

IBM Research

Scalable Matching of Industry Models – A Case Study

Brian Byrne, <u>Achille Fokoue</u>, Aditya Kalyanpur, Kavitha Srinivas, and Min Wang

© 2009 IBM Corporation

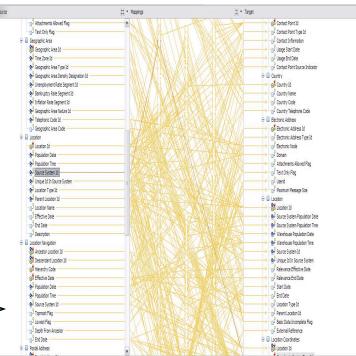
Background and motivation

Problem

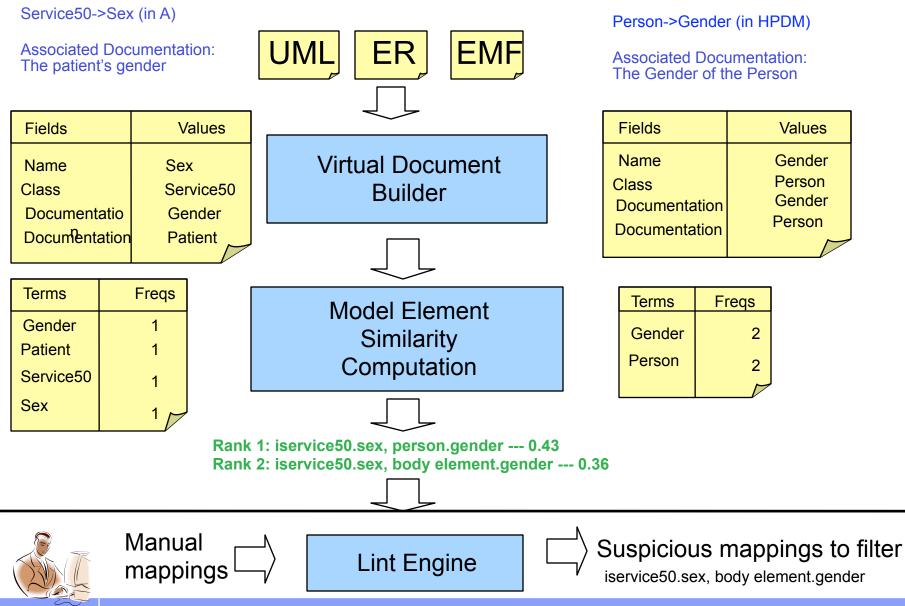
- Industry models:
 - Diverse formats (UML, ER, XSD, etc)
 - Multiple aspects: data, processes, services
 - Multiple domains (Healthcare, finance, insurance, etc)
 - Large models
 - Little to no formal semantics
 - Informal semantics buried in documentatior (PDF, Excel, etc)
- Existing tools do not scale well to large models
- Reviewing matching is as tedious as developing them.

Result

- Labor intensive matching in solution building
- Poor quality of manual mappings
- No scalable tools for reviewing the quality of mappings.



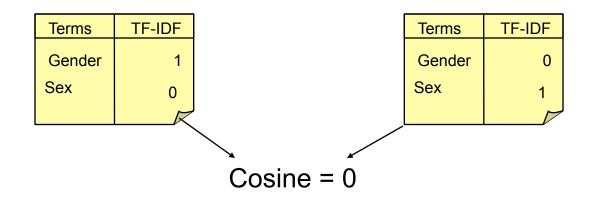
Technical Approach

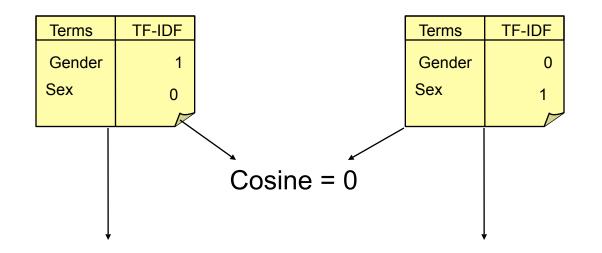


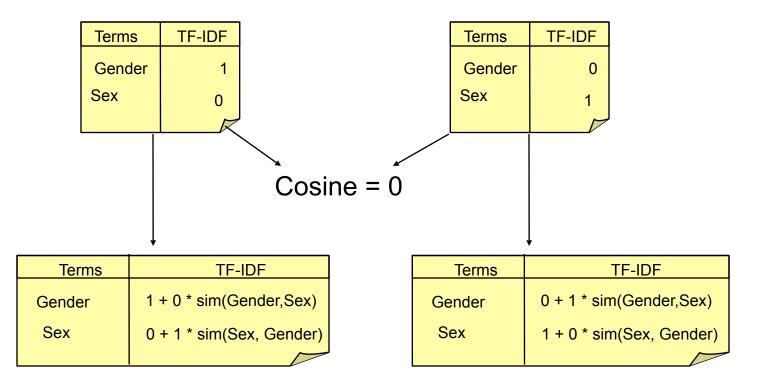
© 2009 IBM Corporation

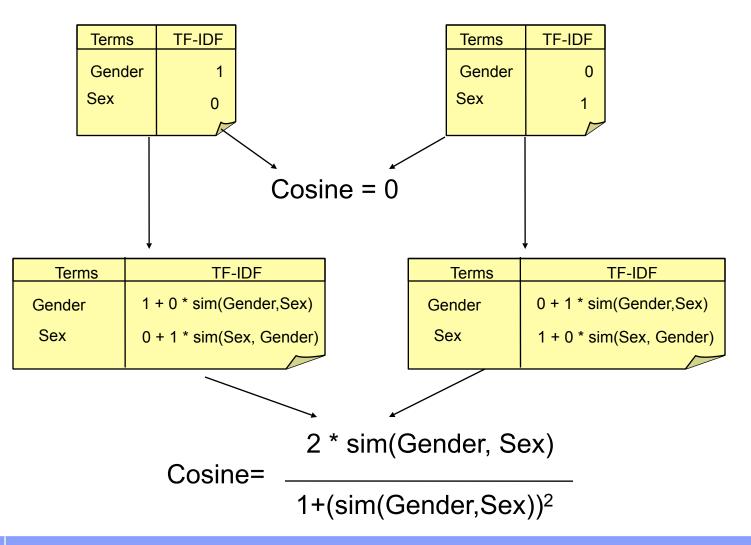
Terms	TF-IDF
Gender	1
Sex	0

Terms	TF-IDF
Gender	0
Sex	1









Experiments

Models tested

- A (customer model) vs. HPDM model (healthcare)
- B (customer model) vs. BDW model (finance services)
- MDM physical model (master data) vs. HPDM model.
- MDM physical model vs. BDW model.
- C (customer model) vs. BDW model.
- RDWM (retail model) vs. BDW model.
- BDW vs. IAA model (insurance).

These model mappings are frequently requested by customers

- Model selection based on availability of
 - Manually constructed mappings
 - Available domain expert for evaluation of mappings

Overview of Results

	Models		Precision of the top 100	
	A ->HPDM	43	67%	
	B ->BDW	197	74%*	
	MDM->BDW	149	71%*	
	MDM->HPDM	324	54%*	
	RDWM->BDW	3632	100%*	
prot	in the quality of manually of the top 1	constructed ma	perts becau ppings for 3 of 4 mode 52%*	els.

Lint Engine: An approach to Improving the Quality of Manual Mappings

- Manual mappings are surprisingly bad for 3/4 models:
 - Contains elements that do not match elements in either model
 - Poor transcription of names (changes of spaces, appending package names, etc).
 - Mapper created new classes/attributes to make up a mapping (e.g., DUMMY.DUMMY_ATTR in AMEX).

- Contains mappings to an "absurdly" generic class

- Contains mappings that are just wrong location.location id || zip code territory manager.postal code condition.condition id || midw fee arrangment.effective date location.location id || merchant contact.telephone extension number condition.condition id || edw discount rate.account transaction rate

"Lint" for model mapping

Identify heuristics to detect suspicious mappings

- Can be used as a tool to 'review' model mappings created by a human
- Can be used on output of the mapping tool to identify groups of suspicious mappings
- Example heuristics implemented
- A model element with an exact lexical match was not returned.
- A single element of one model was mapped to multiple elements of another models
- 6 categories implemented

Lint applied to B-BDW manual mappings

Total number of mappings: 306

Total number of suspicious mappings:151 (51 %)Exact Name Not Match:13 (8 %)One To Many Mappings:143 (46 %)Mapping Without Documentation:40 (25 %)Duplicate Documentation:2 (1%)

Conclusion and future directions

- Concrete approach to scale model matching to large industry models
- Next steps:
 - Embed semi-automated mapping algorithm into a tool to "suggest" mappings.
 - Incorporate user feedback to teach the algorithm to self correct
 - Utilize machine learning techniques to find the correct 'features' for a given model comparison).
 - Reduce variability in automated mapping using "Lint" and machine learning techniques.

Thanks!

© 2009 IBM Corporatior