabulary
 - But agreement over metadata definition must be fostered and (if possible) measured against community needs
- Users (data owners/administrators) can provide:
 - Local data vocabularies
 - Data sources valuable to the community
 - Alignments toward agreed upper vocabularies
 - Feedback
- Feedback building block of collaboration
 - Community correction of inevitable human/machine mistakes/omissions
 - Agreement reaching upon the desired shape of shared ontologies

OntoMediate Features

- Ontology and datasets management
 - Ontology/Dataset add/delete/browsing
 - Ontology mapping (integrated FalconOA, CMS, INRIA)
- Ontology discussion
 - Browse ontologies and their mappings
 - Propose changes to mappings
 - Propose changes to ontology evolution
- Proposal discussion and voting
- Data integration and querying

Collaborative Mapping Management

Mapping Management

- Every user is allowed to **browse** ontologies
 - concepts descriptions are enhanced with information from other users (e.g. mappings to other concepts, community messages)
- Every user is allowed to issue **change proposals** if the user disagrees with the existing mapping
- The community is notified of new change proposals via RSS feeds
- Community can then discuss/agree/disagree those proposals in the forums

Collaborative Ontology Evolution

Ontology Evolution

- Users can actually drive the definition of shared ontologies by proposing concepts refinement
- Users can propose extensions to shared hierarchies
 - So far, only subclass addition is permitted
- Axioms can be used to logically define the refinement
 - Coverage $C \equiv C_1 \cup C_2 \cup ... \cup C_n$
 - Pair wise disjoint $i \neq j : C_i \cap C_j \equiv \emptyset$

Ontology Evolution

Data Integration

Data Integration

- The system encodes the alignments as n:1 relationships that can produce the rules for decoding/encoding of queries and data if needed
- Query translation algorithm implemented
 - RDF-based representation of alignments (i.e. works with every RDF vocabulary: OWL, DAML-OIL, SKOS)
 - Extendible via XML technologies: XQuery/XPath functions

Query Translation

Southampton School of Electronics and Computer Science

Future Work

- Instance mapping and disambiguation
- Support for user profiling and social network exploitation
 - Ontology alignment support
 - Data discovery
- Integration with NITELIGHT

Southampton School of Electronics and Computer Science

Conclusions and Demo

- Flexible approach to data integration
- Social features for community driven management
- Query translation approach to data integration

