Towards a Benchmark for Instance Matching

Alfio Ferrara, Davide Lorusso, Stefano Montanelli, Gaia Varese *OM-2008* Karlsruhe, Germany – 26/10/2008

- Instance matching problem
 - Definition and issues
 - Applications
- The benchmark generation procedure
 - Overview of the procedure
 - Practical example
 - Heterogeneities classification and examples
- Benchmarks evaluation
 - Quality of the generated benchmarks
- Conclusions and future work

- The problem
 - The goal is to detect instances that refer to the same real world entity
 - Mainly studied in the database literature
 - ✓ Record linkage, entity recognition, merge-purge
- Applications
 - BOEMIE
 - \checkmark support for the population task
 - ✓ help in the choice between different interpretations
 - OKKAM
 - Web of entities, real world entities are univocally identified over the semantic web

- Different issues
 - Instance VS schema matching
 - ✓ Descriptions of the same entity VS concept with similar meaning
 - Ontology VS database
 - ✓ More complex structures
 - ✓ Implicit data, need for reasoning techniques
 - ✓ Open world assumption
- We developed an instance matching algorithm as a component of HMatch 2.0

Instance Matching Evaluation

- How to evaluate instance matching algorithms?
- Lack of evaluation data
 - Real data:
 - ✓ Need to find different descriptions of the same realworld objects
 - Need to find similar descriptions referred to different real-world objects
 - ✓ Need to manually create a mapping between all the couples of descriptions referred to the same real world object
 - Artificial benchmark:
 - ✓ OAEI → Benchmark for concept matching
 - ✓ No benchmark for instance matching available

Definition of a semi-automatic procedure for the generation of several different benchmarks

Reference ABox Generation

^{26/10/2008 6}

- Reference ABox generation
 - Input:
 - The reference TBox for the movie domain, built as a portion of the IMDb database
 - ✓ A user query of the form: SELECT * FROM movies WHERE title LIKE '%Scarface%'
 - Automatic population:
 - The selected data is extracted from IMDb and automatically translated as instances of the reference ABox
 - Output:

✓ The reference ABox contains 302 instances

- Modified ABoxes generation
 - Input:
 - ✓ The reference ABox
 - ✓ A user specification of all the modifications to be applied to the reference ABox for each modified Abox
 - Output:
 - ✓ A set of modified ABoxes with expected alignments
- Each modified ABox simulates a different situation that can be found when comparing instances
 - We have defined three main classes of instance heterogeneities

- Errors in the data values
 - Typographical errors
 ✓ Scarface -> Scrface
- Values expressed with different formats
 - Dates
 - ✓ 26/10/08 -> October 26th 2008
 - Person names
 - ✓ Brian De Palma -> De Palma, B.

Use of different levels of depth for properties representation

✓ I.E. The property value is designed as an independent instance

Use of different aggregation criteria for properties representation

✓ I.E. different properties are concatenated or merged in a single property

- Missing values specification
 - ✓ I.E. one or more values are not defined
 - ✓ For the open world assumption we cannot consider the "null" value as a negative evidence in the comparison

^{26/10/2008 12}

Logical Heterogeneity

- Instances of different subclasses of the same superclass
 - − *Tbox:* Movie \subseteq Item, Film \subseteq Item
 - Ref. Abox: movie_1 : Movie, Mod. Abox: movie_1 : Film
- Instances of different classes of a class hierarchy explicitly declared
 - *Tbox:* Action \subseteq Movie
 - *Ref. Abox:* movie_1 : Movie, *Mod. Abox:* movie_1 : Action
- Instantiation on different classes of a class hierarchy implicitly declared
 - *Tbox:* Movie ⊆ $\exists p.G$, SubM ⊆ $\exists p.SubG$, SubG ⊆ G
 - *Ref. Abox:* movie_1 : Movie, *Mod. Abox:* movie_1 : SubM

- Instances of disjoint classes
 - *Tbox:* Movie \cap Product $\subseteq \bot$
 - Ref. Abox: movie_1 : Movie, Mod. Abox: movie_1 : Product
- Implicit values specification
 - *Ref. Abox:* movie_1 : Movie, (movie_1, "Scarface") : HasTitle
 - Mod. Abox: movie_1 : Movie, movie_1 : (∃HasTitle."Scarface")

Benchmark evaluation

- How to evaluate the effectiveness of the generated benchmarks?
 - We need a relevant number of different instance matching algorithms
 - The quality of the benchmark is affected by
 - ✓ The source dataset: instances referring to different real world entities must not be too much similar
 - ✓ The level of modifications: the instance description must not be changed completely
- The benchmark created from the IMDb dataset is available at <u>http://islab.dico.unimi.it/iimb</u>

Conclusion and Future Work

- A Semi-automatic procedure to create instance matching benchmarks
 - ✓ Doesn't require to manually define the mappings
 - \checkmark Can work with any domain and any dataset
 - Provides good flexibility with the combination of different classes of modifications
- Future work
 - ✓ Automatic population of the reference Abox through mappings between DB and Tbox
 - \checkmark Easier interface to define the instance modifications

