

Efficient Selection of Mappings and Automatic Quality-driven Combination of Matching Methods

Isabel F. Cruz, Flavio Palandri Antonelli, and Cosmin Stroe

ADVIS Lab University of Illinois at Chicago

With thanks to Ulas G. Keles and Angela Maduko

Supported by awards ITR IIS-0326284, IIS-0513553, and IIS-0812258

- The AgreementMaker
- Efficient Selection of Mappings
- Automatic Quality-driven Combination of Matching Methods
- A Practical Example: OAEI 2009
- Demonstration

AgreementMaker Ontology Matching System

- Outputs *agreements* (mappings)
- Built for domain experts
- Triple focus
 - Matching methods
 - Wide range of automatic methods and their combination
 - Evaluation techniques
 - Comparison with "gold" standards and "inherent" quality measures
 - User interface
 - Supports all methods (manual, automatic, and semi-automatic) and evaluation techniques
- Extensible architecture

Multi-purpose User Interface

- The AgreementMaker
- Efficient Selection of Mappings
- Automatic Quality-driven Combination of Matching Methods
- A Practical Example: OAEI 2009
- Demonstration

Mappings Selection Module

- Input:
 - the similarity matrix M
 - a threshold value $th \in [0,1]$ (e.g., 0.7)
 - the source and target cardinality constraints sc-tc (e.g., 1-1, n-m, n-*, *-*)
- Output: a set of mappings *N* that
 - maximizes the overall similarity of the selected mappings
 - satisfies threshold and cardinality constraints

1-1 Matching Optimization Problem

Even a simple scenario can be tricky!

Greedy approach

Optimal approach

- This is an optimization problem!
 - Namely, the Assignment Problem
- Combinatorial methods are typically adopted
 - e.g., Hungarian Method $O(|M|^3)$ (too slow)
 - not feasible on large ontologies because of memory usage

Our Approach

 Reduce the 1-1 Mappings Selection problem to the Maximum Matching in a Weighted Bipartite Graph

- Worst case $O(n(m + n \log n))$
- Experimentally shown to be better

MWBM vs. Hungarian Method 1/2

- Significant improvement in execution time
- Efficient memory usage
 - with 1GB limit of memory the Hungarian Method won't work on 3500x3500 matrices

MWBM vs. Hungarian Method 2/2

Performances improve when the threshold value increases

- The AgreementMaker
- Efficient Selection of Mappings
- Automatic Quality-driven Combination of Matching Methods
- A Practical Example: OAEI 2009
- Demonstration

Linear Weighted Combination Matcher

Identifying Unreliable Similarity Values

- The matching method compares features that are not available in the ontologies (e.g., label comparison of non-labeled ontologies) ⇒ all 0 similarity values
- 2. The matching method compares meaningless features (e.g., string comparison of numeric identifiers) ⇒ random similarity values
- The matching method compares features that are identical for all concepts (e.g., structural comparison of non-hierarchical ontologies) ⇒ all 1 similarity values
- 4. All of the above: the matching method performs differently for each concept

_							
0.0	0.0	0.0					
0.0	0.0	0.0					
0.0	0.0	0.0					
0.0	0.0	0.0					
i							
0.3	0.5	0.8					
0.7	0.6	0.3					
0.9	0.1	0.5					
0.3	0.7	0.8					
· · · · · · · · · · · · · · · · · · ·							
1.0	1.0	1.0					
1.0	1.0	1.0					
1.0	1.0	1.0					
1.0	1.0	1.0					
1.0	1.0	1.0					
0.3	0.5	0.9					
0.0	0.0	0.0					
0.0	0.0	1.0					

Local-Confidence Evaluation

- A local estimation of the reliability of the similarity values
- For each source concept c, given the similarity matrix M, the set of target concepts T, and the target concepts mapped to $c m_M(c)$, then:

$$LC_{M}(c) = \frac{\sum_{c' \in m_{M}(c)} sim_{M}(c, c')}{\mid m_{M}(c) \mid} - \frac{\sum_{c' \in (T - m_{M}(c))} sim_{M}(c, c')}{\mid T - m_{M}(c) \mid}$$

- The AgreementMaker
- Efficient Selection of Mappings
- Automatic Quality-driven Combination of Matching Methods
- A Practical Example: OAEI 2009
- Demonstration

A Practical Example: OAEI 2009

- BSM: Base Similarity Matcher
- PSM: Parametric String-based Matcher (substring + edit-dist)
- VMM: Vector-based Multi-term Matcher (TF-IDF + Cosine sim)
- LWC: Linear Weighted Combination (local-confidence weighting scheme)
- DSI: Descendant's Similarity Inheritance (structural)
- WordNet/UMLS: Dictionaries (lexical)

Results of the Anatomy Track

- Mapping the adult mouse anatomy ontology (2744 classes) to the NCI thesaurus of the human anatomy (3304 classes)
- The AgreementMaker ranked **second** among ten systems

Track	Goal	Rank	Additional Achievements
#1	Maximize F-measure	2nd	1st in Recall and Recall+
#2	Maximize Precision	2nd	0.006 distance from 1st, 1st in F-measure
#3	Maximize Recall	1st	1st also in Recall+
#4	Use a Partial Reference	5th	1st in Precision, improved execution time

System	Task #1			Task #2		Task #3			Recall+			
	Runtime	Prec.	Rec.	F	Prec.	Rec.	F	Prec.	Rec.	F	#1	#3
SOBOM	\approx 19 min	0.952	0.777	0.855	-	-	-	-	-	-	0.431	-
AgrMaker	$\approx 23 \min$	0.865	0.798	0.831	0.967	0.682	0.800	0.511	0.815	0.628	0.489	0.553
RiMOM	$\approx 10 \min$	0.940	0.684	0.792	-	-	-	-	-	-	0.183	-
ТахоМар	$\approx 12 \min$	0.870	0.678	0.762	0.953	0.609	0.743	0.458	0.716	0.559	0.222	0.319
DSSim	$\approx 12 \min$	0.853	0.676	0.754	0.973	0.620	0.757	0.041	0.135	0.063	0.185	0.061
ASMOV	$\approx 5 min$	0.746	0.755	0.751	0.821	0.736	0.776	0.725	0.767	0.745	0.419	0.474
aflood	\approx 15 sec / 4 min	0.873	0.653	0.747	0.892	0.712	0.792	0.827	0.763	0.794	0.197	0.484
Lily	\approx 99 min	0.738	0.739	0.739	0.869	0.559	0.681	0.534	0.774	0.632	0.477	0.548
Aroma	$\approx 1 \min$	0.775	0.678	0.723	-	-	-	-	-	-	0.368	-
kosimap	$\approx 5 \text{ min}$	0.866	0.619	0.722	0.907	0.446	0.598	0.866	0.619	0.722	0.154	0.154

18

Results of the Conference Track

- Mapping 15 ontologies dealing with conference organization
- The AgreementMaker ranked first among seven systems with a threshold cutting of 75% and second with no threshold cutting

- The AgreementMaker
- Efficient Selection of Mappings
- Automatic Quality-driven Combination of Matching Methods
- A Practical Example: OAEI 2009
- Demonstration

Isabel F. Cruz, Flavio Palandri Antonelli, and Cosmin Stroe

ADVIS Lab University of Illinois at Chicago

With thanks to Ulas G. Keles and Angela Maduko

Supported by awards ITR IIS-0326284, IIS-0513553, and IIS-0812258