ANCHOR-FLOOD: RESULTS FOR OAEI-2009

Md. Hanif Seddiqui and Masaki Aono

Knowledge Data Engineering Laboratory Toyohashi University of Technology, Japan

OUR CONTENTS

• Anchor-Flood for Ontology Alignment

- Benchmarks
- Anatomy
- Conference
- Directory
- Instance Matching
 - IIMB Benchmarks

OUR CONTENTS

Anchor-Flood for Ontology Alignment Instance Matching

ANCHOR-FLOOD ALGORITHM

FINDINGS

• Block Size vs. Elapsed Time

- Two depth children from anchor-concept c+ one depth children from parents(c) + one depth children from grandparents(c) on anatomy track
 - Elapsed time approx. 15 sec.
 - Decreasing recall
 - Good precision

- Two depth children from anchor-concept c+ two depth children from parents(c) + one depth children from grandparents(c) on anatomy track
 - Elapsed time approx. 4 min.
 - Increase recall
 - Decrease precision

OUR CONTENTS

Anchor-Flood for Ontology Alignment Instance Matching

SEMANTIC LINK CLOUD: OUR UNIQUENESS

0

Semantic Link Cloud

INSTANCE MATCHING ALGORITHM

INSTANCE MATCHER

Algorithm *InstanceMatch* (ABox *ab*₁, ABox *ab*₂, Alignment *A*)

1. for each $ins_i \in ab_1$

5.

6.

7.

- 2. $cloud_i = makeCloud(ins_i, ab_1)$
- 3. for each $ins_j \in ab_2$

4.
$$cloud_j = makeCloud(ins_j, ab_2)$$

if $\exists a(c_1, c_2) \in A | (c_1 \in Block(ins_2, type) \land c_2 \in Block(ins_1, type))$ if $\operatorname{Sim}_{\operatorname{struct}}(\operatorname{cloud}_i, \operatorname{cloud}_i) \geq \delta$

imatch = imatch \cup makeAlign(ins_i, ins_i)

RESULTS

• Please visit OAEI-2009 website for the detail results of *aflood*, stands for Anchor-Flood

CONCLUSIONS AND FUTURE WORK

- Anchor-Flood algorithm run faster due to its unique way of divide and conquer
- For Instance Matching, we used Semantic links associated to each of the Instances.

Future Work

- To consider Semantic Similarity among concepts of a taxonomy to reduce the size of block and hence to decrease the runtime and to increase the efficiency.
- Improve the runtime of Instance Matching
- You can download our system through-

www.kde.ics.tut.ac.jp/~hanif/res/2009/anchor_flood.zip

• Related Paper: Md.H. Seddiqui and M. Aono, An Efficient and Scalable Algorithm for Segmented Alignment of Ontologies of Arbitrary Size, Web Semantics (to be published) THANK YOU

CHALLENGES

• Varying Block Size

- Increase block size by the neighbors of sufficient depth
- Decrease block size by considering semantic similarity
- Varying threshold