> Dominique Ritze Christian Meilicke Ondřej Šváb-Zamazal Heiner Stuckenschmidt

Introduction

• Ontology Matching often limited to find simple correspondences (between atomic entities):

writtenBy \equiv hasAuthor, Person \supseteq Female

- Not enough due to heterogeneity
- Need for complex correspondences
- Complex: at least one non-atomic entity

Outline

- Introduction
- Problem Statement
- Complex Correspondence Patterns
- Pattern Detection
- Experimental Results
- Summary & Future Work

Problem Statement

- Semantic heterogeneity
- Different vocabulary, granularity, model styles
- Example:

• Some work already done (database, machine learning)

Complex Correspondence Patterns

- Searched manually examples in OAEI Benchmark & Conference
- Chose four patterns which have been implemented

CAT: Class by Attribute Type Pattern

CAT⁻¹: Class by Inverse Attribute Type Pattern

CAV: Class by Attribute Value Pattern

PC: Property Chain Pattern

• CAT and CAT⁻¹ are in the patterns library (F. Scharffe)

CAT

PositiveReviewedPaper ≡ ∃hasEvaluation.Positive

Person \square \exists researchedBy⁻¹.T \equiv Researcher

CAV

SubmittedPaper ≡ ∃submission.{true}

PC

author \equiv hasAuthor o name

Pattern Detection

- Conjunction of conditions
- Combining simple existing techniques

structural methods: hierarchy, disjointness, domain, range linguistic methods: similarity (Levenshtein), head noun, first part data type compability

- State-of-the-art input alignment required
- Quality depends on quality of input alignment

CAT Example

Accepted_Paper $\equiv \exists$ hasDecision.Acceptance

Experimental Results

- Tested on OAEI Benchmark & Conference and another Conference set
- Thresholds for similarity decisions
- New correspondences found in the second Conference set

	True positives				False positives			
Threshold	0.6	0.7	0.8	0.9	0.6	0.7	0.8	0.9
CAT&CAT-1	10	8	7	0	24	14	11	2
PC	18	18	18	18	21	16	14	8
Σ	28	26	25	18	45	30	25	10

• Increased overall number of property corres. by 11%, concept by 3%

Summary

- Need for complex correspondences
- Example for every detected pattern
- One pattern detection presented as example of CAT
- Results showed number of correct/incorrect correspondences
- Difficult to evaluate
- Much harder to find than simple correspondences

</complexMapping>

```
<?xml version="1.0" encoding="UTF-8"?>
<complexMapping>
    <define>
        <first path="D:\cmt.owl"/>
        <second path="D:\ekaw.owl"/>
        <alignment path="D:\cmt-ekaw.rdf"/>
    </define>
    < load >
        <concept origin="first" id="concept1"/>
        <concept origin="second" id="concept2"/>
        <concept origin="second" id="superlass"/>
    </load>
    \langle and \rangle
        <isSubclassOf>
            <entity id="concept1"/>
                                                     concept1 \equiv concept2
            <entity id="superclass"/>
        </isSubclassOf>
        <isSubclassOf>
            <entity id="concept2"/>
            <entity id="superclass"/>
        </isSubclassOf>
        <similarityAbove value="0.8">
            <label>
                <entity id="concept1"/>
            </label>
            <label>
                <entity id="concept2"/>
            </label>
        </similarityAbove>
    </and>
```

10/25/09

Future Work

- We try to develop XML language for pattern detection
 - Finding new types
 - Extensible conditions
 - Available for other users

- Open problem:
 - Evaluation foundation

Thank you!

Questions?

CAT⁻¹ Example

PC Example

