# On fixing semantic alignment evaluation measures

#### Jérôme David, Jérôme Euzenat

#### Workshop Ontology Matching 2008

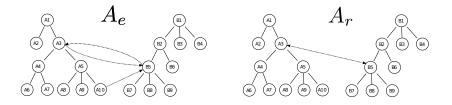


## Problems of precision and recall

These two alignments are equivalent :

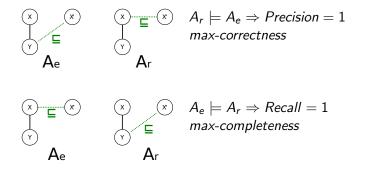
• 
$$A_3 \sqsubseteq B_5$$
 and  $A_3 \sqsupseteq B_5 \Leftrightarrow A_3 \equiv B_5$ 

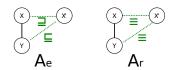
$$\blacktriangleright A_3 \equiv B_5 \models A_{10} \equiv B_5$$



But with the classical model: Precision = 0 and Recall = 0 !

A solution : proposing measures respecting semantic properties [Euzenat, 2007]





 $A_r \equiv A_e \Leftrightarrow Precision = 1$  and Recall = 1definiteness

## 1 - Ideal precision and recall

Replace  $A_e$  and  $A_r$  by their semantic closure  $Cn(A_e)$  and  $Cn(A_r)$ **Semantic closure** Cn(...) = set of correspondences deduced from alignment and ontologies

$$P_{i} = \frac{|Cn(A_{e}) \cap Cn(A_{r})|}{|Cn(A_{e})|}$$

$$R_{i} = \frac{|Cn(A_{e}) \cap Cn(A_{r})|}{|Cn(A_{r})|}$$

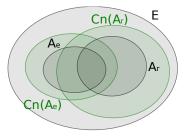
$$Cn(A_{e})$$

$$Cn(A_{e})$$

- + The three properties are satisfied
- Not always defined : Cn(...) could be infinite

Use both alignments and their semantic closure

$$P_s = \frac{|A_e \cap Cn(A_r)|}{|A_e|}$$
$$R_s = \frac{|Cn(A_e) \cap A_r|}{|A_r|}$$



- $\ + \$  The three properties are satisfied
- + Always defined (contrarily to ideal precision and recall)
- But they still have some drawbacks...

Semantic precision and recall have two drawbacks:

- 1. Two semantically equivalent alignments could have different precision values
- 2. An alignment can have null precision and recall even if its semantic closure intersects those of the reference alignment

Semantic precision and recall have two drawbacks:

- 1. Two semantically equivalent alignments could have different precision values
- 2. An alignment can have null precision and recall even if its semantic closure intersects those of the reference alignment

Two other properties that a perfect semantic model must satisfies :

1. the **semantic-equality** property :

$$Cn(A_{e_1}) = Cn(A_{e_2}) \Rightarrow \begin{cases} P(A_{e_1}, A_r) = P(A_{e_2}, A_r) \\ R(A_{e_1}, A_r) = R(A_{e_2}, A_r) \end{cases}$$

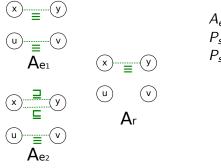
2. the **overlapping-positiveness** property:  $P(A_e, A_r) = 0$  and  $R(A_e, A_r) = 0$  iff  $Cn(A_e) \cap Cn(A_r) = Cn(\emptyset)$ 

### Limitations of semantic precision and recall

 $\mathbf{1}^{st}$  problem: Two semantically equivalent alignments could have different precision values

Case 1: problem occuring at alignment level:

a correspondence could be split into several correspondances



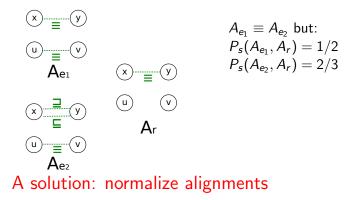
$$A_{e_1} \equiv A_{e_2}$$
 but:  
 $P_s(A_{e_1}, A_r) = 1/2$   
 $P_s(A_{e_2}, A_r) = 2/3$ 

### Limitations of semantic precision and recall

 $\mathbf{1}^{st}$  problem: Two semantically equivalent alignments could have different precision values

Case 1: problem occuring at alignment level:

a correspondence could be split into several correspondances



**Goal of normalization:** allows measures to satisfy the semantic-equality property when reasoning only at alignment level.

- 1. Use **alignment relation algebra**, i.e., write each alignment relation as a disjunction of elementary relations [Euzenat, 2008]
  - Elementary relations:  $\Gamma = \{\Box, \exists, \equiv, \emptyset, \bot\}$
  - ▶ Operators: meet (∪), join (∩), compose(.), inverse(<sup>-1</sup>)
- 2. A pair of entities or formulas appear at most once in each alignment

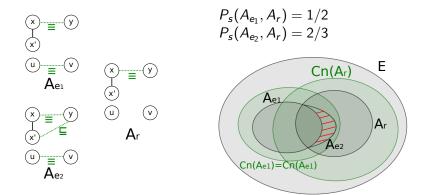
Examples :

- $x \sqsubseteq y$  becomes  $x \{ \sqsubset, \equiv \} y$
- ▶  $x \sqsubseteq y$  and  $x \sqsupseteq y$  become  $x \{ \sqsubset, \equiv \} \cap \{ \sqsupset, \equiv \} y$ , i.e.,  $x \{ \equiv \} y$

#### Limitations of semantic precision and recall

 $\mathbf{1}^{st}$  problem: Two semantically equivalent alignments could have different precision values

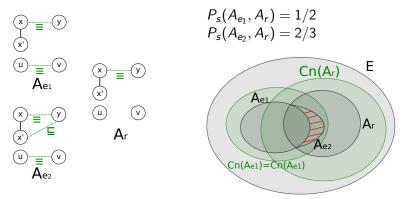
Case 2: problem occuring at ontological level (redundancy)



#### Limitations of semantic precision and recall

 $\mathbf{1}^{st}$  problem: Two semantically equivalent alignments could have different precision values

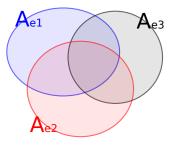
Case 2: problem occuring at ontological level (redundancy)



A solution: A-bounded precision and recall

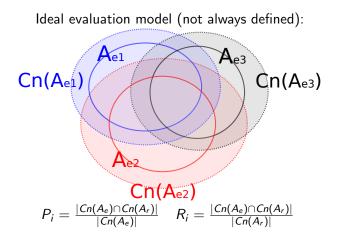
**Idea:** Restricting semantic closures to a set of alignments for enabling ideal precision and recall measures

Classical evaluation model:

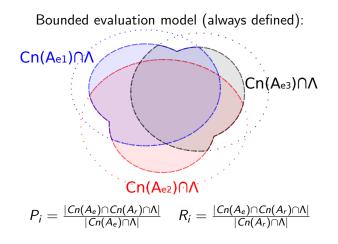


$$P = \frac{|A_e \cap A_r|}{|A_e|} \quad R = \frac{|A_e \cap A_r|}{|A_r|}$$

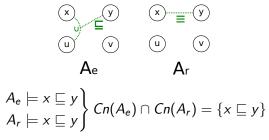
**Idea:** Restricting semantic closures to a set of alignments for enabling ideal precision and recall measures



**Idea:** Restricting semantic closures to a set of alignments for enabling ideal precision and recall measures



 $2^{nd}$  problem: the semantic closures of  $A_e$  and  $A_r$  intersects but  $A_e$  has null semantic precision and recall values.



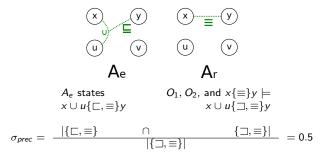
but  $P_s(A_e, A_r) = 0$  and  $R_s(A_e, A_r) = 0$ 

#### Semantic relaxed precision and recall

**Idea:** introducing semantics in relaxed precision and recall [Ehrig and Euzenat, 2005]

- Relaxed measures are function of proximity functions σ between individual correspondences.
- New  $\sigma$  measures based on relation algebra

Example on  $\sigma$  precision:  $\sigma_{prec}(x \cup u\{\Box, \equiv\}y, x\{\equiv\}y)$ ?



# Conclusion

- Identified specific problems remaining with semantic precision and recall
- Expressed them as properties
  - semantic-equality
  - overlapping-positiveness
- Defined two specific measures for countering them
  - Λ-bounded measures: do not provide absolute values
  - Relaxed semantic measures: properties are respected only at correspondence level
- ▶ Work to integrate them in a common framework

# Conclusion

- Identified specific problems remaining with semantic precision and recall
- Expressed them as properties
  - semantic-equality
  - overlapping-positiveness
- Defined two specific measures for countering them
  - Λ-bounded measures: do not provide absolute values
  - Relaxed semantic measures: properties are respected only at correspondence level
- Work to integrate them in a common framework

# Conclusion

- Identified specific problems remaining with semantic precision and recall
- Expressed them as properties
  - semantic-equality
  - overlapping-positiveness
- Defined two specific measures for countering them
  - Λ-bounded measures: do not provide absolute values
  - Relaxed semantic measures: properties are respected only at correspondence level
- Work to integrate them in a common framework

#### Marc Ehrig and Jérôme Euzenat.

Relaxed precision and recall for ontology matching. In Benjamin Ashpole, Marc Ehrig, Jérôme Euzenat, and Heiner Stuckenschmidt, editors, *Proceedings of the Workshop on Integrating Ontologies*, volume 156, pages 25–32. CEUR-WS.org, 2005.



#### Jérôme Euzenat.

Semantic precision and recall for ontology alignment evaluation.

In Proceedings of 20th International Joint Conference on Artificial Intelligence (IJCAI 07), pages 248–253, Hyderabad (IN), 2007.



#### Jérôme Euzenat.

Algebras of ontology alignment relations.

In Proceedings of the 7th International Semantic Web Conference (ISWC 08), pages 387–402. Springer, 2008.