
Ontology Matching

OM-2011

Proceedings of the ISWC Workshop

Introduction

Ontology matching1 is a key interoperability enabler for the Semantic Web, as
well as a useful tactic in some classical data integration tasks dealing with the
semantic heterogeneity problem. It takes ontologies as input and determines
as output an alignment, that is, a set of correspondences between the semanti-
cally related entities of these ontologies. These correspondences can be used for
various tasks, such as ontology merging, data translation, query answering or
navigation on the web of data. Thus, matching ontologies enables the knowl-
edge and data expressed in the matched ontologies to interoperate.

The workshop has three goals:

• To bring together leaders from academia, industry and user institutions
to assess how academic advances are addressing real-world requirements.
The workshop will strive to improve academic awareness of industrial and
�nal user needs, and therefore direct research towards those needs. Simul-
taneously, the workshop will serve to inform industry and user represen-
tatives about existing research e�orts that may meet their requirements.
The workshop will also investigate how the ontology matching technology
is going to evolve.

• To conduct an extensive and rigorous evaluation of ontology matching
approaches through the OAEI (Ontology Alignment Evaluation Initiative)
2011 campaign2. The particular focus of this year's OAEI campaign is
on real-world speci�c matching tasks involving, e.g., linked open data
and biomedical ontologies. Therefore, the ontology matching evaluation
initiative itself will provide a solid ground for discussion of how well the
current approaches are meeting business needs.

• To examine similarities and di�erences from database schema matching,
which has received decades of attention but is just beginning to transition
to mainstream tools.

We received 33 submissions for the technical track of the workshop. The
program committee selected 7 submissions for oral presentation and 16 submis-
sions for poster presentation. 18 matching systems participated in this year's
OAEI campaign. Further information about the Ontology Matching workshop
can be found at: http://om2011.ontologymatching.org/.

1http://www.ontologymatching.org/
2http://oaei.ontologymatching.org/2011

i

Acknowledgments. We thank all members of the program committee, au-
thors and local organizers for their e�orts. We appreciate support from the
Trentino as a Lab (TasLab)3 initiative of the European Network of the Living
Labs4 at Informatica Trentina SpA5, the EU SEALS (Semantic Evaluation at
Large Scale)6 project and the Semantic Valley7 initiative.

Pavel Shvaiko
Jérôme Euzenat
Tom Heath
Christoph Quix
Ming Mao
Isabel Cruz

October 2011

3http://www.taslab.eu
4http://www.openlivinglabs.eu
5http://www.infotn.it
6http://www.seals-project.eu
7http://www.semanticvalley.org/index_eng.htm

ii

Organization

Organizing Committee

Pavel Shvaiko, TasLab, Informatica Trentina SpA, Italy
Jérôme Euzenat, INRIA & LIG, France
Tom Heath, Talis Systems Ltd, UK
Christoph Quix, RWTH Aachen University, Germany
Ming Mao, SAP Labs, USA
Isabel Cruz, The University of Illinois at Chicago, USA

Program Committee

Paolo Besana, University of Edinburgh, UK
Chris Bizer, Free University Berlin, Germany
Olivier Bodenreider, National Library of Medicine, USA
Paolo Bouquet, OKKAM, Italy
Marco Combetto, Informatica Trentina, Italy
Jérôme David, INRIA & LIG, France
Al�o Ferrara, University of Milan, Italy
Gabriele Francescotto, OpenContent, Italy
Fausto Giunchiglia, University of Trento, Italy
Bin He, IBM, USA
Eduard Hovy, ISI, University of Southern California, USA
Wei Hu, Nanjing University, China
Ryutaro Ichise, National Institute of Informatics, Japan
Antoine Isaac, Vrije Universiteit Amsterdam & Europeana, Netherlands
Krzysztof Janowicz, Pennsylvania State University, USA
Anja Jentzsch, Free University Berlin, Germany
Yannis Kalfoglou, Ricoh Europe plc, UK
Patrick Lambrix, Linköpings Universitet, Sweden
Monika Lanzenberger, Vienna University of Technology, Austria
Rob Lemmens, ITC, The Netherlands
Maurizio Lenzerini, University of Rome La Sapienza, Italy
Vincenzo Maltese, University of Trento, Italy
Fiona McNeill, University of Edinburgh, UK
Christian Meilicke, University of Mannheim, Germany
Peter Mork, The MITRE Corporation, USA
Nico Lavarini, Cogito, Italy
Andriy Nikolov, Open University, UK
Natasha Noy, Stanford University, USA
Leo Obrst, The MITRE Corporation, USA
Matteo Palmonari, University of Milan Bicocca, Italy
Yefei Peng, Google, USA

iii

Evan Sandhaus, New York Times, USA
François Schar�e, LIRMM, France
Luciano Sera�ni, Fondazione Bruno Kessler - IRST, Italy
Kavitha Srinivas, IBM, USA
Umberto Straccia, ISTI-C.N.R., Italy
Ond°ej �váb-Zamazal, Prague University of Economics, Czech Republic
Cássia Trojahn, INRIA & LIG, France
Raphaël Troncy, EURECOM, France
Giovanni Tummarello, Fondazione Bruno Kessler - IRST, Italy
Lorenzino Vaccari, European Commission - Joint Research Center, Italy
Ludger van Elst, DFKI, Germany
Shenghui Wang, Vrije Universiteit Amsterdam, Netherlands
Baoshi Yan, LinkedIn, USA
Songmao Zhang, Chinese Academy of Sciences, China

Additional Reviewers

Robert Isele, Free University Berlin, Germany

iv

Table of Contents

PART 1 - Technical Papers

A time-e�cient hybrid approach to link discovery
Axel-Cyrille Ngonga Ngomo . 1

Learning linkage rules using genetic programming
Robert Isele and Christian Bizer . 13

RAVEN � active learning of link speci�cations
Axel-Cyrille Ngonga Ngomo, Jens Lehmann,
Sören Auer and Konrad Hö�ner . 25

Towards an automatic parameterization
of ontology matching tools based on example mappings
Dominique Ritze and Heiko Paulheim . 37

Evolution of the COMA match system
Sabine Maÿmann, Salvatore Raunich, David Aümueller,
Patrick Arnold and Erhard Rahm .49

Using semantic similarity in ontology alignment
Valerie Cross and Xueheng Hu . 61

Ontology matching benchmarks: generation and evaluation
Maria-Elena Ro³oiu, Cássia Trojahn and Jérôme Euzenat 73

v

PART 2 - OAEI Papers

Results of the Ontology Alignment Evaluation Initiative 2011
Jérôme Euzenat, Al�o Ferrara, Willem Robert van Hage, Laura Hollink,
Christian Meilicke, Andriy Nikolov, Dominique Ritze, François Schar�e,
Pavel Shvaiko, Heiner Stuckenschmidt, Ond°ej �váb-Zamazal and
Cássia Trojahn . 85

Using AgreementMaker to align ontologies for OAEI 2011
Isabel F. Cruz, Cosmin Stroe, Federico Caimi, Alessio Fabiani,
Catia Pesquita, Francisco M. Couto and Matteo Palmonari 114

AROMA results for OAEI 2011
Jérôme David . 122

Ontology matching with CIDER: evaluation report for OAEI 2011
Jorge Gracia, Jordi Bernad and Eduardo Mena .126

CODI: Combinatorial Optimization for Data Integration:
results for OAEI 2011
Jakob Huber, Timo Sztyler, Jan Noessner, and Christian Meilicke 134

Cluster-based similarity aggregation for ontology matching
Quang-Vinh Tran, Ryutaro Ichise, and Bao-Quoc Ho . 142

LDOA results for OAEI 2011
Marouen Kachroudi, Essia Ben Moussa, Sami Zghal,
and Sadok Ben Yahia . 148

Lily Results on SEALS Platform for OAEI 2011
Peng Wang . 156

LogMap results for OAEI 2011
Ernesto Jiménez-Ruiz, Antón Morant and Bernardo Cuenca Grau 163

MaasMatch results for OAEI 2011
Frederik C. Schadd and Nico Roos .171

MapPSO and MapEVO results for OAEI 2011
Jürgen Bock, Carsten Dänschel and Matthias Stumpp . 179

MapSSS results for OAEI 2011
Michelle Cheatham . 184

OACAS: results for OAEI 2011
Sami Zghal, Marouen Kachroudi, Sadok Ben Yahia
and Engelbert Mephu Nguifo . 190

vi

OMReasoner: using reasoner for ontology matching:
results for OAEI 2011
Guohua Shen, Lantao Jin, Ziyue Zhao, Zhe Jia, Wenmin He,
and Zhiqiu Huang . 197

Optima results for OAEI 2011
Uthayasanker Thayasivam and Prashant Doshi . 204

SERIMI results for OAEI 2011
Samur Araujo, Arjen de Vries and Daniel Schwabe . 212

Zhishi.links results for OAEI 2011
Xing Niu, Shu Rong, Yunlong Zhang and Haofen Wang220

YAM++ results for OAEI 2011
DuyHoa Ngo, Zohra Bellasene, and Remi Coletta . 228

vii

PART 3 - Posters

Towards more challenging problems for ontology matching tools
Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau . 236

A framework for session-based ontology alignment
Patrick Lambrix .238

Modeling matching systems using matching process design patterns
Eric Peukert . 240

A visual SOA-based ontology alignment tool
Weng Onn Kow, Vedran Sabol, Michael Granitzer,
Wolfgang Kienrich and Dickson Lukose .242

Mapping relational databases through ontology matching:
a case study on information migration
Manuel Rodriguez-Mancha, Hector G. Ceballos,
Francisco J. Cantu and Aldo Diaz-Prado . 244

SERIMI: resource description similarity,
RDF instance matching and interlinking
Samur Araujo, Jan Hidders, Daniel Schwabe and Arjen De Vries 246

Translating expressive ontology mappings into
rewriting rules to implement query rewriting
Gianluca Correndo and Nigel Shadbolt .248

EventMedia Live: reconciliating events descriptions in the web of data
Houda Khrouf and Raphaël Troncy . 250

Mobile facetted browsing LODD applications for supporting clinicians
Daniel Sonntag, Jochen Setz and Maha Ahmed Baker . 252

Complex matching of RDF datatype properties
Bernardo Pereira Nunes, Alexander Arturo Mera Caraballo,
Marco Antonio Casanova, Karin Breitman and Luiz A. P. Paes Leme 254

Automated matching of data mining dataset schemata
to background knowledge
Vojí° Stanislav, Tomá² Kliegr, Vojt¥ch Svátek
and Ond°ej �váb-Zamazal . 256

A criteria for selecting background knowledge
for domain speci�c semantic matching
Jetendr Shamdasani, Peter Bloodsworth, Tamas Hauer,
Andrew Branson, Mohammed Odeh and Richard McClatchey 258

viii

Towards a framework for ontology mapping
based on description logic reasoning
Quentin Reul, Je� Z. Pan and Derek Sleeman . 260

A structuralistic semantics for ontology alignments
Christian Schäu�er, Clemens Beckstein and Stefan Artmann 262

A similarity measure based on semantic,
terminological and linguistic information
Nitish Aggarwal, Tobias Wunner, Mihael Arcan,
Paul Buitelaar and Seán O'Riain . 264

Folksodriven structure network
Massimiliano Dal Mas . 266

ix

x

A Time-Efficient Hybrid Approach to Link
Discovery

Axel-Cyrille Ngonga Ngomo1

Department of Computer Science
University of Leipzig

Johannisgasse 26, 04103 Leipzig
ngonga@informatik.uni-leipzig.de,

WWW home page: http://bis.uni-leipzig.de/AxelNgonga

Abstract. With the growth of the Linked Data Web, time-efficient Link
Discovery frameworks have become indispensable for implementing the
fourth Linked Data principle, i.e., the provision of links between data
sources. Due to the sheer size of the Data Web, detecting links even when
using trivial specifications based on a single property can be very time-
demanding. Moreover, non-trivial Link Discovery tasks require complex
link specifications and are consequently even more challenging to opti-
mize with respect to runtime. In this paper, we present a novel hybrid
approach to link discovery that combines two very fast algorithms. Both
algorithms are combined by using original insights on the translation of
complex link specifications to combinations of atomic specifications via a
series of operations on sets and filters. We show in three experiments that
our approach outperforms SILK by more than six orders of magnitude
while abiding to the restriction of not losing any link.

Keywords: Linked Data, Link Discovery, Algorithms, Constraints

1 Introduction

The Linked Data Web has evolved from 12 knowledge bases in May 2007 to 203
knowledge bases in September 2010, i.e., in less than four years [6]. While the
number of RDF triples available in the Linked Data Web has now surpassed
27 billion, less than 3% of these triples are links between knowledge bases [10].
Yet, links between knowledge bases play a key role in important tasks such as
cross-ontology question answering [9], large-scale inferences [15] and data inte-
gration [2]. Given the enormous amount of information available on the Linked
Data Web, time-efficient Link Discovery (LD) frameworks have become indis-
pensable for implementing the fourth Linked Data principle, i.e., the provision
of links between data sources [16, 10]. These frameworks rely on link specifica-
tions, which explicate conditions for computing new links between entities in
knowledge bases. Due to the mere size of the Web of Data, detecting links even
when using trivial specifications can be very time-demanding. Moreover, non-
trivial LD tasks require complex link specifications for discovering accurate links

1

between instances and are consequently even more challenging to optimize with
respect to runtime. In this paper, we present a novel lossless hybrid approach
to LD. Our approach is based on original insights on the distribution of prop-
erty domain and ranges on the Web of Data. Based on these insights, we infer
the requirements to efficient LD frameworks. We then use these requirements to
specify the time-efficient approaches that underlie our framework, LIMES ver-
sion 0.51. We show that our framework outperforms state-of-the-art frameworks
by several orders of magnitude with respect to runtime without losing links.

The contributions of this paper are as follows:

1. We present a formal grammar for link specifications that encompasses the
functionality of state-of-the-art frameworks for LD.

2. Based on this grammar, we present a very time-efficient approach for LD
that is based on translating complex link specifications into a combination
of atomic specifications via a concatenation of operations on sets and filter
operations.

3. We use this method to enable the PPJoin+ [18] algorithm to be used for
processing complex link specifications.

4. We specify and evaluate the HYpersphere aPPrOximation algorithm HYPPO,
a fully novel LD approach designed to operate on numeric values.

5. We evaluate our approach against SILK [7] within three experiments and
show that we outperform it by up to six orders of magnitude with respect
to runtime while abiding to the constraint of not losing links.

The rest of this paper is structured as follows: In Section 2, we give a brief
overview of related work on LD and related research fields. Section 3 presents
the preliminaries to our work. These preliminaries are the basis for Section 4,
in which we specify a formal grammar for link specification and an approach to
convert complex link specifications into an aggregation of atomic link specifica-
tions via set operations and filters. We subsequently present the core algorithms
underlying our approach in Section 5. In section 6, we evaluate our approaches in
three different large-scale experiments and show that we outperform the state-of-
the-art approach SILK. After a discussion of our findings, we present our future
work and conclude.

2 Related Work

Current frameworks for LD on the Web of Data can be subdivided into two
categories: domain-specific and universal frameworks [10]. Domain-specific LD
frameworks aim to discover links between knowledge bases from a particular
domain. For example, the RKB knowledge base (RKB-CRS) [5] uses Universal
Resource Identifier (URI) lists to compute links between universities and confer-
ences. Another domain-specific tool is GNAT [12], which discovers links between

1 LIMES stands for Link Discovery Framework for Metric Spaces. An online demo of
the framework can be found at http://limes.sf.net

2

music data sets by using audio fingerprinting. Further simple or domain-specific
approaches can be found in [14, 11].

Universal LD frameworks are designed to carry out mapping tasks indepen-
dent from the domain of the source and target knowledge bases. For example,
RDF-AI [13] implements a five-step approach that comprises the preprocessing,
matching, fusion, interlinking and post-processing of data sets. SILK [7] (Version
2.3) implements a time-efficient and lossless approach that maps complex config-
urations to a multidimensional metric space. A blocking approach is then used in
the metric space to reduce the number of comparisons by generating overlapping
blocks. The original LIMES approach [10] presupposes that the datasets to link
are in a metric space. It then uses the triangle inequality to portion the metric
space so as to compute pessimistic approximations of distances. Based on these
approximations, it can discard a large number of computations without losing
links.

Although LD is closely related with record linkage [17, 4] and deduplica-
tion [3], it is important to notice that LD goes beyond these two tasks as LD aims
to provide the means to link entities via arbitrary relations. Different blocking
techniques such as standard blocking, sorted-neighborhood, bi-gram indexing,
canopy clustering and adaptive blocking have been developed by the database
community to address the problem of the quadratic time complexity of brute
force comparison [8]. In addition, very time-efficient approaches have been pro-
posed to compute string similarities for record linkage, including AllPairs [1],
PPJoin and PPJoin+ [18]. However, these approaches alone cannot deal with
the diversity of property values found on the Web of Data as they cannot deal
with numeric values. In addition, most time-efficient string matching algorithms
can only deal with simple link specifications, which are mostly insufficient when
computing links between large knowledge bases.

The novel version of the LIMES framework goes beyond the state of the
art (including previous versions of LIMES [10]) by integrating PPJoin+ and
extending this algorithm so as to enable it to deal with complex configurations. In
addition, LIMES0.5 integrates the fully novel HYPPO algorithm, which ensures
that our framework can deal efficiently with numeric values and consequently
with the whole diversity of data types found on the Web of Data.

3 Problem Definition

The goal of LD is to discover the set of pair of instances (s, t) ∈ S × T that are
related by a relation R, where S and T are two not necessarily distinct sets of
instances. One way to automate this discovery is to compare the s ∈ S and t ∈ T
based on their properties using a (in general complex) similarity metric. Two
entities are then considered to be linked via R if their similarity is superior to a
threshold τ . We are aware that several categories of approaches can be envisaged
for discovering links between instances, for example using formal inferences or
semantic similarity functions. Throughout this paper, we will consider LD via

3

properties. This is the most common definition of instance-based LD [10, 16],
which translates into the following formal specification.

Definition 1 (Link Discovery). Given two sets S (source) and T (target) of
instances, a (complex) similarity measure σ over the properties of s ∈ S and
t ∈ T and a similarity threshold τ ∈ [0, 1], the goal of LD is to compute the set
of pairs of instances (s, t) ∈ S × T such that σ(s, t) ≥ τ .

This problem can be expressed equivalently as follows:

Definition 2 (Link Discovery on Distances). Given two sets S and T of
instances, a (complex) distance measure δ over the properties of s ∈ S and
t ∈ Tand a distance threshold θ ∈ [0,∞[, the goal of LD is to compute the set of
pairs of instances (s, t) ∈ S × T such that δ(s, t) ≤ θ.

Note that a normed similarity function σ can always be derived from a dis-
tance function δ by setting σ(x, y) = (1 + δ(x, y))−1. Furthermore, the dis-
tance threshold θ can be transformed into a similarity threshold τ by setting
τ = (1 + θ)−1. Consequently, distance and similarities are used interchangeably
within our framework.

Although it is sometimes sufficient to define atomic similarity functions (i.e.,
similarity functions that operate on exactly one property pair) for LD, many LD
problems demand the specification of complex similarity functions over several
datatypes (numeric, strings, ...) to return accurate links. For example, while the
name of bands can be used for detecting duplicate bands across different knowl-
edge bases, linking cities from different knowledge bases requires taking more
properties into consideration (e.g., the different names of the cities as well as
their latitude and longitude) to compute links accurately. Consequently, linking
on the Data Web demands frameworks that support complex link specifications.

4 Link Specifications as Operations on Sets

In state-of-the-art LD frameworks, the condition for establishing links is usu-
ally expressed by using combinations of operations such as MAX (maximum),
MIN (minimum) and linear combinations on binary similarity measures that
compare property values of two instances (s, t) ∈ S × T . Note that transforma-
tion operations may be applied to the property values (for example a lower-case
transformation for strings) but do not affect our formal model. We present a
formal grammar that encompasses complex link specifications as found in cur-
rent LD frameworks and show how complex configurations resulting from this
grammar can be translated into a sequence of set and filter operations on simple
configurations. We use � to denote generation rules for metrics and specifica-
tions, ≡ to denote the equivalence of two specifications and A � B to denote
that the set of links that results from specification A is a subset of the set of
links that results from specification B.

Our definition of a link specification relies on the definition of atomic sim-
ilarity measures and similarity measures. Generally, a similarity measure m is

4

a function such that m : S × T → [0, 1]. We call a measure atomic (dubbed
atomicMeasure) when it relies on exactly one similarity measure σ (e.g., tri-
grams similarity for strings) to compute the similarity of two instances s and t.
A similarity measure m is either an atomic similarity measure atomicMeasure
or the combination of two similarity measures via operators OP such as MAX,
MIN or linear combinations as implemented in LIMES. Thus, the following rule
set for constructing metrics holds:

1. m� atomicMeasure
2. m� OP (m1,m2)

Note that frameworks differ in the type of operators they implement.
We call a link specification atomic (atomicSpec) if it compares the value of

a measure m with a threshold τ , thus returning the pairs (s, t) that satisfy the
condition σ(s, t) ≥ τ . A link specification spec(m, τ) is either an atomic link
specification or the combination of two link specifications via operations such as
AND (the conditions of both specifications must be satisfied, equivalent to set
intersection), OR (set union), XOR (symmetric set difference), or DIFF (set
difference). Thus, the following grammar for specifications holds :

1. spec(m, θ)� atomicSpec(m, θ)
2. spec(m, θ)� AND(spec(m1, θ1), spec(m2, θ2))
3. spec(m, θ)� OR(spec(m1, θ1), spec(m2, θ2))
4. spec(m, θ)� XOR(spec(m1, θ1), spec(m2, θ2))
5. spec(m, θ)� DIFF (spec(m1, θ1), spec(m2, θ2))

Most very time-efficient algorithms such as PPJoin+ operate solely on atomic
measures and would not be usable if specifications could not be reduced to run
only on atomic measures. For the operators MIN, MAX and linear combinations,
we can reduce configurations that rely on complex measures to operations on
configurations that rely on atomic measures via the following rules:

1. spec(MAX(m1,m2), θ) ≡ OR(spec(m1, θ), spec(m2, θ))
2. spec(MIN(m1,m2), θ) ≡ AND(spec(m1, θ), spec(m2, θ))
3. spec(αm1 + βm2, θ) � AND(spec(m1, (θ − β)/α), spec(m2, (θ − α)/β))

Note that while we can derive equivalent conditions on a smaller number of
dimensions for the first two operations, the simpler linking specifications that can
be extracted for linear combinations are necessary to fulfill their premise, but not
equivalent to the premise. Thus, in the case of linear combinations, it is important
to validate the final set of candidates coming from the intersection of the two
sets specified on a smaller number of dimensions against the premise by using
filters. Given these transformations, we can reduce all complex specifications that
abide by our grammar to a sequence of set and filter operations on the results
of atomic measures. Consequently, we can apply very time-efficient approaches
designed for atomic measures on each category of data types to process even
highly complex link specifications on the Web of Data. In the following, we
present the approaches used by our framework on strings and numerical values.

5

5 Processing Simple Configurations

Our framework implements a hybrid approach to LD. The first approach im-
plemented in our framework deals exclusively with strings by harnessing the
near-duplicate detection algorithm PPJoin+ [18]. Instead of mapping strings to
a vector space, PPJoin+ uses a combination of three main insights to imple-
ment a very time-efficient string comparison approach. First, it uses the idea
that strings with a given similarity must share a certain number of characters in
their prefix to be able to have a similarity beyond the user-specified threshold.
A similar intuition governs the suffix filtering implemented by PPJoin+. Finally,
the algorithm makes use of the position of each word w in the index to retrieve
a lower and upper bound of the index of the terms with which w might be simi-
lar. By combining these three approaches, PPJoin+ can discard a large number
of non-matches. The integration of the PPJoin+ algorithm into our framework
ensures that we can mitigate the pitfall of the time-demanding transformation
of strings to vector spaces as implemented by multidimensional approaches. The
main drawback of PPJoin+ is that it can only operate on one dimension [8].
However, by applying the transformations of configurations specified above, we
make PPJoin+ applicable to link discovery tasks with complex configurations.
While mapping strings to a vector space demands some transformation steps and
can be thus computationally demanding, all numeric values explicitly describe a
vector space. The second approach implemented in our framework deals exclu-
sively with numeric values and implements a novel approach dubbed HYPPO.

The HYPPO algorithm addresses the problem of efficiently mapping instance
pairs (s, t) ∈ S × T described by using exclusively numeric values in a n-
dimensional metric space. The approach assumes a distance metric δ for measur-
ing the distance between objects and returns all pairs such that δ(s, t) ≤ θ, where
θ is a distance threshold. Let ω = (ω1, ..., ωn) and x = (x1, ..., xn) be points in the
n-dimensional space Ω = S∪T . The observation behind HYPPO is that in spaces
(Ω, δ) with orthogonal, i.e., uncorrelated dimensions, distance metrics can be de-
composed into the combination of functions φi,i∈{1...n} which operate on exactly
one dimension of Ω : δ = f(φ1, ..., φn). For example, for Minkowsky distances of
order p > 1, φi(x, ω) = |xi − ωi| for all values of i and δ(x, ω) = p

√∑
φi(x, ω)p.

Note that the Euclidean distance is the Minkowsky distance of order 2. The
Minkowsky distance can be extended further by weighting the different axes of
Ω. In this case, δ(x, ω) = p

√∑
γp
iiφi(x, ω)p and φi(x, ω) = γii|xi −ωi|, where γii

are the entries of a positive diagonal matrix.
Some distances do exist, which do not assume an orthogonal basis for the met-

ric space. Mahalanobis distances for example are characterized by the equation
δ(x, ω) =

√
(x− ω)Γ (x− ω)T , where Γ is a n× n covariance matrix. However,

given that each space with correlated dimensions can always be transformed into
an affine space with an orthonormal basis, we will assume in the remainder of
this paper that the dimensions of Ω are independent. Given this assumption, it
is important to notice that the following inequality holds:

φi(x, ω) ≤ δ(x, ω), (1)

6

ergo, δ(x, ω) is the upper bound of φi(x, ω). Note that this is the sole condition
that we pose upon δ for HYPPO to be applicable. Also note that this condition
can always be brought about in a metric space by transforming its basis into an
orthogonal basis.

The basic intuition behind HYPPO is that the hypersphere H(ω, θ) = {x ∈
Ω : δ(x, ω) ≤ θ} is a subset of the hypercube V defined as V (ω, θ) = {x ∈
Ω : ∀i ∈ {1...n}, φi(xi, ωi) ≤ θ} due to inequality 1. Consequently, one can
reduce the number of comparisons necessary to detect all elements of H(ω, θ) by
discarding all elements which are not in V (ω, θ) as non-matches. HYPPO uses
this intuition by implementing a two-step approach to LD. First, it tiles Ω into
hypercubes of the same volume. Second, it compares each s ∈ S with those t ∈ T
that lie in cubes at a distance below θ. Note that these two steps differ from
the steps followed by similar algorithms (such as blocking) in two ways. First,
we do not use only one but several hypercubes to approximate H(ω, θ). Most
blocking approach rely on finding one block that contains the elements that are
to be compared with ω [8]. In addition, HYPPO is guaranteed not to lose any
link, as H is completely enclosed in V , while most blocking techniques are not
lossless.

Formally, let Δ = θ/α. We call α ∈ N the granularity parameter. HYPPO
first tiles Ω into the adjacent hypercubes (short: cubes) C that contain all the
points ω such that ∀i ∈ {1...n}, ciΔ ≤ ωi < (ci + 1)Δ, (c1, ..., cn) ∈ N

n. We call
the vector (c1, ..., cn) the coordinates of the cube C. Each point ω ∈ Ω lies in
the cube C(ω) with coordinates (�ωi/Δ�)i=1...n. Given such a space tiling and
inequality (1), it is obvious that all elements of H(ω, θ) lie in the set C(ω, α) of
cubes such that ∀i ∈ {1...n} : |ci − c(ω)i| ≤ α. Figure 1 shows examples of space
tilings for different values of α.

(a) α = 1 (b) α = 2 (c) α = 4

Fig. 1. Space tiling for different values of α. The colored squares show the set of
elements that must be compared with the instance located at the black dot. The points
within the circle lie within the distance θ of the black dot.

The accuracy of the approximation performed by HYPPO can be computed
easily: The number of cubes that approximate H(ω, θ) is (2α+1)n, leading to a

7

total volume VC(α, θ) = ((2α+ 1)Δ)n =
(
2α+1

α θ
)n

that approximates H(ω, θ).

The volume VH(θ) of H(ω, θ) is given by Snθ
n

n , where Sn is the volume of a unit
sphere in n dimensions, i.e., 2 for n = 1, π for n = 2, 4π

3 for n = 3 and so on.
The approximation ratio

VC(α, θ)

VH(θ)
=

n

Sn

(
2α+ 1

α

)n

, (2)

permits to determine the accuracy of HYPPO’s approximation as shown in Fig-
ure 2 for dimensions between 1 and 3 and values of α up to 10. Note that VC and

VH do not depend on ω and that VC(α,θ)
VH(θ) does not depend on θ. Furthermore,

note that the higher the value of α, the better the accuracy of HYPPO. Yet,
higher values of α also lead to an exponentially growing number of hypercubes
|C(ω, α)| and thus to longer runtimes when constructing C(ω, α) to approximate
H(ω, θ). Once the space tiling has been completed, all that remains to do is to
compare each s ∈ S with all the t ∈ T ∩ (

⋃
C ∈ C(ω, α)) and to return those

pairs of entities such that δ(s, t) ≤ θ. Algorithm 1 shows HYPPO’s pseudocode.

Fig. 2. Approximation ratio for n ∈ {1, 2, 3}. The x-axis shows values of α while the
y-axis shows the approximation ratios.

6 Evaluation

We compared our framework (i.e., LIMES Version 0.5) with SILK version 2.3. in
three large-scale experiments of different complexity based on geographic data.
We chose SILK because (to the best of our knowledge) it is the only other LD
framework that allows the specification of such complex linking experiments.
We ran all experiments on the same computer running a Windows 7 Enterprise
64-bit installation on a 2.8GHz i7 processor with 8GB RAM. The JVM was

8

Algorithm 1 Current implementation of HYPPO

Require: S, T , θ, δ, α as defined above
Mapping M := ∅
Δ = θ/α
for ω ∈ S ∪ T do

C(�ω1/Δ�, ..., �ωn/Δ�) := C(�ω1/Δ�, ..., �ωn/Δ�) ∪ {ω}
end for
for s ∈ S do

for C ∈ C(s, α) do
for t ∈ C ∩ T do

if δ(s, t) ≤ θ then
M := M ∪ (s, t)

end if
end for

end for
end for
return M

allocated 7.4GB RAM. For each tool we measured exclusively the time needed
for computing the links. All experiments were carried out 5 times except when
stated otherwise. In all cases, we report best runtimes. Experiments marked
with an asterisk would have lasted longer than 48 hours when using SILK and
were not computed completely. Instead, SILK’s runtime was approximated by
extrapolating the time needed by the software to compute 0.1% of the links.

We chose to use geographic datasets because they are large and allow the
use of several attributes for linking. In the first experiment, we computed links
between villages in DBpedia and LinkedGeoData based on the rdfs:label and
the population of instances. The link condition was twofold: (1) the difference in
population had to be lower or equal to θ and (2) the labels had to have a trigram
similarity larger or equal to τ . In the second experiment, we aimed to link towns
and cities from DBpedia with populated places in Geonames. We used the names
(gn:name), alternate names (gn:alternateName) and population of cities as
criteria for the comparison. Finally, we computed links between Geo-locations in
LinkedGeoData and GeoNames by using 4 combinations of criteria for comparing
entities: their longitude (wgs84:long), latitude (wgs84:lat), preferred names
and names.

Experiment |S| |T | Dims Complexity Source Target Thresholds

Villages* 26717 103175 2 3.8 ×109 DBpedia LGD τs, θp
Cities* 36877 39800 3 1.5 ×109 Geonames DBpedia τs, θp

Geo-Locations* 50031 74458 4 3.7 ×109 LGD GeoNames τs, θp, θl
Table 1. Summary of experimental setups for LIMES and SILK. Dims stands for
dimensions.

9

The setup of the experiments is summarized in Table 1. We used two thresh-
old setups. In the strict setup, the similarity threshold τs on strings was set to
0.9, the maximal difference in population θp was set to 9 and the maximal dif-
ference in latitude and longitude θl was set to 1. In the lenient setup, τs was
set to 0.7 and θp to 19. The lenient setup was not used in the Geo-Locations
experiments because it led to too many links, which filled up the 7.4G of RAM
allocated to both tools and led to swapping, thus falsifying the evaluation of the
runtimes. In all setups, we use the trigrams similarity metrics for strings and the
euclidean distance for numeric values.

Our results (see Figure 3) confirm that we outperform SILK by several orders
of magnitude in all setups. In the Cities experiment, we are more than 6 orders of
magnitude faster than SILK. We compared the runtimes of LIMES for different
values of α as shown in Figure 4. Our results show that our assumption on the
relation between α and runtimes is accurate as finding the right value for α
can reduce the total runtime of the algorithm by approximately 40% (see Geo-
Locations, α = 4). In general, setting α to values between 2 and 4 leads to an
improved performance in all experiments.

Fig. 3. Comparison of the runtime of LIMES and SILK on large-scale link discovery
tasks.

7 Discussion and Future Work

In this paper, we introduced and evaluated a novel hybrid approach to LD.
We presented original insights on the conversion of complex link specifications

10

Fig. 4. Runtimes of LIMES relatively to the runtime for α = 1.

into simple link specifications. Based on these conversions, we inferred that effi-
cient means for processing simple link specifications are the key for time-efficient
linking. We then presented the two time-efficient approaches implemented in
LIMES0.5 and showed how these approaches can be combined for time-efficient
linking. A thorough evaluation of our framework in three large-scale experiments
showed that we outperform SILK by more than 6 orders of magnitude while not
losing a single link.

One of the central innovations of this paper is the HYpersphere aPPrOxi-
mation algorithm HYPPO. Although it was defined for numeric values, HYPPO
can be easily generalized to the efficient computation of the similarity of pairs
of entities that are totally ordered, i.e., to all sets of entities e = (e1, ..., en) ∈ E
such that a real function fi exists, which preserves the order � on the ith di-
mension of E, ergo ∀e, e′ ∈ E : ei � e′i → f(ei) > f(e′i). Yet, it is important
to notice that such a function can be very complex and thus lead to overheads
that may nullify the time gain of HYPPO. In future work, we will aim to find
such functions for different data types. In addition, we will aim to formulate an
approach for determining the best value of α for any given link specification.
The new version of LIMES promises to be a stepping stone for the creation of a
multitude of novel semantic applications, as it is time-efficient enough to make
complex interactive scenarios for link discovery possible even at large scale.

Acknowledgement

This work was supported by the Eurostars grant SCMS E!4604 and a fellowship
grant of the Mainz University.

11

References

1. Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. Scaling up all pairs
similarity search. In WWW, pages 131–140, 2007.

2. David Ben-David, Tamar Domany, and Abigail Tarem. Enterprise data classifica-
tion using semantic web technologies. In ISWC, 2010.

3. Jens Bleiholder and Felix Naumann. Data fusion. ACM Comput. Surv., 41(1):1–41,
2008.

4. Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. Du-
plicate record detection: A survey. IEEE Transactions on Knowledge and Data
Engineering, 19:1–16, 2007.

5. Hugh Glaser, Ian C. Millard, Won-Kyung Sung, Seungwoo Lee, Pyung Kim, and
Beom-Jong You. Research on linked data and co-reference resolution. Technical
report, University of Southampton, 2009.

6. Tom Heath and Christian Bizer. Linked Data: Evolving the Web into a Global
Data Space. Morgan & Claypool, 2011.

7. R. Isele, A. Jentzsch, and C. Bizer. Efficient Multidimensional Blocking for Link
Discovery without losing Recall. June 2011.

8. Hanna Köpcke, Andreas Thor, and Erhard Rahm. Comparative evaluation of entity
resolution approaches with fever. Proc. VLDB Endow., 2(2):1574–1577, 2009.

9. Vanessa Lopez, Victoria Uren, Marta Reka Sabou, and Enrico Motta. Cross on-
tology query answering on the semantic web: an initial evaluation. In K-CAP
’09: Proceedings of the fifth international conference on Knowledge capture, pages
17–24, New York, NY, USA, 2009. ACM.

10. Axel-Cyrille Ngonga Ngomo and Sören Auer. A time-efficient approach for large-
scale link discovery on the web of data. In IJCAI, 2011.

11. George Papadakis, Ekaterini Ioannou, Claudia Niedere, Themis Palpanasz, and
Wolfgang Nejdl. Eliminating the redundancy in blocking-based entity resolution
methods. In JCDL, 2011.

12. Yves Raimond, Christopher Sutton, and Mark Sandler. Automatic interlinking of
music datasets on the semantic web. In Proceedings of the 1st Workshop about
Linked Data on the Web, 2008.

13. Franois Scharffe, Yanbin Liu, and Chuguang Zhou. Rdf-ai: an architecture for rdf
datasets matching, fusion and interlink. In Proc. IJCAI 2009 workshop on Identity,
reference, and knowledge representation (IR-KR), Pasadena (CA US), 2009.

14. Jennifer Sleeman and Tim Finin. Computing foaf co-reference relations with rules
and machine learning. In Proceedings of the Third International Workshop on
Social Data on the Web, 2010.

15. Jacopo Urbani, Spyros Kotoulas, Jason Maassen, Frank van Harmelen, and Henri
Bal. Owl reasoning with webpie: calculating the closure of 100 billion triples. In
Proceedings of the ESWC 2010, 2010.

16. Julius Volz, Christian Bizer, Martin Gaedke, and Georgi Kobilarov. Discovering
and maintaining links on the web of data. In ISWC, pages 650–665, 2009.

17. William Winkler. Overview of record linkage and current research directions. Tech-
nical report, Bureau of the Census - Research Report Series, 2006.

18. Chuan Xiao, Wei Wang, Xuemin Lin, and Jeffrey X. Yu. Efficient similarity joins
for near duplicate detection. In WWW, pages 131–140, 2008.

12

Learning Linkage Rules using Genetic
Programming

Robert Isele and Christian Bizer

Freie Universität Berlin, Web-based Systems Group
Garystr. 21, 14195 Berlin, Germany

mail@robertisele.com, chris@bizer.de

Abstract. An important problem in Linked Data is the discovery of
links between entities which identify the same real world object. These
links are often generated based on manually written linkage rules which
specify the condition which must be fulfilled for two entities in order to be
interlinked. In this paper, we present an approach to automatically gen-
erate linkage rules from a set of reference links. Our approach is based on
genetic programming and has been implemented in the Silk Link Discov-
ery Framework. It is capable of generating complex linkage rules which
compare multiple properties of the entities and employ data transforma-
tions in order to normalize their values. Experimental results show that
it outperforms a genetic programming approach for record deduplication
recently presented by Carvalho et. al. In tests with linkage rules that
have been created for our research projects our approach learned rules
which achieve a similar accuracy than the original human-created linkage
rule.

Keywords: Genetic Programming, Linked Data, Link Discovery, Du-
plicate Detection, Deduplication, Record Linkage

1 Introduction

In the decentralized Web of Data, many data sources use different URIs for
the same real world object. Identifying these URI aliases, is a central problem
in Linked Data. Two approaches are widely used for that purpose: The first
category includes fully automatic tools which identify links using unsupervised
learning [11]. The second category includes tools which improve the accuracy
of the generated links using user-provided linkage rules. A linkage rule [30],
specifies the conditions two entities must fulfill in order to be interlinked. For
this purpose, a linkage rule typically uses one or more distance measures to
compare the properties of the entities. If the data sources use different data
types, the property values may be normalized by applying transformations prior
to the comparison. Linkage rules aggregate multiple similarity measures into one
compound similarity value. As these conditions are strongly domain dependent,
a separate linkage rule is typically used for each type of entities.

In this paper, we present an approach to automatically learn linkage rules
from a set of reference links. The approach is based on genetic programming

13

2 R. Isele, C. Bizer

and generates linkage rules that can be understood and further improved by
humans. Our approach has been implemented and evaluated in Silk [16], a link
discovery framework which generates RDF links between data items based on
linkage rules which are expressed using the Silk Link Specification Language
(Silk-LSL). The current version of Silk which includes the presented learning
method can be downloaded from the project homepage1 under the terms of the
Apache Software License.

The experimental evaluation shows that it produces better results than a
recently developed genetic programming approach by Carvalho et. al. [8]. In tests
with linkage rules that have been created for our research projects our approach
learned rules which achieve a similar accuracy than the original human-created
linkage rule.

This paper is organized as follows: The following Section gives an overview of
related work. Section 3 describes the proposed approach in detail. Afterwards,
Section 4 presents the results of the experimental evaluation of the learning
algorithm. Finally, Section 5 concludes this paper.

2 Related Work

Supervised learning of linkage rules in the context of linked data can build on
previous results in record linkage. In literature many approaches suitable for
learning binary classifiers have been adapted for learning linkage rules [18]. This
section gives an overview of the most widely used approaches.

Naive Bayes. Based on the original Fellegi-Sunter statistical model [13] of
record linkage, methods from Bayesian statistics such as Naive Bayes classi-
fiers [31] have been used to learn linkage rules. The main disadvantage of Naive
Bayes classifiers from a practical point of view is that they represent a black
box system to the user. This means that the user can not easily understand and
improve the learned linkage rules.

Support Vector Machines. Another widely used approach is to learn param-
eters of the linkage rule using Support Vector Machines (SVM) [5]. A SVM is a
binary linear classifier which maps the input variables into a high-dimensional
space where the two classes are separated by a hyperplane via a kernel func-
tion [2]. In the context of learning linkage rules, SVMs are often employed to
learn specific parameters of a linkage rule such as the weights of different sim-
ilarity measures. One popular example is MARLIN (Multiply Adaptive Record
Linkage with INduction) [1], which uses SVMs to learn how to combine multiple
similarity measures.

Decision Trees. Linkage rules can also be modeled using Decision Trees which
can be learned by a variety of algorithms including genetic algorithms. The main
advantage of Decision Trees is that they provide explanations for each classifi-
cation and thus can be understood and improved manually. Active Atlas [28, 29]

1 http://www4.wiwiss.fu-berlin.de/bizer/silk/

14

Learning Linkage Rules using Genetic Programming 3

learns mappings rules consisting of a combination of predefined transformations
and similarity measures. TAILOR [10] is another tool which employs decision
trees to learn linkage rules.

Genetic Programming. Another approach which is more expressive than de-
cision trees and promising to learn complex linkage rules is genetic programming
(GA). Genetic programming is an extension of the genetic algorithm [15] which
has been first proposed by Cramer [6]. Similar to a genetic algorithm, it starts
with a randomly created population of individuals. Each individual is represented
by a tree which is a potential solution to the given problem. From that starting
point the algorithm iteratively transforms the population into a population with
better individuals by applying a number of genetic operators. These operations
are applied to individuals which have been selected based on a fitness measure
which determines how close a specific individual is to the desired solution. The
three genetic operators typically used in genetic programming are [19]:

Reproduction: An individual is copied without modification.
Crossover: Two selected individuals are recombined into a new individual.
Mutation: A random modification is applied to the selected individual.

The algorithm stops as soon as either the configured maximum number of iter-
ations or a user-defined stop condition is reached.

Genetic programming has been applied to many problems in a variety of do-
mains [26]. In many of these areas genetic programming is capable of producing
human-competitive results [23, 21, 22]. Examples include the synthesis of electri-
cal circuits [20], the creation of quantum algorithms [27], and the development
of controllers [22].

To the best of our knowledge, genetic programming for learning linkage rules
has only been applied by Carvalho et. al. so far [7, 4, 8]. Their approach uses ge-
netic programming to learn how to combine a set of presupplied pairs of the form
<attribute, similarity function> (e.g. <name, Jaro>) into a linkage rule.
These pairs can be combined by the genetic programming method arbitrarily by
using mathematical functions (e.g. +, -, *, /, exp) and constants. Carvalho et. al.
show that their method produces better results than the state-of-the-art SVM
based approach by MARLIN [8]. Their approach is very expressive although
it cannot express data transformations. On the downside, using mathematical
functions to combine the similarity measures does not fit any commonly used
linkage rule model [12] and leads to complex and difficult to understand linkage
rules.

We are not aware of any previous application of genetic programming to
learn linkage rules in the context of Linked Data.

3 Approach

This Section explains our approach of learning linkage rules using genetic pro-
gramming. It is organized as follows: First of all, in order to learn a linkage

15

4 R. Isele, C. Bizer

rule using genetic programming, a rule must be represented as a tree structure.
Thus, Section 3.1 describes our approach of representing a linkage rule using
4 basic operators. For each candidate solution the fitness function described in
Section 3.2 is used to determine the performance of a linkage rule. Section 3.3
describes how the initial population of candidate solutions is generated. After
the initial population has been generated, the candidate solutions are iteratively
transformed into better ones by breeding the population according to the rules
described in Section 3.4. Finally, Section 3.5 describes our approach to avoid the
occurrence of bloat in linkage rules.

3.1 Representation of a Linkage Rule

We represent a linkage rule as a tree which is built from 4 basic operators:

Property: Creates a set of values to be used for comparison by retrieving all
values of a specific property of the entity.

Transformation: Transforms the input values according to a specific data
transformation function.

Comparison: Evaluates the similarity between the values of two input oper-
ators according to a specific distance measure. A user-specified threshold
specifies the maximum distance. If the underlying properties do not provide
any values for a specific entity, no similarity value is returned.

Aggregation: Aggregates the similarity values from multiple operators into a
single value according to a specific aggregation function. Aggregation func-
tions such as the weighted average may take the weight of the operators into
account. If an operator is marked as required, the aggregation will only yield
a value if the operator itself provides a similarity value.

The resulting linkage rule forms a tree where the terminals are given by the
properties and the nodes are represented by transformations, comparisons and
aggregations. The linkage rule tree is strongly typed [25] i.e. it does not allow
arbitrary combinations of its four basic operators. Figure 1 specifies the valid
structure of a linkage rule. Figure 2 shows a simple example of a linkage rule.

Fig. 1. Structure of a linkage rule

16

Learning Linkage Rules using Genetic Programming 5

Fig. 2. Example linkage rule

3.2 Fitness Function

The quality of a linkage rule is assessed by the fitness function based on user-
provided training data. The training data consists of a set of positive reference
links (connecting entities which identify the same real world object) and a set of
negative reference links (connecting entities which identify different objects). The
prediction of the linkage rule is compared with the positive reference links while
counting true positives (TP) and false negatives (FN) and the negative reference
links while counting false positives (FP) and true negatives (TN). Based on
these counts, a fitness value between -1 and 1 is assigned to the linkage rule by
calculating Matthews correlation coefficient (MCC):

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

In contrast to many other popular fitness measures such as the F-measure (i.e.
the harmonic mean of precision and recall), Matthews correlation coefficient
yields good results even for heavily unbalanced training data.

3.3 Generating the Initial Population

This section explains our approach of generating the initial population: Before
the population is generated, we build a list of property pairs which hold sim-
ilar values as described below. Based on that, random linkage rules are built
by selecting property pairs from the list and applying data transformations,
comparisons and aggregations. Finally, we seed the population with common
comparison patterns in order to increase the efficiency of the algorithm.

Finding Compatible Properties Prior to generating the population, we gen-
erate a list of pairs of properties which hold similar values. For this purpose,
the datasets are preprocessed in order to find the 100 most frequent properties
in the data set where the entity is in subject position and the 10 most frequent
properties where the entity is in object position. The selection of the owl:sameAs
property has been disallowed as it usually is the result of an existing run of a
link discovery tool. For each possible property pair, the values of the entities
referenced by the positive reference links as well as the negative reference links

17

6 R. Isele, C. Bizer

are analyzed. This is done by tokenizing the values and counting the reference
links for which there is a distance measure in the list of functions configured
to be used for learning linkage rules according to which both values are similar
(given a certain threshold). Finally, the list of compatible properties is generated
by collecting all pairs of properties for which more positive than negative links
are counted.

Generating a Random Linkage Rule A random linkage rule is generated
according to the following rules: First of all, a linkage rule is built consisting of a
random aggregation and up to two comparisons. For each comparison a random
pair from the pre-generated list of compatible properties is selected. In addition,
with a possibility of 50% a random transformation is appended to each property.

Note that this does not limit the algorithm to learn more complex linkage
rules as it is the purpose of the genetic operators to generate more complex
linkage rules from the ones in the initial population.

Seeding with Common Comparison Patterns Analyzing a set of linkage
rules manualy developed for the LATC EU project (http://latc-project.eu/)
revealed that certain patterns occur in many linkage rules. Most noticeable, 84
% of the analyzed linkage rules compare the labels and 66 % the geographic
coordinates of the entities. For that reason, the population has been seeded not
only with fully random linkage rules, but also with linkage rules which contain
these two special cases. While these patterns can also be learned by the algo-
rithm, previous work [26, 14] shows that seeding them in the initial population
can improve the efficiency.

3.4 Breeding

In order to improve the population our approach employs all three common
genetic operations: reproduction, crossover and mutation. At first, 1% of the in-
dividuals with the highest fitness are directly selected for reproduction following
a elitist strategy [9]. After this, new individuals are generated using crossover
and mutation until the population size is reached.

Instead of using subtree crossover, which is commonly used in genetic pro-
gramming, our approach uses a set of specific crossover operators which are
tailored to the domain. For each crossover operation an operator from this set is
selected randomly and applied to two selected individuals. Each operator learns
one aspect of the linkage rule. For our experiments, we used the following oper-
ators:

Function Crossover Used to find the best similarity, transformation or ag-
gregation function. Selects one operator at random in each linkage rule and
interchanges the functions. For example, it may select a comparison with the
levensthein distance function in the first linakge rule and a comparison with the
jaccard distance function in the second linkage rule and than interchange these
two functions.

18

Learning Linkage Rules using Genetic Programming 7

Operators Crossover As a linkage rule usually needs to combine multiple
comparisons, this operator combines aggregations from both linkage rules. For
this, it selects two aggregations, one from each linkage rule and combines theirs
comparisons. The comparisons are combined by selecting all comparisons from
both aggregations and removing each comparison with a propability of 50%.
For example, it may select an aggregation of a label comparison and a date
comparison in the first linkage rule and an aggregation of a label comparison and
a comparison of the geographic coordinates in the second linkage rule. In this case
the operator replaces the selected aggregations with a new aggregation which
contains all 4 comparisons and then removes each comparison with a propability
of 50%. Note that the comparisons are exchanged including the complete subtree
i.e. the distance functions as well as existing transformations are retained.

Aggregation Crossover While most linkage rules are linear i.e. can be ex-
pressed using a single weighted average aggregation, some linkage rules need
more complex aggregation hierarchies. In order to learn these hierachies, aggre-
gation crossover selects a random aggregation or comparison operator in the first
linkage rule and replaces it with a random aggregation or comparison operator
from the second linkage rule. This way, the operator builds a hierachy as it may
select operators from different levels in the tree. For example, it may select a
comparison in the first linkage rule and replace it with a aggregation of multiple
comparisons from the second linakge rule.

Transformation Crossover This operator is used to learn complex transfor-
mations by selecting a random path of transformations in both linkage rules. It
then combines both paths by executing a two point crossover.

Threshold Crossover This operator is used to find the optimal thresholds.
For this, one comparison operator is selected at random in each individual. The
new threshold is then set to the average of both comparisons.

Weight Crossover Finds the optimal weights analog to the treshold crossover.

Mutation is implemented similarly by selecting a random crossover operator
and executing a headless chicken crossover [17] i.e. crossing an individual from
the population with a randomly generated individual.

3.5 Avoiding Bloat

One well-known problem in genetic programming is that over time the indi-
viduals may develop redundant parts which do not contribute to their overall
fitness [3, 24]. One possibility to control this bloating is to penalize big trees in
order to force the algorithm to favor smaller trees over bigger ones. In literature
this method is known as parsimony pressure [32]. Another more sophisticated
method is to automatically analyze the trees and remove redundant parts. For
that purpose a simplification algorithm has been developed which detects re-
dundant parts in the linkage rule and removes them. In order to avoid bloated
linkage rules the simplification algorithm is executed every 5 generations.

19

8 R. Isele, C. Bizer

4 Evaluation

The proposed learning approach has been evaluated in 3 different experiments.
Because genetic algorithms are non-deterministic and may yield different results
in each run, all experiments have been run 10 times. For each run the reference
links have been randomly split into 2 folds for cross-validation. The results of
all runs have been averaged and the standard deviation has been computed. For
each experiment, we provide the evaluation results with respect to the training
data set as well as the validation dataset. All experiments have been run on a
3GHz Intel(R) Core i7 CPU with 4 cores while the Java heap space has been
restricted to 1GB.

4.1 Parameters

Table 1 lists the parameters which have been used in all experiments. As it is
the purpose of the developed method to work on arbitrary datasets without the
need to tailor its parameters to the specific datasets that should be interlinked,
the same parameters have been used for all experiments.

Table 1. Learning Parameters

Parameter Value

Population size 500
Maximum number of generations 50
Selection method Tournament selection with a group size of 5
Probability of Crossover 75%
Probability of Mutation 25%
Stop Condition MCC = 1.0

Our approach is independent of any specific aggregation functions, distance
measures or data transformations. Thus, it can learn linkage rules with any
functions provided to it. Table 2 shows the set of functions which has been used
by us in all experiments. The details about the functions are provided in the Silk
user manual on the website.

Table 2. Set of functions used in all experiments

Aggregation Functions Distance Measures Transformations

Average similarity Levenshtein distance Convert to lower case
Maximum similarity Jaccard index Tokenize the string
Minimum similarity Numeric distance Strip the URI prefix

Geographic distance

20

Learning Linkage Rules using Genetic Programming 9

4.2 Experiment 1: Comparison with related work

At first, we evaluated how our approach compares to the genetic programming
approach by Carvalho et. al. [8], which claims to produce better results than
the state-of-the-art SVM based approach by MARLIN. One dataset commonly
used for evaluating different record deduplication approaches is Cora. The Cora
dataset contains citations to research papers from the Cora Computer Science
research paper search engine. For the purpose of evaluating our approach, we
converted the Cora dataset provided at 2 to RDF.

For evaluation we used 1617 randomly selected positive links and 1617 ran-
domly selected negative reference links. Table 4.2 summarizes the cross validation
results. On average, our approach achieved an F-measure of 96.9% against the
training set and 93.6% against the validation set and needed less than 5 minutes
to perform all 50 iterations on the test machine. The learned linkage rules com-
pared by title, author and date. For the same dataset, Carvalho et. al. report
an F-measure of 90.0% against the training set and 91.0% against the validation
set [8].

Table 3. Average results of all learning runs. The last row contains the best results of
Carvalho et. al. for comparison.

Iter. Time in s (σ) Train. F1 (σ) Train. MCC (σ) Val. F1 (σ) Val. MCC (σ)

1 4.0 (0.3) 0.896 (0.022) 0.806 (0.042) 0.896 (0.021) 0.805 (0.041)
10 31.1 (3.9) 0.956 (0.013) 0.912 (0.026) 0.954 (0.015) 0.907 (0.029)
20 71.4 (18.3) 0.964 (0.008) 0.928 (0.017) 0.960 (0.010) 0.919 (0.020)
30 132.5 (48.5) 0.965 (0.007) 0.931 (0.013) 0.962 (0.007) 0.924 (0.015)
40 217.6 (106.7) 0.968 (0.004) 0.936 (0.008) 0.945 (0.036) 0.900 (0.053)
50 271.1 (140.1) 0.969 (0.003) 0.938 (0.007) 0.936 (0.056) 0.902 (0.057)

Ref. - 0.900 (0.010) - 0.910 (0.010) -

4.3 Experiment 2: Learning linkage rules for geographic datasets

With 16 datasets in the LOD cloud3, interlinking geographic datasets is a very
common problem. For this reason we evaluated our approach by learning a link-
age rule for interlinking cities in DBpedia and LinkedGeoData.

In order to evaluate the learned linkage rules we used a manually collected
set of 100 positive and 100 negative reference links. Special care has been taken
to include rare corner cases such as for example cities which share the same
name but don’t represent the same city and cities which are very closely located
so that. Table 4.3 summarizes the cross validation results. In all runs, the stop
condition (i.e. an MCC of 100%) has been reached before the 25th iteration.

2 http://www.hpi.uni-potsdam.de/naumann/projekte/repeatability/datasets/

cora_dataset.html
3 http://www4.wiwiss.fu-berlin.de/lodcloud/state/

21

10 R. Isele, C. Bizer

Table 4. Average results of all learning runs.

Iter. Time in s (σ) Train. F1 (σ) Train. MCC (σ) Val. F1 (σ) Val. MCC (σ)

1 2.6 (1.0) 0.984 (0.025) 0.970 (0.046) 0.932 (0.059) 0.883 (0.099)
10 3.8 (2.1) 0.996 (0.007) 0.993 (0.013) 0.932 (0.059) 0.883 (0.099)
20 3.9 (2.3) 0.998 (0.004) 0.996 (0.007) 0.964 (0.032) 0.945 (0.056)
25 4.0 (2.4) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

4.4 Experiment 3: Learning complex linkage rules

While the vast majority of linkage rules commonly used are very simple, a few
of them employ more complex structures. Interlinking drugs in DBpedia and
Drugbank is an example where the original linkage rule which has been pro-
duced by humans is very complex. In order to match two drugs, it compares the
drug names and their synonyms as well as a list of well-known and used iden-
tifiers (e.g. the CAS number4). In total, the manually written linkage rule uses
13 comparisons and 33 transformations. This includes complex transformations
such as replacing specific parts of the strings.

All 1,403 Links which have been generated by executing the original linkage
rule have been used as positive reference links. Negative reference links have
been generated by shuffling the target URIs of the positive links.

Table 5 shows the averaged results of all runs. The learned linkage rules
yield an F-Measure of 99.8% for the training data and 99.4% for the validation
data. Figure 3 shows that from the 30th iteration the generated linkage rules on
average only use 5.6 comparisons and 3.2 transformations and the simplification
algorithm successfully avoids bloating in the subsequent iterations. Thus, the
learned linkage rules use less than half of the comparisons and only one-tenth of
the transformations of the manually written linkage rules.

Table 5. Average results of all learning runs

Iter. Time in s (σ) Train. F1 (σ) Train. MCC (σ) Val. F1 (σ) Val. MCC (σ)

1 67.5 (2.2) 0.929 (0.026) 0.876 (0.042) 0.928 (0.029) 0.874 (0.045)
10 334.1 (157.4) 0.994 (0.002) 0.987 (0.003) 0.991 (0.003) 0.983 (0.006)
20 1014.1 (496.8) 0.996 (0.001) 0.992 (0.002) 0.988 (0.010) 0.977 (0.017)
30 1829.7 (919.3) 0.997 (0.001) 0.994 (0.002) 0.985 (0.016) 0.973 (0.027)
40 2685.4 (1318.9) 0.998 (0.001) 0.996 (0.002) 0.994 (0.002) 0.988 (0.004)
50 3222.2 (1577.7) 0.998 (0.001) 0.996 (0.001) 0.994 (0.002) 0.989 (0.004)

5 Conclusion and Outlook

We presented an approach for learning complex linkage rules which compare
multiple properties of the entities and employ data transformations in order

4 A unique numerical identifier assigned by the ”Chemical Abstracts Service”

22

Learning Linkage Rules using Genetic Programming 11

Fig. 3. Average number of comparisons and transformations

to normalize their values. As the current algorithm requires manually supplied
reference links, future work will focus on the efficient generation of these. For
this, we will investigate into semi-supervised learning and active learning in order
to minimize the user effort to generate the reference links.

References

1. M. Bilenko and R. Mooney. Adaptive duplicate detection using learnable string
similarity measures. In Proceedings of the ninth ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 39–48. ACM, 2003.

2. M. Bilenko and R. J. Mooney. Learning to combine trained distance metrics for
duplicate detection in databases. Technical report, 2002.

3. T. Blickle and L. Thiele. Genetic Programming and Redundancy. 1994.
4. M. Carvalho, A. Laender, M. Gonçalves, and A. da Silva. Replica identification

using genetic programming. In Proceedings of the 2008 ACM symposium on Applied
computing, pages 1801–1806. ACM, 2008.

5. C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20:273–297,
1995. 10.1007/BF00994018.

6. N. Cramer. A representation for the adaptive generation of simple sequential pro-
grams. In Proceedings of the First International Conference on Genetic Algorithms,
volume 183, page 187, 1985.

7. M. G. de Carvalho, M. A. Gonçalves, A. H. F. Laender, and A. S. da Silva. Learning
to deduplicate. In Proceedings of the 6th ACM/IEEE-CS joint conference on Digital
libraries, JCDL ’06, pages 41–50, New York, NY, USA, 2006. ACM.

8. M. G. de Carvalho, A. H. F. Laender, M. A. Goncalves, and A. S. da Silva. A
genetic programming approach to record deduplication. IEEE Transactions on
Knowledge and Data Engineering, 99(PrePrints), 2010.

9. K. A. De Jong. An analysis of the behavior of a class of genetic adaptive systems.
PhD thesis, Ann Arbor, MI, USA, 1975.

10. M. Elfeky, V. Verykios, and A. Elmagarmid. Tailor: A record linkage toolbox.
In Data Engineering, 2002. Proceedings. 18th International Conference on, pages
17–28. IEEE, 2002.

11. J. Euzenat, A. Ferrara, C. Meilicke, et al. First Results of the Ontology Alignment
Evaluation Initiative 2010. Ontology Matching, page 85, 2010.

12. J. Euzenat and P. Shvaiko. Ontology matching. Springer-Verlag, Heidelberg (DE),
2007.

23

12 R. Isele, C. Bizer

13. I. P. Fellegi and A. B. Sunter. A Theory for Record Linkage. Journal of the
American Statistical Association, 64(328), 1969.

14. C. Henrik Westerberg and J. Levine. Investigation of different seeding strategies in
a genetic planner. Applications of Evolutionary Computing, pages 505–514, 2001.

15. J. Holland. Adaptation in natural and artificial systems. 1975.
16. R. Isele, A. Jentzsch, and C. Bizer. Silk server - adding missing links while con-

suming linked data. In 1st International Workshop on Consuming Linked Data
(COLD 2010), Shanghai, 2010.

17. T. Jones. Crossover, macromutation, and population-based search. In Proceedings
of the Sixth International Conference on Genetic Algorithms, pages 73–80, 1995.

18. H. Köpcke and E. Rahm. Frameworks for entity matching: A comparison. Data &
Knowledge Engineering, 69(2):197 – 210, 2010.

19. J. Koza. Genetic programming: on the programming of computers by means of
natural selection.

20. J. Koza, F. Bennett III, F. Bennett, D. Andre, and M. Keane. Genetic Program-
ming III: Automatic programming and automatic circuit synthesis, 1999.

21. J. Koza, M. Keane, and M. Streeter. What’s AI done for me lately? Genetic
programming’s human-competitive results. Intelligent Systems, IEEE, 18(3):25–
31, 2003.

22. J. Koza, M. Keane, M. Streeter, W. Mydlowec, J. Yu, and G. Lanza. Genetic pro-
gramming IV: Routine human-competitive machine intelligence. Springer Verlag,
2005.

23. J. Koza, M. Keane, J. Yu, F. Bennett, and W. Mydlowec. Automatic creation of
human-competitive programs and controllers by means of genetic programming.
Genetic Programming and Evolvable Machines, 1(1):121–164, 2000.

24. W. Langdon and R. Poli. Fitness causes bloat. Soft Computing in Engineering
Design and Manufacturing, 1:13–22, 1997.

25. D. Montana. Strongly typed genetic programming. Evolutionary computation,
3(2):199–230, 1995.

26. R. Poli, W. Langdon, and N. McPhee. A field guide to genetic programming. Lulu
Enterprises Uk Ltd, 2008.

27. L. Spector, H. Barnum, H. Bernstein, and N. Swamy. Finding a better-than-
classical quantum AND/OR algorithm using genetic programming. In Evolutionary
Computation, 1999. CEC 99. Proceedings of the 1999 Congress on, volume 3. IEEE,
1999.

28. S. Tejada, C. Knoblock, and S. Minton. Learning object identification rules for
information integration. Information Systems, 26(8):607–633, 2001.

29. S. Tejada, C. A. Knoblock, and S. Minton. Learning domain-independent string
transformation weights for high accuracy object identification. In Proceedings of
the eighth ACM SIGKDD international conference on Knowledge discovery and
data mining, KDD ’02, pages 350–359, New York, NY, USA, 2002. ACM.

30. W. E. Winkler. Matching and Record Linkage. In Business Survey Methods, pages
355–384, 1995.

31. W. E. Winkler. Methods for record linkage and bayesian networks. Technical
report, Series RRS2002/05, U.S. Bureau of the Census, 2002.

32. B. Zhang and H. M
”uhlenbein. Balancing accuracy and parsimony in genetic programming. Evolu-
tionary Computation, 3(1):17–38, 1995.

24

RAVEN – Active Learning of Link Specifications

Axel-Cyrille Ngonga Ngomo, Jens Lehmann, Sören Auer, Konrad Höffner

Department of Computer Science, University of Leipzig
Johannisgasse 26, 04103 Leipzig, Germany

{ngonga|lehmann|auer}@informatik.uni-leipzig.de,
konrad.hoeffner@uni-leipzig.de

WWW home page: http://aksw.org

Abstract. With the growth of the Linked Data Web, time-efficient ap-
proaches for computing links between data sources have become indis-
pensable. Yet, in many cases, determining the right specification for a
link discovery problem is a tedious task that must still be carried out
manually. We present RAVEN, an approach for the semi-automatic de-
termination of link specifications. Our approach is based on the com-
bination of stable solutions of matching problems and active learning
with the time-efficient link discovery framework LIMES. RAVEN aims
at requiring a small number of interactions with the user to generate
classifiers of high accuracy. We focus on using RAVEN to compute and
configure boolean and weighted classifiers, which we evaluate in three
experiments against link specifications created manually. Our evaluation
shows that we can compute linking configurations that achieve more than
90% F-score by asking the user to verify at most twelve potential links.

Keywords: Linked Data, Link Discovery, Algorithms, Constraints

1 Introduction

The core idea behind the Linked Data paradigm is to facilitate the transition
from the document-oriented to the Semantic Web by extending the current Web
with a commons of interlinked data sources [2]. One of the key challenges that
arise when trying to discover links between two data sources lies in the specifica-
tion of an appropriate configuration for the tool of choice [10]. Such a specifica-
tion usually consists of a set of restrictions on the source and target knowledge
base, a list of properties of the source and target knowledge base to use for simi-
larity detection, a combination of suitable similarity measures (e.g., Levenshtein
[9]) and similarity thresholds. Specifying link configurations is a tedious process,
as the user does not necessarily know which combinations of properties lead to an
accurate linking configuration. The difficulty of devising suitable link discovery
specifications is amplified on the Web of Data by the sheer size of the knowledge
bases (which often contain millions of instances) and their heterogeneity (i.e.,
by the complexity of the underlying ontologies, which can contain thousands of
different types of instances and properties) [2].

25

In this paper, we present the RApid actiVE liNking (RAVEN) approach.
RAVEN is the first approach to apply active learning techniques for the semi-
automatic detection of specifications for link discovery. Our approach is based on
a combination of stable matching and a novel active learning algorithm derived
from perceptron learning. RAVEN allows to determine (1) a sorted matching of
classes to interlink; this matching represents the set of restrictions of the source
and target knowledge bases, (2) a stable matching of properties based on the
selected restrictions that specifies the similarity space within which the linking is
to be carried out and (3) a highly accurate link specification via active learning.
Our evaluation with three series of experiments shows that we can compute
linking configurations that achieve more than 90% F-score by asking the user to
verify at most twelve potential links. RAVEN is generic enough to be employed
with any link discovery framework that supports complex link specifications.
The results presented herein rely on the LIMES framework for linking. We chose
LIMES because it implements lossless approaches and is very time-efficient.

2 Related Work

Current approaches for link discovery on the Web of Data can be subdivided into
two categories: domain-specific and universal approaches. Domain-specific link
discovery frameworks aim at discovering links between knowledge bases from a
particular domain. For example, the approach implemented in RKB knowledge
base (RKB-CRS) [5] focuses on computing links between universities and confer-
ences while GNAT [12] discovers links between music data sets. Further simple
or domain-specific approaches can be found in [7, 17, 11].

Universal link discovery frameworks are designed to carry out mapping tasks
independently from the domain of the source and target knowledge bases. For ex-
ample, RDF-AI [15] implements a five-step approach that comprises the prepro-
cessing, matching, fusion, interlinking and post-processing of data sets. SILK [18]
is a time-optimized tool for link discovery. It implements a multi-dimensional
blocking approach that projects the instances to match in a multi-dimensional
metric space. Subsequently, this space is subdivided into to overlapping blocks
that are used to retrieve matching instances without loosing links. Another
lossless Link Discovery framework is LIMES [10], which addresses the scala-
bility problem by utilizing the triangle inequality in metric spaces to compute
pessimistic estimates of instance similarities. Based on these approximations,
LIMES can filter out a large number of non-matches.

The task of discovering links between knowledge bases is closely related with
record linkage and deduplication [3]. The database community has produced
a vast amount of literature on efficient algorithms for solving these problems.
Different blocking techniques such as standard blocking, sorted-neighborhood,
bi-gram indexing, canopy clustering and adaptive blocking (see, e.g., [8]) have
been developed to address the problem of the quadratic time complexity of brute
force comparison methods. Active learning has been employed in the database
community [13, 14, 1] to address the configuration problem because active learn-

26

ing approaches usually present only few match candidates to the user for manual
verification. The technique is particularly efficient in terms of required user in-
put [16], because the user is only confronted with those match candidates which
provide a high benefit for the underlying learning algorithm.

The RAVEN approach goes beyond the state of the art in several ways: It
is the first active learning algorithm and RDF-based approach to use machine
learning for obtaining link specifications. Moreover, it is the first approach to
detect corresponding classes and properties automatically for the purpose of
Link Discovery. Note that similar approaches developed for databases assume
the mapping of columns to be known [1]. Yet, this assumption cannot be made
when trying to link knowledge bases from theWeb of Data because of the possible
size of the underlying ontology. By supporting the automatic detection of links,
we are able to handle heterogeneous knowledge bases with large schemata.

3 Preliminaries

Our approach to the active learning of linkage specifications extends ideas from
several research areas, especially classification and stable matching problems. In
the following, we present the notation that we use throughout this paper and
explain the theoretical framework underlying our work.

3.1 Problem Definition

The link discovery problem, which is similar to the record linkage problem, is an
ill-defined problem and is consequently difficult to model formally [1]. In general,
link discovery aims to discover pairs (s, t) ∈ S × T related via a relation R.

Definition 1 (Link Discovery). Given two sets S (source) and T (target) of
entities, compute the set M of pairs of instances (s, t) ∈ S×T such that R(s, t).

The sets S resp. T are usually subsets of the instances contained in two
knowledge bases KS resp. KT . In most cases, the computation of whether R(s, t)
holds for two elements is carried out by projecting the elements of S and T based
on their properties in a similarity space S and setting R(s, t) iff some similarity
condition is satisfied. The specification of the sets S and T and of this similarity
condition is usually carried out within a link specification.

Definition 2 (Link Specification). A link specification consists of three parts:
(1) two sets of restrictions RS

1 ... RS
m resp. RT

1 ... RT
k that specify the sets S

resp. T , (2) a specification of a complex similarity metric σ via the combination
of several atomic similarity measures σ1, ..., σn and (3) a set of thresholds τ1,
..., τn such that τi is the threshold for σi.

A restriction R is generally a logical predicate. Typically, restrictions in link
specifications state the rdf:type of the elements of the set they describe, i.e.,
R(x) ↔ x rdf:type someClass or the features the elements of the set must

27

have, e.g., R(x) ↔ (∃y : x someProperty y). Each s ∈ S must abide by each of
the restrictionsRS

1 ...RS
m, while each t ∈ T must abide by each of the restrictions

RT
1 ... RT

k . Note that the atomic similarity functions σ1, ..., σn can be combined
to σ by different means. In this paper, we will focus on using boolean operators
and real weights combined as conjunctions.

According to the formalizations of link discovery and link specifications above,
finding matching pairs of entities can be defined equivalently as a classification
task, where the classifier C is a function from S × T to {−1,+1}.
Definition 3 (Link Discovery as Classification). Given the set S × T of
possible matches, the goal of link discovery is to find a classifier C : S × T →
{−1,+1} such that C maps non-matches to the class −1 and matches to +1.

In general, we assume classifiers that operate in an n-dimensional similarity
space S. Each of the dimensions of S is defined by a similarity function σi

that operates on a certain pair of attributes of s and t. Each classifier C on
S can be modeled via a specific function FC . C then returns +1 iff the logical
statement PC(FC(s, t)) holds and −1 otherwise, where PC is what we call the
specific predicate of C. In this work, we consider two families of classifiers: linear
weighted classifiers L and boolean conjunctive classifiers B. The specific function
of linear weighted classifiers is of the form

FL(s, t) =
n∑

i=1

ωiσi(s, t), (1)

where ωi ∈ R. The predicate PL for a linear classifier is of the form PL(X) ↔
(X ≥ τ), where τ = τ1 = ... = τn ∈ [0, 1] is the similarity threshold. A boolean
classifier B is a conjunction of n atomic linear classifiers C1, ... ,Cn, i.e., a con-
junction of classifiers that each operate on exactly one of the n dimensions of
the similarity space S. Thus, the specific function FB is as follows:

FB(s, t) =
n∧

i=0

(σi(s, t) ≥ τi) (2)

and the specific predicate is simply PB(X) = X. Note that given that classi-
fiers are usually learned by using iterative approaches, we will denote classifiers,
weights and thresholds at iteration t by using superscripts, i.e., Ct, ωt

i and τ ti .
Current approaches to learning in record matching assume that the similarity

spaceS is given. While this is a sensible premise for mapping problems which rely
on simple schemas, the large schemas (i.e., the ontologies) that underlie many
data sets in the Web of Data do not allow such an assumption. The DBpedia
ontology (version 3.6) for example contains 275 classes and 1335 properties.
Thus, it would be extremely challenging for a user to specify the properties to
map when carrying out a simple deduplication analysis, let alone more complex
tasks using the DBpedia data set. In the following, we give a brief overview
of stable matching problems, which we use to solve the problem of suggesting
appropriate sets of restrictions on data and matching properties.

28

3.2 Stable Matching Problems

The best known stable matching problem is the stable marriage problem SM as
formulated by [4]. Here, one assumes two sets M (males) and F (females) such
that |M | = |F | and two functions μ : M × F → {1, ..., |F |} resp. γ : M × F →
{1, ..., |M |}, that give the degree to which a male likes a female resp. a female a
male. μ(m, f) > μ(m, f ′) means that m prefers f to f ′. Note, that for all f and
f ′ where f �= f ′ holds, μ(m, f) �= μ(m, f ′) must also hold. Analogously, m �= m′

implies γ(m, f) �= γ(m′, f). A bijective function s : M → F is called a stable
matching iff for all m, m′, f , f ′ the following holds:

(s(m) = f) ∧ (s(m′) = f ′) ∧ (μ(m, f ′) > μ(m, f)) → (γ(m′, f ′) > γ(m, f ′)) (3)

In [4] an algorithm for solving this problem is presented and it is shown
how it can be used to solve the well-know Hospital/Residents (HR) problem.
Formally, HR extends SM by assuming a set R of residents (that maps M)
and a set of hospitals (that maps F) with |R| �= |F |. Each hospital h ∈ H is
assigned a capacity c(h). A stable solution of the Hospital/Residents problem is
a mapping of residents to hospitals such that each hospital accepts maximally
c(h) residents and that fulfills Equation 3. Note that we assume that there are
no ties, i.e., that the functions μ and γ are injective.

4 The RAVEN Approach

Our approach, dubbed RAVEN (RApid actiVE liNking), addresses the task of
linking two knowledge bases S and T by using the active learning paradigm
within the pool-based sampling setting [16]. Overall, the goal of RAVEN is to
find the best classifier C that achieves the highest possible precision, recall or F1

score as desired by the user. The algorithm also aims to minimize the burden on
the user by limiting the number of link candidates that must be labeled by the
user to a minimum.

Algorithm 1 The RApid actiVE liNking (RAVEN) algorithm

Require: Source knowledge base KS

Require: Target knowledge base KT

Find stable class matching between classes of KS and KT

Find stable property matching for the selected classes
Compute sets S and T ; Create initial classifier C0; t := 0
while termination condition not satisfied do

Ask the user to classify 2α examples; Update Ct to Ct+1; t := t+1
end while
Compute set M of links between S and T based on Ct

return M

An overview of our approach is given in Algorithm 1. In a first step, RAVEN
aims to detect the restrictions that will define the sets S and T . To achieve this

29

goal, it tries to find a stable matching of pairs of classes, whose instances are to
be linked. The second step of our approach consists of finding a stable matching
between the properties that describe the instances of the classes specified in
the first step. The user is also allowed to alter the suggested matching at will.
Based on the property mapping, we compute S and T and generate an initial
classifier C = C0 in the third step. We then refine C iteratively by asking the
user to classify pairs of instances that are most informative for our algorithm. C
is updated until a termination condition is reached, for example Ct = Ct+1. The
final classifier is used to compute the links between S and T , which are returned
by RAVEN. In the following, we expand upon each of these three steps.

4.1 Stable Matching of Classes

The first component of a link specification is a set of restrictions that must be
fulfilled by the instances that are to be matched. We use a two-layered approach
for matching classes in knowledge bases. Our default approach begins by select-
ing a user-specified number of sameAs links between the source and the target
knowledge base randomly. Then, it computes μ and γ on the classes CS of KS

and CT of KT as follows1:

μ(CS , CT) = γ(CS , CT) = |{s type Cs ∧ s sameAs t ∧ t type CT }|. (4)

In the case when no sameAs links are available, we run our fallback approach. It
computes μ and γ on the classes of S and T as follows:

μ(CS , CT) = γ(CS , CT) = |{s type Cs ∧ s p x ∧ t type CT ∧ t q x}|, (5)

where p and q can be any property. Let c(S) be the number of classes CS of S
such that μ(CS , CT) > 0 for any CT . Furthermore, let c(T) be the number of
classes CT of T such that γ(CS , CT) > 0 for any CS . The capacity of each CT is
set to �c(S)/c(T)�, thus ensuring that the hospitals provide enough capacity to
map all the possible residents. Once μ, γ and the capacity of each hospital has
been set, we solve the equivalent HR problem.

4.2 Stable Matching of Properties

The detection of the best matching pairs of properties is very similar to the
computation of the best matching classes. For properties p and q, we set:

μ(p, q) = γ(p, q) = |{s type Cs ∧ s p x ∧ t type CT ∧ t q x}|. (6)

The initial mapping of properties defines the similarity space in which the link
discovery task will be carried out. Note that none of the prior approaches to
active learning for record linkage or link discovery automatized this step. We
associate each of the basis vectors σi of the similarity space to exactly one of
the pairs (p, q) of mapping properties. Once the restrictions and the property
mapping have been specified, we can fetch the elements of the sets S and T .

1 Note that we used type to denote rdf:type and sameAs to denote owl:sameAs.

30

4.3 Initial Classifier

The specific formula for the initial linear weighted classifier L0 results from the
formal model presented in Section 3 and is given by

FL0(s, t) =
n∑

i=1

ω0
i σi(s, t). (7)

Several initialization methods can be used for ω0
i and the initial threshold τ0

of PL. In this paper, we chose to use the simplest possible approach by setting
ω0
i := 1 and τ0 := κn, where κ ∈ [0, 1] is a user-specified threshold factor.

Note that setting the overall threshold to κn is equivalent to stating that the
arithmetic mean of the σi(s, t) must be equal to κ.

The equivalent initial boolean classifier B0 is given by

FB0(s, t) =
n∧

i=0

(σ0
i (s, t) ≥ τ0i) where τ0i := κ. (8)

4.4 Updating Classifiers

RAVEN follows an iterative update strategy, which consists of asking the user to
classify 2α elements of S × T (α is explained below) in each iteration step t and
using these to update the values of ωt−1

i and τ t−1
i computed at step t− 1. The

main requirements to the update approach is that it computes those elements
of S × T whose classification allow to maximize the convergence of Ct to a good
classifier and therewith to minimize the burden on the user. The update strategy
of RAVEN varies slightly depending on the family of classifiers. In the following,
we present how RAVEN updates linear and boolean classifiers.

Updating linear classifiers. The basic intuition behind our update approach
is that we aim to present the user with those elements from S×T whose classifi-
cation is most unsure. We call the elements presented to the user examples. We
call an example positive when it is assumed by the classifier to belong to +1. Else
we call it negative. Once the user has provided us with the correct classification
for all examples, the classifier can be updated effectively so as to better approx-
imate the target classifier. In the following, we will define the notion of most
informative example for linear classifiers before presenting our update approach.

When picturing a classifier as a boundary in the similarity space S that
separates the classes +1 and −1, the examples whose classification is most un-
certain are those elements from S × T who are closest to the boundary. Note
that we must exclude examples that have been classified previously, as present-
ing them to the user would not improve the classification accuracy of RAVEN
while generating extra burden on the user, who would have to classify the same
link candidate twice. Figure 1 depicts the idea behind most informative exam-
ples. In both subfigures, the circles with a dashed border represent the 2 most
informative positive and negatives examples, the solid disks represent elements

31

from S×T and the circles are examples that have already been classified by the
users. Note that while X is closer to the boundary than Y and Z, it is not a most
informative example as it has already been classified by the user.

(a) Linear classifier (b) Boolean classifier

Fig. 1. Most informative examples for linear and boolean classifiers. The current ele-
ments of the classes −1 resp. +1 are marked with − resp. +.

Formally, let Mt be the set of (s, t) ∈ S × T classified by Lt as belonging to
+1. Furthermore, let Pt−1 (resp. N t−1) be the set of examples that have already
been classified by the user as being positive examples, i.e, links (resp. negative
examples, i.e., wrong links). We define a set Λ as being a set of most informative
examples λ for Lt+1 when the following conditions hold:

∀λ ∈ S × T (λ ∈ Λ → λ /∈ Pt−1 ∪N t−1) (9)

∀λ′ /∈ Pt−1 ∪N t−1 : λ′ �= λ → |FLt(λ′)− τ t| ≥ |FLt(λ)− τ t|. (10)

Note that there are several sets of most informative examples of a given magni-
tude. We denote a set of most informative examples of magnitude α by Λα. A
set of most informative positive examples, Λ+, is a set of pairs such that

∀λ /∈ Λ+∪Pt−1∪N t−1 : (FLt(λ) < τ t)∨(∀λ+ ∈ Λ+ : FLt(λ) > FLt(λ+)). (11)

In words, Λ+ is the set of examples that belong to class +1 according to C
and are closest to C’s boundary. Similarly, the set of most informative negative
examples, Λ−, is the set of examples such that

∀λ /∈ Λ−∪Pt−1∪N t−1 : (FLt(λ) ≥ τ t)∨(∀λ− ∈ Λ− : FLt(λ) < FLt(λ−)). (12)

We denote a set of most informative (resp. negative) examples of magnitude α
as Λ+

α (resp. Λ−
α). The 2α examples presented to the user consist of the union

Λ+
α ∪ Λ−

α , where Λ+
α and Λ−

α are chosen randomly amongst the possible sets of
most informative positive resp. negative examples .

The update rule for the weights of Lt is derived from the well-known Per-
ceptron algorithm, i.e.,

ωt+1
i = ωt

i + η+
∑
λ∈Λ+

ρ(λ)σi(λ)− η−
∑

λ∈Λ−
ρ(λ)σi(λ), (13)

32

where η+ is the learning rate for positives examples, η− is the learning rate for
negative examples and ρ(λ) is 0 when the classification of λ by the user and Lt

are the same and 1 when they differ.
The threshold is updated similarly, i.e,

τ t+1
i = τ ti + η+

∑
λ∈Λ+

α

ρ(λ)FLt(λ)− η−
∑

λ∈Λ−
α

ρ(λ)FLt(λ). (14)

Note that the weights are updated by using the dimension which they de-
scribe while the threshold is updated by using the whole specific function. Finally,
the sets Pt−1 and N t−1 are updated to

Pt := Pt−1 ∪ Λ+
α and N t := N t−1 ∪ Λ−

α . (15)

Updating boolean classifiers. The notion ofmost informative example differs
slightly for boolean classifiers. λ is considered a most informative example for B
when the conditions

λ /∈ Pt−1 ∪N t−1 (16)

and

∀λ′ /∈ Pt−1 ∪N t−1 : λ′ �= λ →
n∑

i=1

|σt
i(λ

′)− τ ti | ≥
n∑

i=1

|σt
i(λ)− τ ti | (17)

hold. The update rule for the thresholds τ ti of B is then given by

τ t+1
i = τ ti + η+

∑
λ∈Λ+

α

ρ(λ)σi(λ)− η−
∑

λ∈Λ−
α

ρ(λ)σi(λ), (18)

where η+ is the learning rate for positives examples, η− is the learning rate for
negative examples and ρ(λ) is 0 when the classification of λ by the user and Ct−1

are the same and 1 when they differ. The sets Pt−1 and N t−1 are updated as
given in Equation 15.

5 Experiments and Results

5.1 Experimental Setup

We carried out three series of experiments to evaluate our approach. In our first
experiment, dubbed Diseases, we aimed to map diseases from DBpedia with
diseases from Diseasome. In the Drugs experiments, we linked drugs from Sider
with drugs from Drugbank. Finally, in the Side-Effects experiments, we aimed
to link side-effects of drugs and diseases in Sider and Diseasome.

In all experiments, we used the following setup: The learning rates η+ and
η− were set to the same value η, which we varied between 0.01 and 0.1. We set
the number of inquiries per iteration to 4. The threshold factor κ was set to

33

0.8. In addition, the number of instances used during the automatic detection
of class resp. property matches was set to 100 resp. 500. The fallback solution
was called and compared the property values of 1000 instances chosen randomly
from the source and target knowledge bases. We used the trigrams metric as
default similarity measure for strings and the Euclidean similarity as default
similarity measure for numeric values. To measure the quality of our results,
we used precision, recall and F-score. We also measured the total number of
inquiries that RAVEN needed to reach its maximal F-Score. As reference data,
we used the set of instances that mapped perfectly according to a configuration
created manually.

5.2 Results

The results of our experiments are shown in Figures 2 and 3. The first experi-
ment, Diseases, proved to be the most difficult for RAVEN. Although the sameAs
links between Diseasome and DBpedia allowed our experiment to run without
making use of the fallback solution, we had to send 12 inquiries to the user when
the learning rate was set to 0.1 to determine the best configuration that could
be learned by linear and boolean classifiers. Smaller learning rates led to the
system having to send even up to 80 inquiries (η = 0.01) to determine the best
configuration. In this experiment linear classifiers outperform boolean classifiers
in all setups by up to 0.8% F-score.

(a) Linear classifier (b) Boolean classifier

Fig. 2. Learning curves on Diseases experiments. LR stands for learning rate.

The second and the third experiment display the effectiveness of RAVEN.
Although the fallback solution had to be used in both cases, our approach is
able to detect the right configuration with an accuracy of even 100% in the
Side-Effects experiment by asking the user no more than 4 questions. This is
due to the linking configuration of the user leading to two well-separated sets of
instances. In these cases, RAVEN converges rapidly and finds a good classifier
rapidly. Note that in these two cases, all learning rates in combination with both
linear and boolean classifiers led to the same results (see Figures 3(b) and 3(a)).

Although we cannot directly compare our results to other approaches as it is
the first active learning algorithm for learning link specifications, results reported

34

(a) Learning curve in the Side-Effects ex-
periment

(b) Learning curve in the Drug experiment

Fig. 3. Learning curve in the Side-Effects and Drugs experiments

in the database area suggest that RAVEN achieves state-of-the-art performance.
The runtimes required for each iteration ensure that our approach can be used
in real-world interactive scenarios. In the worst case, the user has to wait for 1.4
seconds between two iterations. The runtime for the computation of the initial
configuration depends heavily on the connectivity to the SPARQL endpoints.
In our experiments, the computation of the initial configuration demanded 60s
when the default solution was used. The fallback solution required up to 90s.

6 Conclusion and Future Work

In this paper, we presented RAVEN, the first active learning approach tailored
towards semi-automatic Link Discovery on the Web of Data. We showed how
RAVEN uses stable matching algorithms to detect initial link configurations.
We opted to use the solution of the hospital residence problem (HR) without
ties because of the higher time complexity of the solution of HR with ties, i.e.,
L4, where L is the size of the longest preference list, i.e., max(|R|, |H|). Still,
our work could be extended by measuring the effect of considering ties on the
matching computed by RAVEN. Our experimental results showed that RAVEN
can compute accurate link specifications (F-score between 90% and 100%) by
asking the user to classify a very small number of positive and negative examples
(between 4 and 12 for a learning rate of 0.1). Our results also showed that
our approach can be used in an interactive scenario because of LIMES’ time
efficiency, which allowed to compute new links in less than 1.5 seconds in the
evaluation tasks. The advantages of this interactive approach can increase the
quality of generated links while reducing the effort to create them.

In future work, we will explore how to detect optimal values for the threshold
factor κ automatically, for example, by using clustering approaches. In addition,
we will investigate the automatic detection of domain-specific metrics that can
model the idiosyncrasies of the dataset at hand. Another promising extension
to RAVEN is the automatic detection of the target knowledge base to even
further simplify the linking process, since users often might not even be aware

35

of appropriate linking targets (see [6] for research in this area). By these means,
we aim to provide the first zero-configuration approach to Link Discovery.

Acknowledgement

This work was supported by the Eurostars grant SCMS E!4604, the EU FP7
grant LOD2 (GA no. 257943) and a fellowship grant of the University of Mainz.

References

1. A. Arasu, M. Götz, and R. Kaushik. On active learning of record matching pack-
ages. In SIGMOD, pages 783–794, 2010.

2. C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the story so far. International
Journal on Semantic Web and Information Systems, 2009.

3. J. Bleiholder and F. Naumann. Data fusion. ACM Comput. Surv., 41(1):1–41,
2008.

4. D. Gale and L. S. Shapley. College admissions and the stability of marriage. The
American Mathematical Monthly, 69(1):9–15, 1962.

5. H. Glaser, I. C. Millard, W.-K. Sung, S. Lee, P. Kim, and B.-J. You. Research on
linked data and co-reference resolution. Technical report, University of Southamp-
ton, 2009.

6. C. Guéret, P. Groth, F. van Harmelen, and S. Schlobach. Finding the achilles heel
of the web of data: Using network analysis for link-recommendation. In ISWC,
pages 289–304, 2010.

7. A. Hogan, A. Polleres, J. Umbrich, and A. Zimmermann. Some entities are more
equal than others: statistical methods to consolidate linked data. In NeFoRS, 2010.

8. H. Köpcke, A. Thor, and E. Rahm. Comparative evaluation of entity resolution
approaches with fever. Proc. VLDB Endow., 2(2):1574–1577, 2009.

9. V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. Technical Report 8, 1966.

10. A.-C. Ngonga Ngomo and S. Auer. Limes - a time-efficient approach for large-scale
link discovery on the web of data. In Proceedings of IJCAI, 2011.

11. G. Papadakis, E. Ioannou, C. Niedere, T. Palpanasz, and W. Nejdl. Eliminating
the redundancy in blocking-based entity resolution methods. In JCDL, 2011.

12. Y. Raimond, C. Sutton, and M. Sandler. Automatic interlinking of music datasets
on the semantic web. In 1st Workshop about Linked Data on the Web, 2008.

13. S. Sarawagi and A. Bhamidipaty. Interactive deduplication using active learning.
In KDD, pages 269–278, 2002.

14. S. Sarawagi, A. Bhamidipaty, A. Kirpal, and C. Mouli. Alias: An active learning
led interactive deduplication system. In VLDB, pages 1103–1106, 2002.

15. F. Scharffe, Y. Liu, and C. Zhou. Rdf-ai: an architecture for rdf datasets matching,
fusion and interlink. In Proc. IJCAI 2009 IR-KR Workshop, 2009.

16. B. Settles. Active learning literature survey. Technical Report 1648, University of
Wisconsin-Madison, 2009.

17. J. Sleeman and T. Finin. Computing foaf co-reference relations with rules and
machine learning. In Proceedings of SDoW, 2010.

18. J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov. Discovering and maintaining links
on the web of data. In ISWC 2009, pages 650–665. Springer, 2009.

36

Towards an Automatic Parameterization of Ontology
Matching Tools based on Example Mappings

Dominique Ritze1 and Heiko Paulheim2

1 Mannheim University Library
dominique.ritze@bib.uni-mannheim.de

2 Technische Universität Darmstadt
Knowledge Engineering Group

paulheim@ke.tu-darmstadt.de

Abstract. With a growing number of ontologies and datasets using those on-
tologies, ontology mappings become an essential building block of the Semantic
Web. In the last years, a larger number of sophisticated ontology matching tools
for generating such mappings has been developed. The quality of the mappings
provided by those tools typically depends on the settings of the tools’ param-
eters. As this is a non-trivial task for an end user, we propose the ECOMatch
approach, which asks the user to provide example mappings instead of parame-
ter settings, and automatically determines a suitable parameter setting based on
those examples. We show how the preliminary result quality of ontology map-
pings can be improved by applying automatic, example-based configuration of
ontology matching tools.

1 Introduction

Ontologies formally describe the concepts used in a domain. While in an ideal scenario,
there is one ontology which is shared throughout a whole domain, reality often faces
the parallel use of different ontologies, which have been developed independently from
each other. Ontology matching [8] is used for creating mappings between ontologies.

During the past years, a lot of research has been devoted to developing highly so-
phisticated tools for performing ontology matching automatically [6, 7]. Those tools are
able to produce high-quality mappings between ontologies, given that their parameters
(such as weights and thresholds used to compute the mappings) are tuned well. Such a
tuning, however, is often complicated, since it involves the setting of many parameters
and requires a lot of detail knowledge about the underlying algorithms and implemen-
tations. For example, the state of the art matching tool Falcon-AO [12] has 33 different
parameters that can be manipulated, which makes it hard to guess an optimal parame-
ter set without a planned approach. Furthermore, there are often no universally optimal
settings: a configuration that performs well on one pair of ontologies may produce bad
results on another one. Therefore, an automatic configuration of matching tools has
been named as one of the top ten challenges for ontology matching [22].

In this paper, we introduce the ECOMatch3 approach for automatic configuration of
ontology matching tools. Instead of letting the user directly manipulate the parameters

3 Example-based Configuration of Ontology Matching tools

37

(which he often does not understand), we ask her to provide a set of example mappings
(a task which can be done by a domain expert in a reasonable amount of time). We use
those example mappings to test a number of different configurations and determine a
good or even optimal parameter setting. That setting is then used to match the input
ontologies and provides the final mapping.

The rest of this paper is structured as follows. In Sect. 2, we lay out the theoretical
considerations for our work, and in Sect. 3, we discuss the implementation of ECO-
Match. This implementation is the basis of various experimental evaluations, which are
discussed in Sect. 4. We conclude with a summary and an outlook on future work.

2 Approach

A mapping between two ontologies which has been created by a domain expert user
is called a reference alignment4. The goal of ontology matching tools is to produce a
mapping which gets as close to a reference alignment as possible, i.e., which is as good
as if a human expert would have created the mapping manually to achieve semantic
interoperability.

For automatic tuning of ontology matching tools, we assume that the user is able
to provide a set of example mappings. We call that set of examples a partial reference
alignment between the target ontologies. We use this partial reference alignment to
evaluate several configurations of the target matching tool. The configuration which
has been evaluated best based on the partial reference alignment is then used to produce
the final mapping.

To determine which of the tested configurations is the best one, we use the output
produced by the matching tool when applying the respective configuration, and compute
the result quality on the partial reference alignment, i.e., how well the partial reference
alignment is reproduced by the matcher. Our assumption is that a configuration which
reproduces the partial reference alignment well will also produce a high-quality overall
ontology mapping.

For computing the result quality, we introduce the following measures for com-
puting recall, precision, and f-measure on a partial mapping. Following Euzenat and
Shvaiko [8], a mapping between two ontologies O1 and O2 can be defined as a set of
5-tuples of the form 〈id, e1, e2, r, n〉, where e1 ∈ O1 and e2 ∈ O2, and where r defines
a type of relation (such as equality, subclass, etc.), and n depicts a confidence level pro-
vided by a matching tool. Therefore, given a reference alignment R, a partial reference
alignment R′ ⊆ R, and an alignment A computed by a matching tool, we define the
partial alignment A′ ⊆ A as the subset of A which contains all elements in A which
share at least one entity with an element in R′:

Definition 1 (Partial Alignment).

A′ := {〈id, e1, e2, r, n〉 ∈ A|∃id′, e′1, n′ : 〈id′, e′1, e2, r, n′〉 ∈ R′}
∪ {〈id, e1, e2, r, n〉 ∈ A|∃id′, e′2, n′ : 〈id′, e1, e′2, r, n′〉 ∈ R′}

4 The terms mapping and alignment are often used synonymously.

38

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

5 10 15 20 25 50 75

co
rr

el
at

io
n

subset size in %

Correlation Falcon

Correlation Lily

Fig. 1. Correlation between f-measure values of partial reference alignments with the f-measure
value of the full reference alignment

5 10 15 20 25 50 75
Falcon-AO 0.006 0.031 0.024 0.012 0.007 0.003 0.003

Lily 0.060 0.094 0.042 0.019 0.028 0.000 0.000
Table 1. T-test on correlations between f-measure values of partial and full reference alignments

Based on that definition, we can define a set of quality measures for an alignment
A produced by a matching tool, which can be evaluated using a partial reference align-
ment:

Definition 2 (Precision on Partial Reference Alignment).

P ′(A,R′) := P (A′, R′) = |R′∩A′|
|A′| ∈ [0, 1]

Definition 3 (Recall on Partial Reference Alignment).

R′(A,R′) := R(A′, R′) = |R′∩A′|
|R′| ∈ [0, 1]

Definition 4 (F-measure on Partial Reference Alignment).

F ′(A,R′) := M0.5(A
′, R′) = 2∗P ′(A,R′)∗R′(A,R′)

P ′(A,R′)+R′(A,R′) ∈ [0, 1]

It is particularly noteworthy that P ′, R′, and F ′ can be computed only from the
output of a matching tool and the partial reference alignment, without the need to know
the complete reference alignment. To show that those measures are valid for assessing
the result quality of a matching tool, we have analyzed the correlation of F and F ′,
i.e., the f-measure computed on the full and on the partial reference alignment. This
correlation is an indicator for the precision of the prediction of F by the means of F ′.

To that end, we have used the two matching tools that we also used later on in our
prototype (see Sect. 3), Falcon-AO and Lily, and 21 pairs of ontologies with reference
alignments. We have run each tool with 100 random configurations and determined the
f-measures F and F ′ for different sizes of partial reference alignments. The results are
shown in Fig. 1. The key observation is that the results do not differ much between
the individual matchers, and that there is a positive correlation, which becomes con-
siderably high for partial reference alignments covering 10% or more of the reference

39

alignment. Table 1 shows the confidence levels of the correlation, using a two-sample
paired t-test. It reveals that for Falcon-AO, all the results are statistically significant,
while for Lily, the correlation is only significant for partial reference alignment sizes of
at least 15%.

These figures show that using partial reference alignments to score the configura-
tions is reasonable: since a matcher configuration achieves a high f-measure value on
a partial reference alignment it will most likely achieve a high f-measure value on the
full reference alignment as well. With those considerations in mind, we have imple-
mented a prototype to further analyze the potential of improving ontology matching by
automatically configuring matchers based on example mappings.

3 Implementation

We have implemented our approach using a variety of algorithms for parameter opti-
mization, as well as different matching tools. Fig. 2 shows the basic architecture of the
system, based on the “classic” matching architecture proposed by Euzenat and Shvaiko
[8]. The system takes as input two ontologies and a partial reference alignment, i.e., a
set of known mappings.

The ECOMatch system itself treats the matcher it uses as a black box. For creating
an optimized mapping, it performs the following steps:

1. Create an initial configuration for the matcher.
2. Run the matcher with that configuration on the pair of input ontologies and observe

the mapping created.
3. Compute the f-measure F ′ based on the partial reference alignment.
4. Based on that resulting F ′, decide for a new configuration to try out.

Steps 2 to 4 are repeated until a stopping criterion – e.g., a fixed number of matcher
runs or a time limit – is reached, or until the configuration generator decides not to
proceed any further, e.g., because a search algorithm has reached a local optimum, or
the whole search space has been covered. At that point, the mapping achieved with the
configuration yielding the maximum F ′ is returned.

3.1 Configuration Generators

Besides a baseline algorithm which generates random configurations, we have included
five metaheuristic algorithms for determining configurations from the large variety of
parameter tuning approaches (see, e.g., [2] for a survey). As parameter optimization can
also be regarded as a machine learning problem, we have furthermore implemented two
machine learning algorithms.

Metaheuristics Metaheuristics are a family of stochastic optimization algorithms.
They are especially practicable for problems for which it is hard to describe how to find
an optimal solution, but which allow for easily assessing the quality of a given solution
[17]. Metaheuristics subsequently create solutions and rate them according to a quality

40

ECOMatch

Matcher

Configuration
Generator

Mapping
Evaluator

Configuration Generator Library

Baseline
(Random)

Genetic
Algorithm

Differential
Evolution

Harmony
SearchCuckoo Search

M5'Artificial Neural
Network

Matcher Library

Falcon

Lily

Ontology 1

Ontology 2

Partial
Reference
Alignment

Mapping

Configuration

Mapping

Hill Climbing

F

XSD

XSD

XSD

Fig. 2. Prototype architecture

function (in our case: the f-measure F ′ computed on the partial reference alignment).
The rating determines which solution to examine next. Given that not every possible
solution is examined, the optimal solution may not be found because it has not been ex-
amined at all. Thus, metaheuristics are usually used to solve optimization problem with
a huge search space where it is hardly feasible to examine every possible solution [21].
In the prototype of ECOMatch, we have implemented the following metaheuristics: hill
climbing [21], genetic algorithm [11], differential evolution [23], harmony search [10]
and cuckoo search [26].

Machine Learning Techniques Machine learning methods are very widespread in
various fields, e.g. in search engines, natural language processing or recommendation
systems. While metaheuristics only examine a fixed set of candidate solutions, machine
learning techniques can be used to train an explicit model, e.g., a decision tree or an
artificial neural network, of the parameter space. This model can be used to predict
the performance of other parameter combinations, which have not examined before.
In ECOMatch, a small set of random parameter configurations is created and serves
as training data. The employed methods M5’, based on modeltrees [20], and artificial
neural networks [9] each build a model which is used to predict the f-measure values
F ′, called F ′

predicted, for unseen random examples. For the configurations with best
F ′
predicted, the matching tool is run to determine the exact value F ′ and in turn the

configuration with best F ′ is used to create the final mapping.
While determining the exact value F ′ using the matching tool is a costly opera-

tion, which takes minutes or even up to hours, calculating the value F ′
predicted using a

learned model can be performed within milliseconds. Thus, a much larger amount of
configurations can be examined using the trained model. To avoid negative effects due
to wrong predictions, the predicted best configurations are double-checked using the
matcher before taking them for producing a mapping.

41

3.2 Matching Systems

Besides different algorithms for parameter configuration, matching tools may be
plugged into the ECOMatch framework. We have tested the framework with two match-
ers that performed very well in the last OAEI evaluations: Falcon-AO5 [12] and Lily6

[25]. While it is possible to run ECOMatch with every matching tool that provides a
means to be run from the command line in batch mode, we have chosen those matchers
because of their popularity and their performance in evaluations, as well as the pro-
vision of a sufficient size of the parameter set. Falcon-AO has 33 parameters in total,
while Lily has eight. For our experiments with Falcon-AO, we have manually reduced
the size of the parameter set to 26, discarding all parameters that do not have an effect
on the result quality (e.g., parameters that only have an effect when processing large
scale ontologies).

For each matching tool, we store a configuration description as an XML Schema
Definition (XSD) file, which contains a list of the tool’s parameters, as well as their re-
spective types and ranges of values. This definition file represents the parameter space
of the matching tool and is used by the configuration generator for creating the config-
urations.

4 Evaluation

To examine the impact of automatic parameter configuration on the result quality of
ontology matching tools, we have conducted experiments on different data sets.

4.1 Evaluation Setup

For our evaluation, we have used all possible combinations of configuration generation
algorithms and matchers, as described in Section 2.

We have used three different datasets for our evaluation:

– A subset of the OAEI benchmark dataset7, which consists of the four non-artificial
ontologies with reference alignments to one common ontology

– The OAEI conference dataset8, consisting of seven ontologies and 21 reference
alignments

– The six pairs of ontologies delivered with the FOAM ontology matching tool9

Altogether, we have tested the tool with 31 different pairs of ontologies and corre-
sponding reference alignments.

To allow for comparison between the parameter optimization algorithms, we let
each algorithm run the matching tool a certain amount of times depending on their

5 Using the 2008 version, which can be downloaded from http://ws.nju.edu.cn/falcon-
ao/index.jsp

6 http://code.google.com/p/lilyontmap/
7 http://oaei.ontologymatching.org/2010/benchmarks/index.html
8 http://oaei.ontologymatching.org/2010/conference/index.html
9 http://people.aifb.kit.edu/meh/foam/ontologies.htm

42

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

15 25 50 75

F-
M

ea
su

re

Size of Partial Reference Alignment [%]

Baseline Reference

Baseline Default

Baseline Random

Hill Climbing

Genetic Algorithm

Differential Evolution

Cuckoo Search

Harmony Search

M5'

Neural Network

Fig. 3. Evaluations with Falcon-AO on the FOAM datasets

runtime, i.e. Falcon-AO 250 times and Lily 50 times (since running the matching tool
is the most time consuming step). The machine learning approaches used 200 (Falcon-
AO) resp. 40 (Lily) random configurations for training the respective models, 10,000
randomly generated configurations were rated by the trained model. Out of those, the 50
resp. 10 best-rated configurations were re-evaluated by running the matching tool with
them. For each experiment, the average of three runs has been taken into the evaluation
to reduce the impact of random outliers.

In order to show the value of our approach, we have tested against three baselines.
The first baseline is the result quality achieved with default configuration of each tool.
The second baseline is to choose the best out of 250 resp. 50 random configurations
(since we let each algorithm perform 250 resp. 50 runs of the matcher). The third base-
line is the result quality which would be achieved if the partial reference alignment
would be returned as is, without running any matcher. For showing that parameter op-
timization based on example mappings has any value, it should at least perform better
than the default configuration and the use of the partial reference alignment as is. A so-
phisticated approach for parameter optimization should outperform all three baselines,
including the use of randomly generated configurations.

4.2 Evaluation Results

Running the evaluations leads to mixed results. For Falcon-AO, the default configura-
tion proves to be rather robust and yield better results on most data sets than configura-
tions found with any other approach. Figure 3 shows the average results for the FOAM
datasets, which were the only ones where an optimized configuration could perform
better than the default configuration.

The results reveal that most approaches, except for differential evolution, perform
slightly worse than the random baseline. This is most likely due to the large size and
dimensionality of the search space, combined with the restriction of the number of runs
of the matching tool, which in the end make the search algorithms terminate early (and
possibly too early to search the parameter space far enough for yielding good results).

43

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

15 25 50 75

F-
M

ea
su

re

Size of Partial Reference Alignment [%]

Baseline Reference

Baseline Default

Baseline Random

Hill Climbing

Genetic Algorithm

Differential Evolution

Cuckoo Search

Harmony Search

M5'

Neural Network
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

15 25 50 75

F-
M

ea
su

re

Size of Partial Reference Alignment [%]

Baseline Reference

Baseline Default

Baseline Random

Hill Climbing

Genetic Algorithm

Differential Evolution

Cuckoo Search

Harmony Search

M5'

Neural Network

Fig. 4. Evaluations with Lily on the conference datasets

With Lily, the improvements that could be achieved over the standard configuration
were more significant. Figure 4 depicts the average results achieved on the conference
dataset. Again, a very good performance of the random baseline can be observed, with
evolutionary algorithms performing slightly better. As for Falcon-AO, a possible expla-
nation is the large search space which has to be explored with a low number of matcher
runs for the optimization.

In all cases, the results achieved with partial reference alignments of up to 25%
outperformed the baseline of using the partial reference alignment as is. Thus, the value
gained from the partial reference alignment is higher than the effort that has to be used
for producing that alignment. Partial reference alignments larger than 25% serve better
as final mappings, rather than using them as input for parameter optimization.

The results achieved with both matchers also reveal that the size of the partial ref-
erence alignment does not significantly influence the result quality. This is a very en-
couraging result, as the provision of example mappings may be a crucial bottleneck for
the ECOMatch approach. The observation that the result quality already significantly
increases with a partial reference alignment of 15% (and probably even with smaller
sizes) demonstrates that the ECOMatch approach is not only feasible in theory, but may
also be practically applied.

When looking more closely at the parameter configurations that are created by the
different approaches, there are several observations that can be made. We have com-
pared those configurations both with each other as well as with the respective tool’s
default configuration. The first observation is that approaches perform better if they
create more different configurations. This also explains the good performance of the
random baseline, which ensures a maximum entropy of configurations. The second ob-
servation is that the best configurations that are found by the algorithms are rather close
(although not identical) to the default configuration.

In summary, some optimization approaches, such as cuckoo search or harmony
search, do not perform very well on that problem, while significant improvements of

44

the resulting mapping quality are possible with a suitable approach, even when the set
of examples is not too large.

5 Related Work

Despite the large body of work in the field of ontology matching and its predecessor,
schema matching, there is little work done which is focused on automatic or semi-
automatic parameterization of matching tools.

eTuner [16] is a tool which is directed at the parametrization for schema matching
techniques and their combination. For evaluating different settings, eTuner generates
synthetic pairs of schemes from the input schemes using predefined rules (similar to our
approach using the result quality on a partial reference alignment as an approximation).

A problem closely related to parameter tuning of matching tools is selecting a suit-
able matcher – or a suitable combination of matchers – for a specific matching task.
Such a combination can be described by a set of weights for each matcher, as done,
e.g., with the matching framework CROSI [14] and can be seen as a special case of the
parameter tuning problem. One work uses meta-level learning in order to find the best
ensemble of matchers, as discussed by Eckert et al. [3]. Other strategies are based on
Bayesian Networks [24] or Support Vector Machines [13]. Mochol et al. [18] propose
an approach to find the best matcher to match two specified ontologies from a set of
matchers.

Many matching tools like the systems QOM [5] or PROMPT [19] support semi-
automatic matching processes, e.g. by presenting the user suggestions or potential prob-
lems. They typically use the examples provided by the user as anchors for searching for
new mappings, rather than for tuning the parameters of the underlying matching algo-
rithms. A very related idea which also takes user support into account is APFEL [4]. It
tries to improve the alignment by involving the user into the matching process. It first
creates potential correspondences based on initial settings, presents them to the user,
the user marks the correct ones which serve as training set for the machine learning
approach. The whole process is repeated to gradually improve the alignment.

In our approach, we have used partial reference alignments provided by a domain
expert to optimize different matching tools. The matching tool SAMBO [15] also uses
partial reference alignments for various purposes. They are used as anchors to give hints
for partitioning larger ontologies in a preprocessing step, as well as for filtering poten-
tial incorrect results in a post-processing step. A schema matching system exploiting
examples and applying machine learning methods is LSD [1]. The approach defines
the matching problem as a classification problem, where the class to predict for an ele-
ment of a source schema is the corresponding target schema element. Thus, a machine
learning algorithm is trained using correspondences provided by the user.

The key differences between those approaches and ECOMatch are that existing ap-
proaches typically work in dialog mode and require constant user attention, while our
approach works in batch mode once the user examples are given. Futhermore, ECO-
Match is not restricted to a particular matching algorithm, but can be used with any
existing matching tool.

45

6 Conclusion and Outlook

In this paper, we have presented the ECOMatch approach for automatically parameter-
izing ontology matching tools based on example mappings. Since we could observe a
significant correlation of the result quality, it is possible to test different matcher config-
urations against a set of example mappings, and thereby find a good or even an optimal
matcher configuration. ECOMatch treats the matcher it uses as a black box; thus, our
approach can be easily adopted by developers of other matching tools or used as a
generic framework for optimizing ontology mappings.

Since it is often not feasible to test every possible combination of parameter settings,
we have used a number of heuristics for determining good, near-optimal parameter
settings. We have tested our approach with two state-of-the-art matching tools and a
set of benchmark ontologies. The results show that parameter optimization based on
example mappings can help providing significant better results than using the default
configuration of matching tools, and is a good alternative to manually trying to find a
good configuration, since no understanding of the parameters is required.

The two main bottlenecks of our approach are the provisioning of examples (which
typically means manual work for a domain expert), and the running of matching tools
(which is a costly operation that drastically increases the overall processing time).
These two bottlenecks point at the main opportunities for improving the ECOMatch
system: reducing the amount of examples required, and reducing the number of re-
quired matcher runs.

In our experiments, we have used a random subset of a gold standard mapping
for emulating a domain expert creating example mappings. This may not be entirely
correct, as such an expert may first determine a set of obvious mappings, which may
not be a representative random sample of the full mapping. Thus, we want to further
evaluate how the selection of the mapping subset influences our approach. To reduce
the workload for the domain expert providing the partial mapping, we would also like
to explore how the size of the partial mapping can be minimized, e.g., in an interactive
mode where the tool interrogates a domain expert and tries to determine mappings
which efficiently divide the search space. As negative examples may be retrieved with
less work than positive ones, we also want to explore how a combination of positive
and negative examples can be used to find an optimal mapping.

Most matchers are tuned for achieving a good f-measure, i.e., a good trade-off be-
tween precision and recall. However, it is possible to develop matchers with high pre-
cision at the cost of worse recall. Such a matcher could be used as a generator for the
example mappings, so that the whole tuning process of the target matcher could even
be fully automatized in the future. In the context of ontology matching for linked open
data, other mechanisms for obtaining the example mappings are also possible, such as a
community creating a set of example mappings (the same as they are creating links be-
tween instances) [27], or guessing example mappings for classes of different ontologies
that share a lot of common instances.

So far, we have only investigated the quality of the generated configurations after
a fixed number of runs of the matching tool. In order to speed up the whole process,
it would be interesting to look at the gradient, i.e., the time it takes for a certain opti-
mization approach to find a good configuration. This would allow for a more sophis-

46

ticated comparison of the individual strategies for finding an optimum configuration.
Furthermore, our experiments have shown that most of the good configurations found
by ECOMatch are similar, yet not identical, to the default configuration. This insight
may also help improving the process of searching for a good configuration, e.g., when
creating a starting population for a genetic algorithm.

In summary, the work presented in this paper has addressed one of the top ten chal-
lenges in ontology matching. We have proposed a solution that is suitable for domain
experts with low skills in ontology matching, since we only rely on a set of example
mappings provided by a domain expert. The results show that matcher configurations
can be automatically improved based on example mappings, which makes this approach
a promising research direction for future ontology matching tools.

Acknowledgements

The work presented in this paper has been partly funded by the German Federal Min-
istry of Education and Research under grant no. 01ISO7009. Dominqiue Ritze is sup-
ported by a Karl-Steinbuch scholarship of the MFG foundation Baden-Württemberg.
The authors would like to thank Heiner Stuckenschmidt, Christian Meilicke, and Jo-
hannes Fürnkranz for their valuable feedback.

References

1. A. Doan, P. Domingos, and A. Halevy. Reconciling schemas of disparate data sources:
A machine-learning approach. In Proceedings of the 2001 ACM SIGMOD international
conference on Management of data, pages 509–520, 2001.

2. Felix Dobslaw. Automatic parameter tuning for metaheuristics, 2010. Accessed June 17th,
2011.

3. Kai Eckert, Christian Meilicke, and Heiner Stuckenschmidt. Improving ontology matching
using meta-level learning. In Proceedings of the 6th European Semantic Web Conference
(ESWC), pages 158–172, 2009.

4. M. Ehrig, S. Staab, and Y. Sure. Bootstrapping ontology alignment methods with apfel.
In Proceedings of the 4th International Semantic Web Conference (ISWC), pages 186–200,
2005.

5. Marc Ehrig and Steffen Staab. Qom - quick ontology mapping. In The Semantic Web - ISWC
2004, volume 3298, pages 683–697. Springer, 2004.

6. Jérôme Euzenat, Alfio Ferrara, Laura Hollink, Antoine Isaac, Cliff Joslyn, Véronique
Malaisé, Christian Meilicke, Andriy Nikolov, Juan Pane, Marta Sabou, François Scharffe,
Pavel Shvaiko, Vassilis Spiliopoulos, Heiner Stuckenschmidt, Ondrej Sváb-Zamazal, Vo-
jtech Svátek, Cássia Trojahn dos Santos, George A. Vouros, and Shenghui Wang. Results of
the Ontology Alignment Evaluation Initiative 2009. In Proceedings of the 4th International
Workshop on Ontology Matching (OM-2009), volume 551 of CEUR-WS, 2009.

7. Jérôme Euzenat, Alfio Ferrara, Christian Meilicke, Juan Pane, François Scharffe, Pavel
Shvaiko, Heiner Stuckenschmidt, Ondrej Sváb-Zamazal, Vojtech Svátek, and Cássia Tro-
jahn. Results of the Ontology Alignment Evaluation Initiative 2010. In Proceedings of the
Fifth International Workshop on Ontology Matching (OM-2010), volume 689 of CEUR-WS,
2010.

47

8. Jérôme Euzenat and Pavel Shvaiko. Ontology Matching. Springer, Berlin, Heidelberg, New
York, 2007.

9. M.W. Gardner and S.R. Dorling. Artificial neural networks (the multilayer perceptron) -
a review of applications in the atmospheric sciences. Atmospheric Environment, 32(14–
15):2627–2636, 1998.

10. Zong Woo Geem, Joong-Hoon Kim, and G. V. Loganathan. A new heuristic optimization
algorithm: Harmony search. Simulation, 76(2):60–68, 2001.

11. John H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan
Press, 1975.

12. Wei Hu and Yuzhong Qu. Falcon-AO: A practical ontology matching system. Journal of
Web Semantics, 6(3), 2008.

13. Ryutaro Ichise. Machine learning approach for ontology mapping using multiple concept
similarity measures. In Proceedings of the 7th International Conference on Computer and
Information Science (ICIS), pages 340–346, 2008.

14. Yannis Kalfoglou and Bo Hu. CROSI Mapping System (CMS) - Result of the 2005 Ontology
Alignment Contest. In Integrating Ontologies ’05, Proceedings of the K-CAP 2005 Workshop
on Integrating Ontologies, Banff, Canada, October 2, 2005, 2005.

15. Patrick Lambrix and Qiang Liu. Using partial reference alignments to align ontologies. In
Proceedings of the 6th European Semantic Web Conference (ESWC), pages 188–202, 2009.

16. Yoonkyong Lee, Mayssam Sayyadian, AnHai Doan, and Arnon S. Rosenthal. eTuner: tuning
schema matching software using synthetic scenarios. VLDB Journal: Very Large Data Bases,
16(1):97–122, 2007.

17. Sean Luke. Essentials of Metaheuristics. Lulu, 2009.
18. Malgorzata Mochol, Anja Jentzsch, and Jérôme Euzenat. Applying an analytic method for

matching approach selection. In Proceedings of the 1st International Workshop on Ontology
Matching (OM-2006), 2006.

19. Natalya F. Noy and Mark A. Musen. The PROMPT suite: interactive tools for ontology
merging and mapping. International Journal of Human-Computer Studies, 59(6):983–1024,
2003.

20. J. R. Quinlan. Learning with continuous classes. In Proceedings of the 5th Australian Joint
Conference on Artificial Intelligence, pages 343–348, 1992.

21. S. Russel and P. Norvig. Artificial Intelligence: a Modern Approach. Prentice-Hall, 1995.
22. Pavel Shvaiko and Jérôme Euzenat. Ten Challenges for Ontology Matching. In On the

Move to Meaningful Internet Systems: OTM 2008, volume 5332 of LNCS, pages 1164–182.
Springer, 2008.

23. R. Storn and K. Price. Differential evolution - a simple and efficient heuristic for global
optimization over continuous spaces. Journal of global optimization, 11:341–359, 1997.

24. Ondrej Sváb and Vojtech Svátek. Combining ontology mapping methods using bayesian
networks. In Proceedings of the 1st International Workshop on Ontology Matching (OM),
volume 225, pages 206–210, 2006.

25. Peng Wang and Baowen Xu. Lily: Ontology Alignment Results for OAEI 2009. In Proceed-
ings of the 4th International Workshop on Ontology Matching (OM-2009), 2009.

26. X.-S. Yang and S. Deb. Cuckoo search via lévy flights. In Proceedings of World Congress
on Nature and Biologically Inspired Computing (NaBIC 2009), pages 210–214, 2009.

27. Anna V. Zhdanova and Pavel Shvaiko. Community-driven ontology matching. In Proceed-
ings of the 3rd European Semantic Web Conference (ESWC), pages 34–49, 2006.

48

Evolution of the COMA Match System

Sabine Massmann, Salvatore Raunich, David Aumüller, Patrick Arnold, Erhard Rahm

WDI Lab, Institute of Computer Science
University of Leipzig, Leipzig, Germany

{lastname}@informatik.uni-leipzig.de
http://wdilab.uni-leipzig.de

Abstract. The schema and ontology matching systems COMA and COMA++ are
widely used in the community as a basis for comparison of new match approaches.
We give an overview of the evolution of COMA during the last decade. In par-
ticular we discuss lessons learned on strong points and remaining weaknesses.
Furthermore, we outline the design and functionality of the upcoming COMA 3.0.

1 Introduction

Schema and ontology matching is the process of automatically deriving correspondences
between the elements or concepts of two or more data models, such as XML schemas
or formal ontologies. Computed correspondences typically need to be validated and
corrected by users to achieve the correct match mappings. Match mappings are needed
in many areas, in particular for data integration, data exchange, or to support schema
and ontology evolution. Hence, match mappings are the input of many algorithms in
these domains, e. g. to determine executable data transformation mappings or to perform
ontology merging.

In the last decade, there has been a huge amount of research on schema and ontology
matching and on mapping-based metadata management in general. Overviews of the
current state-of-the-art are provided in two books [5, 13]. Many dozens of research pro-
totypes have been developed and at least simple (linguistic) automatic match approaches
found their way into commercial mapping tools [23]. COMA (Combining Matchers)
is one of the first generic schema matching tools. Its development started about ten
years ago at the University of Leipzig and is still going on. COMA and its successor
COMA++ have been made available to other researchers and have been widely used as a
comparison basis for new match approaches.

This paper reflects on the evolution of COMA during the last decade and reports
on the major lessons learned. We also describe the design and functionality of a new
version, dubbed COMA 3.0. In the next section, we give a short overview of the evolution
of COMA and COMA++. We then discuss lessons learned in Section 3 by outlining strong
points and remaining weaknesses. The new version of COMA is described in Section 4.

2 System Evolution

Key stations and publications concerning development and use of COMA are as follows:

49

2 Sabine Massmann, Salvatore Raunich, David Aumüller, Patrick Arnold, Erhard Rahm

2002 Initial release and publication of COMA paper at VLDB in Hong Kong [9]. Support
for multi-matcher architecture and reuse of previous match mappings.

2003/04 Further evaluations [8] and initial design to support large XML schemas [25].
2005 Release and SIGMOD publication of COMA++ [2]. Support for ontology matching,

GUI and fragment matching. Ph.D. Thesis of Hong Hai Do [7].
2006 Support for instance-based matching. Participation at OAEI contest [17].
2007/08 Further evaluations with larger and more diverse models, including web direc-

tories [10, 18]. Use of COMA++ within the QuickMig project [11]. Web edition.
2010/11 Redesign and development of COMA 3.0.

The development of COMA started in 2001 and was influenced by the findings and
recommendations of the survey article [24] on schema matching. In contrast to most
previous approaches at the time, COMA provides a generic approach to support matching
of different kinds of schemas (in particular relational and XML schemas) and for different
application domains. This is made possible by representing all kinds of schemas by a
generic in-memory graph representation on which matching takes place. A key feature
of COMA is the flexible support for multiple independently executable matchers that
can be executed within a user-controlled match process or workflow. More than ten
schema-based matchers were initially supported mainly based on the linguistic and
structural similarity of elements. All matchers are evaluated on the Cartesian product
of elements from the two input schemas, where each element is represented by a path
to the schema root. Furthermore, different approaches to combine matcher results and
select correspondences are provided. A unique feature of the initial COMA design was
the support for reusing previous match mappings, especially the possibility to compose
several existing mappings stored in a repository. An extensive evaluation on XML
schemas showed that the combination of several matchers clearly outperforms single
matchers.

The initial evaluation used relatively small schemas of less than 100 nodes. Hence,
further evaluations and adjustments focused on larger schemas, especially for e-business
schemas containing shared schema fragments (e. g. for address information) [25]. Several
extensions to deal with large schemas were designed and integrated within the next
major release of the prototype, called COMA++. COMA++ was introduced in 2005 [2]
and represents a major re-implementation of the original COMA design to improve both
performance and functionality. It provides a GUI to simplify the definition of match
strategies and to correct computed match correspondences. It also supports matching
of ontologies, especially OWL ontologies. COMA++ provides additional matchers and
operators like merge and diff for post-processing of match mappings.

Several approaches in COMA++ facilitate the matching of larger schemas, in particu-
lar to avoid the evaluation of the Cartesian product of schema elements. First, fragment
matching is supported that implements one of the first divide-and-conquer approaches
where only similar schema fragments need to be matched with each other. Secondly,
sequential execution of matchers (or mapping refinement) is supported so that a fast
matcher can be executed first and more expensive matchers are only evaluated on more
similar pairs of elements. In particular, a strategy called FilteredContext performs first
matching only for nodes and restricts the evaluation of paths (i. e. node contexts) to the

50

COMA 3.0 3

more similar node pairs. A detailed description and evaluation of these features can be
found in [7, 10].

In 2006, two instance matchers were added to COMA++ to prepare the system
for participation in the OAEI contest1 that provides instances for its basic benchmark
test cases. Sets of instances are associated to schema elements. One approach is to
compare individual instance values with each other and aggregate the similarity values
per element pair. Alternatively, all instances are combined within a virtual document and
a TF/IDF-like document similarity is determined for element pairs (similar approaches
are used in other match systems, e. g. RiMOM [16]). The instance-based matchers and
their combination with metadata-based matchers were successfully evaluated on the
ontologies of the OAEI benchmark [12] and on web directory taxonomies [18].

In a joint project with SAP, COMA++ was used as the basis for developing mappings
for data migration [11]. Furthermore, we created a web edition of COMA++ to support
matching without local installation of the tool and its underlying DBMS (MySQL).
For evaluation, we also added to COMA++ some advanced approaches for aggregating
similarity values of different matchers [22] as being used in other match systems such as
Prior+ or OpenII Harmony. Since 2010, we partially redesigned and extended COMA++
as we will describe in Section 4.

Due to numerous requests, we made the binary version of COMA/COMA++ available
for free to other researchers. Hundreds of researchers world-wide downloaded the
prototype for use and comparison with their own matching approaches.

3 Lessons Learned

Working on and with a system with such a longevity as COMA, there are both positive
and negative lessons learned. This section presents both sides.

3.1 Strong Points

In retrospect, we believe that many design decisions of COMA and COMA++ have been
right. Several of them have also been adopted by later match systems. The positive points
include the following:

Multi-matcher architecture Supporting many diverse matcher algorithms that can be
combined within match workflows is key to obtain sufficient match quality for
different match tasks. Almost all recent match systems follow such a design with
support for linguistic, structural, and instance-based matchers.

Generic approach The generic representation of models as rooted, directed acyclic
graphs allowed us to apply all matchers and combination approaches to diverse
kinds of schemas and ontologies. By providing the respective parsers we could thus
easily extend the scope of COMA to different domains and models. This flexibility
also contributed to the popularity of COMA for other researchers.

1 http://oaei.ontologymatching.org/

51

4 Sabine Massmann, Salvatore Raunich, David Aumüller, Patrick Arnold, Erhard Rahm

Effective default configuration COMA and COMA++ provide a default match configu-
ration that can be used without manual tuning effort. The default configuration was
determined for a set of XML schema match tasks and consists of four linguistic and
structural matchers and a specific combination approach [10]. The default combina-
tion approach is based on taking the average matcher similarity per element pair and
applying a so-called Delta selection returning the match candidates with the highest
match similarity (above a threshold) as well as all further candidates within a small
distance (delta) of the top candidate. For improved precision, a stable marriage-like
selection is further applied (called Both) by default. The default strategy turned out
to be surprisingly effective over a wide range of further match problems evaluated
by other researchers, including for matching web directories [3], for n-way (holistic)
schema matching [14] and even for matching of UML meta-models [15]. An evalu-
ation of different methods to combine matcher results [22] showed that advanced
approaches can perform well only in specific cases and are not as robust as simply
determining the average matcher similarity applied by default in COMA++.

GUI The graphical user interface in COMA++ significantly improves the usability
compared to the original COMA implementation, in particular for importing and
visualizing schemas, configuring match strategies, and inspecting and correcting
match mappings. Furthermore, it allows a simplified evaluation of different match
strategies.

Customizability Even when using the default match strategy, it is possible to customize
linguistic matching by providing domain-specific dictionaries, in particular synonym
and abbreviation lists. These simple lists can significantly improve match quality and
are an effective approach to leverage and reuse background knowledge. Particularly,
they avoid the risk of many wrong match candidates (poor precision) when using
general-purpose dictionaries such as Wordnet. There are many more possibilities to
customize the match strategy, in particular the selection of promising matchers. For
example, instance matching can be selected if instances are available for matching.

Advanced match strategies While not part of the default match strategy, COMA++ sup-
ports several advanced match strategies that are especially helpful to deal with large
schemas and ontologies. These strategies include the reuse of previous match results,
fragment matching, as well as mapping refinements such as in the FilteredContext
strategy. While the approaches have been quite effective, there are still opportunities
for improvement, e. g. for a more comprehensive reuse and for schema partitioning
as discussed in [23].

Repository We store all imported schemas and ontologies as well as confirmed map-
pings in a repository for later inspection and reuse. The repository avoids the
repeated import and matching of the same schemas and is a prerequisite for the
reuse matchers.

3.2 Weak Points

Given the broad need for schema and ontology matching and increasing demands
w. r. t. the size of match tasks and the use of mappings, we also encountered a set of
difficulties with our match system asking for improvements. Most current match systems

52

COMA 3.0 5

share similar limitations although some of the associated challenges have already been
addressed in recent research [28].

Scalability issues The number of paths is generally much higher than the number of
nodes per schema so that COMA’s path-based matching leads to memory and runtime
problems for large match tasks with millions of path pairs to evaluate in the Cartesian
product. Memory problems are primarily caused by storing the similarity values
for all matchers and path pairs in memory in addition to the schema graphs. These
problems can be alleviated to some degree by applying fragment matching and node-
based matching but a more general solution with reduced memory requirements is
needed. Furthermore, additional performance techniques such as parallel matching
on several processors are desirable.

Configuration effort While the default match strategy is often effective it cannot guar-
antee the best match quality and runtime performance for all match tasks. Finding
better match strategies, however, is difficult even for experts due to the high flexibil-
ity that comes with the possibility to select from many matchers and combination
options and having to find suitable parameter settings. Therefore, the system should
help users to choose a match strategy based on an automatic analysis of the match
task to solve.

Limited semantics of match mappings The system only determines match mappings
consisting of simple equality correspondences between elements of schemas or
ontologies. More expressive mappings are desirable supporting additional kinds of
relationships such as containment or is-a relationships. Furthermore, applications
such as data exchange or schema evolution need executable mappings that can be
applied to instance data.

Limited accessibility COMA++ is a stand-alone tool designed for interactive use, not
for use by programs. To improve the accessibility, the provision of an API, e. g.
based on web services is desirable. The web edition of COMA++ is not widely used
and a redesigned browser-based GUI would be attractive.

4 COMA 3.0

Since 2010 we have partially redesigned and extended COMA++ at the Web Data In-
tegration Lab (WDI Lab) of the University of Leipzig. The mission of the WDI Lab
is the development of advanced data integration tools and approaches that can be used
for practical applications. Major work areas include support for schema and ontology
integration, entity resolution as well as mashup-like data integration workflows.

In this section, we outline the new version of our match tool called COMA 3.0
that includes support for enriched mappings and ontology merging. We start with an
overview of the architecture and functionality of COMA 3.0. We then discuss the mapping
enrichment and ontology merging components and present preliminary evaluation results.
COMA 3.0 will be made available in 2012. We plan to provide two versions: a community
version as open source and a professional version to be distributed by a WDI Lab spinoff.

53

6 Sabine Massmann, Salvatore Raunich, David Aumüller, Patrick Arnold, Erhard Rahm

4.1 Overview

The revised architecture of COMA is shown in Figure 1. Several components are analo-
gous to COMA++, including Import of schemas and ontologies, auxiliary information
and mappings, an Export to output models and mappings, and a Repository where these
information as well as match configurations are kept. Furthermore, there is an Execu-
tion Engine to execute defined match strategies using matchers and preprocessing and
postprocessing steps from different libraries. The following components are largely new:

Configuration Engine which supports both a manual configuration (expert mode) as
well as an initial kind of automatic configuration (simple mode) and validation
of workflow configurations. The automatic configuration uses the default match
strategy as a starting point and decides about which matchers to add or drop and
how to change the approach for combining matcher results. For this purpose, the
input schemas/ontologies are checked for the availability of instances, comments,
and diverse data types to determine whether the matchers requiring these features
can be used at all. Furthermore, we test whether the reuse of previously determined
match mappings is applicable. Similar to other systems [16], we also calculate the
degree of linguistic and structural similarity of the input models to decide about the
use of linguistic and structural matchers. We also check the input sizes to decide
about the use of fragment matching.

Enrichment Engine which supports a semi-automatic or manual enrichment of simple
1:1 correspondences into more complex mapping expressions including functions,
e. g. to support data transformations. Furthermore, is-a and inverse is-a correspon-
dences between ontologies can be determined as input for ontology merging. More
details will be described in subsection 4.2.

Merge and Transformation Engines which support match-driven ontology merging
(see subsection 4.3), as well as the generation of executable mappings (queries) for
data transformation. The latter functionality is based on the approaches developed
for the +Spicy mapping system [20].

User Interfaces. A new GUI as well as programmatic access to the COMA functionality
is planned by offering an API and web service interfaces.

We retain virtually all matchers and advanced strategies (reuse matching, fragment
matching, FilteredContext) of COMA++ and add some new ones. We implemented an
additional kind of fragment matching for large schemas/ontologies where fragments are
automatically identified by a clustering algorithm based on the structural similarity within
schemas/ontologies. The approach is described and evaluated in [1]. For matching life
science ontologies, we added a domain-specific matcher called NameSyn that exploits
the frequent availability of name synonyms for concepts. It therefore considers two
concepts to match if either their names or one of their synonyms are highly similar.

There are numerous implementation enhancements to improve performance and
scalability. Since the matcher results (similarity matrices) can contain a very large
number of similarity values we support their storage either in memory or in a database
table. Both implementations support the same interface and are thus internally usable in
the same way. Linguistic matching is now based on a set of optimized and more versatile
string matchers (Trigram, Jaccard, Levensthein, TF/IDF, etc.) that have been devised in

54

COMA 3.0 7

Repository

Schemas, Ontologies

Auxiliary Information

Mappings

Import

Storage

Configuration Engine

Execution Engine

Matcher
Library

Enrichment
Engine

Transformation
Engine

Generated Query

Transformed Data

Export
Mapping

Match
Execution

Mapping
Processing

GUI APISoftware as
a Service

User
Connection

Automatic Manual

Merge
Engine Merged Models

Fig. 1. Architecture of COMA 3.0

the WDI Lab for both entity resolution and schema/ontology matching. In particular the
input and output of these matchers can either be in memory, in a file or in a database.
Common optimizations of the string matchers include a preprocessing of input strings
(stop word removal, tokenization, resolution of abbreviations/synonyms etc.) as well as
an early pruning of highly unsimilar pairs of strings.

As mentioned, we plan to make the COMA functionality available as a web service
(SaaS). The goal is to broaden the usability of COMA to diverse applications thereby
reducing the need to repeatedly re-implement match functionality. Possible consumers
include mashups or mobile applications as well as match-driven tools, e. g. for data
migration or ontology merging. Furthermore, the match functionality can be utilized
within new graphical user interfaces, e. g. a browser-based light-weight GUI for match
processing. The core functionality to be provided as web service includes the possibility
to load schemas and ontologies, to specify and execute a match strategy and to return
computed match mappings. A challenge still to be addressed is support for multi-tenancy
so that the data and execution of many users can be isolated from each other.

4.2 Enrichment Engine

The match process of COMA identifies a set of 1:1 equality match correspondences
between elements of the input schemas or ontologies. While elements may participate
in multiple such correspondences, there is no direct support for complex correspon-
dences interrelating several elements per input schema. For example, there may be
correspondences Name–FirstName and Name–LastName that should in fact be a com-
plex correspondence Name – {FirstName, LastName}. One task of the enrichment engine
is to semi-automatically determine such complex correspondences and extend them with
data transformation functions, e. g. to specify that a split of Name should be applied to
obtain the FirstName and LastName elements. The second task of the enrichment engine
is the derivation of more semantic correspondences for ontologies, in particular is-a and
their inverse is-a relationships that can be utilized for ontology merging.

We have extended the mapping structure of COMA to support complex correspon-
dences with data transformation functions. We support similar functions as in commercial

55

8 Sabine Massmann, Salvatore Raunich, David Aumüller, Patrick Arnold, Erhard Rahm

Fig. 2. a) A Mapping Scenario from STBenchmark – b) A Merging Scenario

mapping tools such as BizTalk Server2, in particular numerical functions (e. g. sum, mul-
tiply), string functions (e. g. concat, lowercase, replace), date/time functions, conversion
functions, logical functions, relational functions, etc. The semi-automatic determination
of complex correspondences and mapping expressions is very complex and only few
research approaches have been proposed so far, e. g. iMAP [6].

To find complex correspondences we analyze the set of 1:1 correspondences. In
particular we check whether sets of correspondences involving the same source or target
element should be combined within a complex correspondence, e. g. if they refer to
elements in close proximity such as in the mentioned Name example. As usual, all
suggestions are subject to user feedback for confirmation or correction.

Our approach to identify applicable transformation functions depends on instance
data but also uses element names and structural information. For all correspondences
we test and verify the applicability of the type-specific transformation functions. For
illustration, consider the example from the STBenchmark3 shown in Figure 2(a), where
three functions are needed to correctly transform source instances into target instances.
In particular, f1 and f2 describe how to split the source element name into the two target
elements FirstName and LastName; similarly, the concatenation function f3 defines
how to combine the three elements street, city, zip into the target element Address. Our
approach is able to find out, for example, the last complex correspondence by starting
from the 1:1-correspondence address–Address automatically detected by the system and
performing a structural analysis of these two elements. Since data is not stored in the
inner node address but in its children, a complex correspondence will be created out
of the subnodes. Furthermore, analyzing instance data is helpful to determine in which
order the source elements should be concatenated by f3.

Besides discovering complex matches, the enrichment engine supports the determi-
nation of semantic correspondences between ontologies, in particular is-a and inverse
is-a relationships, that can be used for ontology merging. We provide a basic algorithm
based on the analysis of labels that can detect textual containment relationships between
concepts; this approach can be extended using external linguistic oracles (e. g. WordNet)
providing semantic relationship indicators. For illustration, consider the simple example
in Figure 2(b) where the catalog of a new online car shop (source) should be merged into
the catalog of a price comparison portal (target). Analyzing the labels of the input con-

2 http://www.microsoft.com/biztalk
3 http://www.stbenchmark.org/

56

COMA 3.0 9

cepts, we find that the source label Wagon BMW “is contained” in the target label BMW
and then derive that Wagon BMW “is a” BMW; similarly for concepts SUV, SUV Audi
and SUV BMW, but in the opposite direction, identifying the inverse-is-a relationships
shown in Figure 2(b).

A related approach for semantic matching is supported by S-Match [14] where
different matchers are used to discover semantic relations, like equivalence, less general,
more general and disjointness between concepts. The less and more general relationships
correspond to is-a and inverse-is-a relationships in our approach.

4.3 Ontology Merging

A major extension of COMA 3.0 is the inclusion of an ontology merging component that
consumes the match mapping as input and produces an integrated ontology as output,
called merged ontology. The main approach is called AUTOMATIC TARGET-DRIVEN
ONTOLOGY MERGING (ATOM) and is described in more detail in [27]. The current
version is restricted to is-a taxonomies; multiple inheritance and instance data for leaf
concepts are supported.

Ontology merging is a difficult problem since there often exists no ideal unique
solution. Previous ontology merge approaches are largely user-controlled and do not
clearly separate matching from merging resulting in complex approaches, [4], [21], [19],
[29]. By utilizing a manually verified match mapping as input, our merge approach is
largely automatic. We support two kinds of automatic ontology merging: a symmetric or
full merge as well as an asymmetric, target-driven merge.

The symmetric approach fully preserves both input ontologies, combining equiva-
lent concepts and maintaining all remaining concepts and relationships of both input
ontologies. The main problem of such a full merge result is that maintaining different
organizations of the same information can reduce its understandability and introduce
multiple inheritance and semantic overlap.

As an alternative we therefore support the new asymmetric ATOM approach that
merges the source (first) input ontology into the target (second) input ontology. It thus
gives preference to the target ontology and preserves it fully while redundant source
concepts and relationships might be dropped. We find that such an asymmetric merge is
highly relevant in practice and allows us to incrementally extend the target ontology by
additional source ontologies. For example, the product catalog of a merchant may have
to be merged as a new source into the existing catalog of a price comparison portal.

Figure 3 shows a COMA 3.0 screenshot on the use of ATOM for merging the ontologies
of Figure 2(b). The merge result is shown in the middle. The lines specify mappings
between the input ontologies and the merged ontology that are also automatically
determined and that can be used to migrate instances. If ATOM is provided with semantic
correspondences as discussed in the previous Section, the merge result can be improved
by finding a better placement of concepts. The screenshot in Figure 3 shows already
the outcome when using the correspondences labeled isa1, inv-isa1 and inv-isa2 in
Figure 2(b). These correspondences could be used, for example, to place the concept
Wagon BMW as a subclass of the BMW concept, which would not have been possible
with equivalence correspondences alone. More details on our merging approach and its
evaluation can be found in [26] and [27].

57

10 Sabine Massmann, Salvatore Raunich, David Aumüller, Patrick Arnold, Erhard Rahm

Fig. 3. A merging scenario in COMA 3.0

4.4 Preliminary Evaluation

We have just started to evaluate COMA 3.0 and can therefore discuss only some prelimi-
nary results. We report some results for the OAEI Anatomy match task. Some statistics
of the two anatomy ontologies are shown in Table 1. The ontologies have around 3000
concepts resulting in about 9 million pairs to evaluate in the Cartesian product. The
number of root paths is much higher due to multiple inheritance etc. resulting in about
470 million pairs to evaluate for the Cartesian product. COMA++ used to run into memory
problems on the path-based evaluation of the anatomy match task and could thus only
solve it with a node-based execution strategy.

With COMA 3.0 eliminating the memory bottleneck we are able to solve this match
task for both node-based and path-based evaluation. Due to the high linguistic similarity
of the input ontologies, we use a combination of mainly linguistic matchers: a simple
Name matcher for concepts, the domain-specific NameSyn matcher as well as a Path
matcher comparing the concatenated names of the concepts on the root path.

Source Target Comparisons

OAEI Anatomy Nodes 2,746 3,306 9 million
Paths 12,362 39,001 468 million

Table 1. Statistics of the match task

Source Target

Name 18 18
Path 137 156

Table 2. Average string length

Figure 4(a) gives precision, recall, and F-measure results, evaluated against the gold
standard containing about 1500 correspondences. The numbers in the combinations
denote the weights of the individual matchers as used in the combined similarity value.
The best F-measure value of 0.88 is achieved using the combination of NameSyn, Path,
and Parents matchers. Figure 4(b) depicts execution times needed for the single
matchers on an average workspace PC. The Name matcher itself is the fastest with an
execution time of around 10 seconds, thereby still achieving 0.81 F-measure. The Path
matcher requires in total over 41 minutes of which 32 are consumed by the evaluation
of the 468 million pairs of paths, which are due to high number of path elements (cf.
Table 2). The remaining time mainly is attributed to the combination of similarity values
of the multiple paths per concept.

58

COMA 3.0 11

0,81
0,84

0,06

0,71

0,86 0,86 0,88

0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0

Name NameSyn
(Ns)

Parents
(P)

Path Ns+ P
(.7,.3)

Ns+Path
(.5,.5)

Ns+Path+P
(.4,.5,.1)

Precision Recall Fmeasurea) b)

0,2 0,3
4,1

41,2

0
5

10
15
20
25
30
35
40
45

Name NameSyn Parents Path

Time (min)

Fig. 4. Results for anatomy matching

5 Conclusions

We described the evolution of the COMA match systems during the last decade, discussed
lessons learned, and sketched the upcoming version COMA 3.0. We find that many
features and design decisions of the original COMA system are still valid today, and are
being used in most other schema and ontology matching tools, such as the multi-matcher
architecture. Further strong points include an effective default match configuration and
advanced match strategies such as reuse of previous mappings and fragment matching.
We also outlined current limitations of COMA++ and discussed how they are partially
addressed in COMA 3.0. In particular, the new system provides improved scalability
and initial support for self configuration. Furthermore, it supports the generation of
enhanced mappings as well as automatic ontology merging. We are currently evaluating
and completing the implementation of COMA 3.0. Further extensions are planned for
future versions, such as parallel matching.

6 Acknowledgements

We thank Hong Hai Do for implementing COMA and helping in developing COMA++.

References

1. Alsayed Algergawy, Sabine Massmann, and Erhard Rahm. A Clustering-based Approach For
Large-scale Ontology Matching. Proc. ADBIS, 2011.

2. David Aumüller, Hong-Hai Do, Sabine Massmann, and Erhard Rahm. Schema and Ontology
Matching with COMA++. In Proc. of ACM SIGMOD, 2005.

3. Paolo Avesani, Fausto Giunchiglia, and Mikalai Yatskevich. A Large Scale Taxonomy
Mapping Evaluation. In Proc. Int. Conf. Semantic Web (ICSW), LNCS 3729. Springer-Verlag,
2005.

4. Carlo Batini, Maurizio Lenzerini, and Shamkant B. Navathe. A Comparative Analysis of
Methodologies for Database Schema Integration. ACM Comp. Surv., 18(4), 1986.

5. Zohra Bellahsene, Angela Bonifati, and Erhard Rahm. Schema Matching and Mapping.
Data-centric Systems and Applications. Springer, 2011.

6. Robin Dhamankar, Yoonkyong Lee, Anhai Doan, Alon Halevy, and Pedro Domingos. iMAP:
Discovering Complex Semantic Matches between Database Schemas. In Proc. of ACM
SIGMOD, 2004.

59

12 Sabine Massmann, Salvatore Raunich, David Aumüller, Patrick Arnold, Erhard Rahm

7. Hong Hai Do. Schema Matching and Mapping-based Data Integration: Architecture, Ap-
proaches and Evaluation. VDM Verlag, Saarbrücken, Germany, 2007.

8. Hong-Hai Do, Sergey Melnik, and Erhard Rahm. Comparison of Schema Matching Evalua-
tions. In Revised Papers from the NODe 2002 Web and Database-Related Workshops on Web,
Web-Services, and Database Systems. Springer-Verlag, 2003.

9. Hong-Hai Do and Erhard Rahm. COMA - A System for Flexible Combination of Schema
Matching Approaches. In Proc. of VLDB, 2002.

10. Hong-Hai Do and Erhard Rahm. Matching Large Schemas: Approaches and Evaluation. Inf.
Syst., 32, September 2007.

11. Christian Drumm, Matthias Schmitt, Hong-Hai Do, and Erhard Rahm. QuickMig - Automatic
Schema Matching for Data Migration Projects. In Proc. of CIKM, 2007.

12. Daniel Engmann and Sabine Massmann. Instance Matching with COMA++. In BTW
Workshops, 2007.

13. Jérôme Euzenat and Pavel Shvaiko. Ontology Matching. Springer, 2007.
14. Fausto Giunchiglia, Aliaksandr Autayeu, and Juan Pane. S-Match: An Open Source Frame-

work for Matching Lightweight Ontologies. Semantic Web, 2011.
15. Gerti Kappel, Horst Kargl, Gerhard Kramler, Andrea Schauerhuber, Martina Seidl, Michael

Strommer, and Manuel Wimmer. Matching Metamodels with Semantic Systems - An Experi-
ence Report. In BTW workshop on Model Management, 2007.

16. Juanzi Li, Jie Tang, Yi Li, and Qiong Luo. RiMOM: A Dynamic Multistrategy Ontology
Alignment Framework. IEEE Trans. Knowl. Data Egineering, 21(8), 2009.

17. Sabine Massmann, Daniel Engmann, and Erhard Rahm. COMA++: Results for the Ontology
Alignment Contest OAEI 2006. Int. Workshop on Ontology Matching, 2006.

18. Sabine Massmann and Erhard Rahm. Evaluating Instance-based Matching of Web Directories.
11th International Workshop on the Web and Databases (WebDB), 2008.

19. Deborah L. McGuinness, Richard Fikes, James Rice, and Steve Wilder. An Environment for
Merging and Testing Large Ontologies. In KR, 2000.

20. Giansalvatore Mecca, Paolo Papotti, Salvatore Raunich, and Marcello Buoncristiano. Concise
and Expressive Mappings with +Spicy. Proc. VLDB Endow., August 2009.

21. Natalya Fridman Noy and Mark A. Musen. PROMPT: Algorithm and Tool for Automated
Ontology Merging and Alignment. In AAAI/IAAI, 2000.

22. Eric Peukert, Sabine Massmann, and Kathleen Koenig. Comparing Similarity Combination
Methods for Schema Matching. In Klaus-Peter Faehnrich and Bogdan Franczyk, editors, GI
Jahrestagung (1), volume 175 of LNI. GI, 2010.

23. Erhard Rahm. Towards Large-scale Schema and Ontology Matching. In Schema Matching
and Mapping. Springer, 2011.

24. Erhard Rahm and Philip A. Bernstein. A Survey of Approaches to Automatic Schema
Matching. VLDB J., 10, April 2001.

25. Erhard Rahm, Hong-Hai Do, and Sabine Massmann. Matching Large XML Schemas. SIG-
MOD Record 33(4), 2004.

26. Salvatore Raunich and Erhard Rahm. Target-driven Merging of Taxonomies. Technical report,
University of Leipzig, 2010.

27. Salvatore Raunich and Erhard Rahm. ATOM: Automatic Target-driven Ontology Merging. In
Proc. of ICDE, 2011.

28. Pavel Shvaiko and Jérôme Euzenat. Ten Challenges for Ontology Matching. Proc. OTM
Conferences, 2008.

29. Gerd Stumme and Alexander Maedche. FCA-MERGE: Bottom-Up Merging of Ontologies.
In IJCAI, 2001.

60

Using Semantic Similarity in Ontology Alignment

Valerie Cross and Xueheng Hu

Computer Science and Software Engineering Department,
Miami University, Oxford, OH 45056

crossv@muohio.edu

Abstract. Many approaches to measure the similarity between concepts that
exist in two different ontologies are used in the matchers of ontology alignment
systems. These matchers belong to various categories depending on the context
of the similarity measurement, such as lexical, structural, or extensional
matchers. Although OA systems have used various forms of similarity
measures along with some background knowledge sources, not many have
incorporated the use of semantic similarity measures. This paper first reviews
the use of semantic similarity in current OA systems, presents a unique
application of such measures to assess the semantic alignment quality (SAQ) of
OA systems and reports on the results of a study done using SAQ measures on
the OAEI 2010 results from the anatomy track

Keywords: Semantic similarity, ontological similarity, ontology alignment,
information content, semantic alignment quality.

1 Introduction

Ontology alignment (OA) research has typically concentrated on finding equivalence
relationships between different concepts in different ontologies. The result of the OA
process is typically a set of mappings between concepts from two different ontologies
with a confidence value in [0, 1] for each mapping. OA techniques vary greatly
depending on the features used to determine the mapping, i.e., the schema, its
instances, etc. and the background knowledge sources used such as vocabularies or
other ontologies, already existing alignments, free text, etc. Another term semantic
matching has been used to describe the process when not only equivalence relations
but also generalization and specialization relations are determined [1].

Early OA work focused on using string edit distances between the concept labels
and the overall structure of the ontologies. Even in the same domain a wide variance
in the terminology and the structuring of the concepts may still exist. Much research
has worked on handling these wide variations in ontologies. GLUE [2] was one of
the first to combine several different learners (similar to what is currently called a
matcher) to establish mappings. A learner using instance information and one using a

itself were combined to determine concept similarity between the two ontologies.

61

The basis for many matchers in OA systems can be found in [3] where
parameterized ratio model of similarity [4] is used with various features of concepts.
Many of these similarity measures have been adapted for use in matchers in various
categories depending on the context of the similarity measurement, such as lexical,
structural, or extensional matchers [5]. General ontologies such as WordNet [6] have
been used to find synonyms for differing concept string labels. The OLA system [7]
calculates lexical similarity between two concepts by looking up their names in
WordNet to find the synonyms for each concept. It does a string-based match between
the pairs of synonyms and an aggregation on the resulting string similarities. RiMoM
[8][9] incorporates the UMLS Metathesaurus [10] to align biomedical domain
ontologies and general background knowledge sources such as Wiki to align common
knowledge ontologies. More recent OA systems incorporate background knowledge
sources to improve the OA process. AgreementMaker [11][12][13] extends its string-
based matchers by integrating lexicons. The WordNet Lexicon is built to incorporate
the synonym and definition annotations found in the ontologies themselves and then
augments these with any non-duplicated synonyms and definitions existing in
WordNet that correspond to those in the ontologies being aligned. The string-based
matchers then work not only on the specific concept labels but also on the
corresponding synonyms in the WordNet Lexicon. ASMOV [14] optionally permits a
thesaurus to be used, either the UMLS Metathesaurus or WordNet, to calculate the
lexical similarities between each pair of concepts, properties and individuals.

Although various forms of similarity measures are used in OA systems, only a few
have incorporated semantic similarity in the OA process. This paper examines the
use of semantic similarity for the evaluation of a mapping set produced by an OA
system. Traditional OA evaluation strategies generally depend on a reference
alignment considered to be a correct and complete set of mappings between the two
ontologies and determined by a domain expert. Given a reference alignment, the
quality of an OA system is evaluated with the three standard criteria: precision, recall,
and f-measure. This evaluation approach has two obvious disadvantages. First, the
reliability of the evaluation is directly determined by the quality of the reference
alignment. For example, the reference alignment may only capture limited
information of the related domain and be incomplete so OA system mappings might
be correct but not found in the reference alignment. Second, in many practical cases,
a reference alignment may not be available or requires too much effort to create.

This research proposes using semantic similarity measures for OA evaluation
purposes, that is, a semantic alignment quality (SAQ) measure for use in addition to
or in place of the standard three measures when a reference alignment is not available.
The SAQ measure assesses the quality of a pair of mappings by comparing the
semantic similarity between two concepts in the source ontology with the semantic
similarity between the two target concepts they are mapped to. This process is
performed on all pairs of mappings in the OA result to determine an overall SAQ.

First Section 2 reviews semantic similarity measures and provides examples of
their use with background knowledge in current OA systems. Section 3 describes the
SAQ measure. Section 4 presents the details and analysis of the experiments
conducted using a wide variety of semantic similarity measures within the SAQ
measure on the OAEI 2010 anatomy track ontologies. Section 5 summarizes the
research and outlines plans for future research.

62

2 Semantic Similarity in OA

In ontology research, semantic similarity measurement is typically used to assess the
similarity between concepts within an ontology. Cross-ontological similarity
measures [15], i.e., ones that measure the similarity between concepts in different
ontologies based on establishing association links between the concepts have been
proposed. Another approach develops semantic similarity measures between
concepts based on the description logic definition of the concepts. These approaches
vary depending on what sets the similarity is measured such as instance sets [16],
characteristic sets [17], or model sets [18]. Future research should investigate the
usefulness of the cross-ontological and DL based semantic similarity measures in OA
evaluations. The focus here, however, is semantic similarity measured within one
ontology and using the subsumption relationship. Such semantic similarity measures
are currently being used in OA systems with background knowledge sources. These
semantic similarity measures were first divided into two main categories: path or
distance-based and information content based. Later, set-based semantic similarity
measures followed Tversky's parameterized ratio model of similarity [4]. A brief
overview of these three categories, example measures, and references to some OA
systems using such measures is provided [19].

The path-based similarity measures or edge-counting similarity measures rely on
the distance between two concepts. This distance is a count of the number of edges on
the path or a count of the number of nodes in the path linking the two concepts. Some
approaches assign different weights to edges or use different conversions and
normalizations of [20] into a similarity measure. For example,
Leacock and Chodorow [21] -based
semantic similarity as follows:

simLC = -log(minp[len(p(c1,c2))]/2D)

where D is the depth of the ontology that contains c1 and c2. It basically normalizes
distance measure len(p(c1,c2)) using D and converts it to similarity by using

the negative logarithm. An early OA system iMapper [22] uses a simple path based
semantic distance between two terms x and y found in WordNet. If they belong to the
same WordNet synset, then the path distance is 1. Otherwise, the path length is
determined by first finding the paths from each sense of x to each sense of y, counting
the number of nodes in each path between the two senses, and using the minimum
count of nodes for the semantic distance. Note that path length is determined by the
number of nodes rather than number of edges in the path.

The Wu and Palmer measure [23] calculates similarity using the distance from the
root to the common subsumer of c1 and c2. The formula is:

simWP (c1, c2) = 2

where c3 is the common subsumer of c1 and c2. In the case that c1 and c2 have
multiple common subsumers, c3 is typically assumed to be the lowest, i.e., the one
with the greatest distance from the root. For this research, c3 is selected as the one

63

that minimizes the path distance between c1 and c2 since in a well-designed ontology,
this c3 should also be the lowest one. OLA [7] uses a measure similar to the Wu-
Palmer measure with the WordNet ontology. ASMOV [14] use the Wu-Palmer
semantic similarity on the XML data type hierarchy for properties, when the ranges of
two data type properties are being compared.

Information content (IC) based measures use a measure of how specific a concept
is in a given ontology. The more specific a concept is the higher its IC. The more
general a concept is the lower its IC. Originally, IC uses an external resource such
as an associated corpus [24]. The corpus-based IC measure for concept c is given as

ICcorpus(c) = -log p(c)

where the value p(c) is the probability of the concept determined using the frequency
count of the concept, i.e. the number of occurrences within the corpus of all words
representing the concept and includes the total frequencies of all its children concepts.

The ontology-based IC [25] uses the ontology structure itself [25] and is defined as

ICont(c) = log /log = 1-

where num_desc(c) is the number of descendants for concept c and maxont is the
maximum number of concepts in the ontology. This IC measure is normalized such
that the information content values are in [0...1]. ICont has maximum value 1 for the
leaf concepts and decreases until the value is 0 for the root concept of the ontology.

The first IC based ontological similarity measure was proposed by Resnik [24] as

where S(c1,c2) is the set of concepts that subsume both c1 and c2.
Lin [26] defined a measure that uses not only the shared information between the

two concepts but also the separate information content of the two concepts:

simLin(c1,c2)=
where c3 is the subsuming concept with the most information content. ASMOV [14]
uses the Lin measure to assess the semantic similarity between two labels in a
thesaurus which is either WordNet or UMLS. UFOme [27] uses the Lin measure in
its WordNet matcher to determine the semantic similarity between synsets found in
WordNet when the concepts being mapped do not share the same synset in WordNet.

Jiang and Conrath [25] define another distance measure integrating path and
information content based measures. The distance is based on totaling up their
separate IC and subtracting out twice the IC of their most informative subsumer.

 distJC (c1, c2) = IC(c1) + IC(c2) 2 IC(c3)

so that the remaining IC indicates the distance between them. If no IC is left, i.e., 0,
the two concepts are the same. This distance measure can be converted to similarity.
Several approaches have been proposed. In [25], the following formula is used

simRES(c1,c2) = max S(c1,c2) [ICcorpus(c)]

64

simJC (c1, c2) = 1- (IC(c1) + IC(c2)- 2 IC(c3)) 0.5.

Set-based semantic similarity measures use Tversky parameterized ratio model [4]:

STverksy(X, Y) =

where f is an evaluation measure on sets. The and permit variations on the
similarity measure. Here f is defined as fuzzy set cardinality. Itbparallels set
cardinality. The only difference is an element s degree of membership in the fuzzy set
is added in instead of simply a 1 for the element. A
membership degree. Fuzzy set cardinality of a set of concepts is the sum of each
concept s IC in the set. A wide variety of fuzzy set similarity measures are based on
the Tversky model [29]. One can view a concept in an ontology as an object with a
set of features or a related set. If = = 1, S becomes the fuzzy set Jaccard index:

SJaccard(c1, c2) =

))2()1((

))2()1((

)(

)(

crelatedSetcrelatedSetc

crelatedSetcrelatedSetc

cIC

cIC

If = = 0.5, S becomes the Dice coefficient. If = 1, = 0, S becomes the degree
of inclusion of the related set for concept c1 within the related set for concept c2.

Many different sets can be a related set of a concept c. In this research the upset
which is the ancestor set of c in addition to the concept c itself, the downset which is
the descendant set of c in addition to the concept c itself, and the hourglass which is
the union of the upset and downset of a concept [30] are used. Other feature sets for
a concept are entirely possible such as the neighborhood set of a concept where
neighbors can be based on other relationship types besides the is-a and a parameter
may be used to determine how wide the neighborhood is from the concept [3].

3 Semantic Alignment Quality

The SAQ measure determines how well each pair of mappings, (si, ti) and (sj, tj)
maintains the same semantic similarity between the corresponding concepts in each
ontology. A good pair of mappings should result in |sim(si,sj) - sim(ti,tj)| being close
to 0. In [30] a similar approach is taken based on ordered concept lattice theory and
proposes two new distance measures. The upper cardinality distance du and lower
cardinality dl between concepts a and b are defined as

du(a, b) = |upset(a)| + |upset(b)| - 2*maxc-join[|upset(c)|]
dl(a, b) = |downset(a)| + |downset(b)| - 2* maxc-meet [|downset(c)|]

where c-join is the join concept, an ancestor concept shared between a and b in the
lattice with no other concept less than it in the concept lattice. The lower cardinality
distance between concepts a and b is defined similarly to upper except the upset is

65

replaced by downset and the join is replaced by the meet, i.e., c-meet is a meet
concept, a descendent concept shared between a and b in the lattice with no other
concept greater than it in the concept. In [30], only results with dl are reported using
the OAEI 2009 anatomy track. The experiments reported here are performed with a
wide variety of semantic similarity measures more familiar to the ontology research
community than dl. The dl measure, however, is also used within SAQ for
comparison purposes. The experimental results also show some considerations on
using semantic similarity measures to evaluate OA results not examined in [30].

To more clearly explain the approach, assume the set of mappings M = {(si, ti) |
si Os, ti Ot, and si maps to ti in the OA result set}. To measure the similarity
difference for two mappings mi and mj, the following formula is used:

(,) | (,) (,) |i j i j i jsimDiff m m sim s s sim t t
with si and sj being source anchors and ti and tj being target anchors such that mi = (si,
ti) and mj = (sj, tj) in M. The overall difference of semantic similarity for source
anchor pairs and target anchor pairs is calculated as

,
() (,)

i j
overall i jm m M

simDiff M simDiff m m

and the average difference is calculated over all (mi, mj) pairs in M where i j as

2

()() overall
average N

simDiff MsimDiff M
C

where N = |M|.

The denominator is the number of combinations of N mappings taken two at a time.
The SAQ measure is 1- simDiffaverage. The closer SAQ is to 1, then the smaller the

semantic similarity difference is over all the pairs of mappings in the alignment. More
specifically, the alignment results of high quality are expected to produce small values
for the simDiffaverage.
a predefined threshold. This threshold can be derived through experimentation with
existing reference alignments that are believed to have high quality.

Notice that the SAQ can have any semantic similarity measures substituted for sim.
The experiments reported in the next section used the lower cardinality distance, the
two path based measures, the three IC based measures and 9 variations of the set-
based similarity measures resulting from the three standard Tverskey set-based
similarity measures paired with the three different related sets, the downset, the upset
and the hourglass for a concept. The experiments investigate the performance
differences of these semantic similarity measures in SAQ and if the notion of SAQ
corresponds with the standard performance measures used to evaluate OA results.

4 Experimenting with SAQ and the OAEI 2010 Results

The ontology alignment evaluation initiative (OAEI) [31] conducts yearly
competitions that include the most up-to-date OA systems. These systems and their
algorithms are evaluated using the same set of test cases so that performance
comparisons can be made by those interested in using them. The OAEI 2010
campaign supported four tracks: anatomy, benchmark, conference, and directory.

66

Each track is specialized for different purposes. The experiments reported in this
section focus on the anatomy track since the anatomy track uses two real-world
ontologies from the biomedical domain, the NCIT human anatomy (HA) ontology
and the mouse anatomy ontology (MA) which are considerably larger and also
produce many more mappings than those of the other tracks. The reference alignment
between the two ontologies is readily available and consists of 1520 mappings. The
precision, recall and f-measure of each OA system that participated in the anatomy
track are also available. Finally, the concept lattice lower distance measure research in
[30] also used the anatomy track of the 2009 OAEI.

Table 1 lists the OA systems alphabetically along with the number of mappings
produced and their performance measures on the anatomy track s first subtask which
is to produce the best mappings possible emphasizing the f-measure.

Table 1. OA Systems OAEI 2010 Anatomy Track Precision (P), Recall (R), F-Measure (F)

OA
Systems

of
mappings

P R F

AgrMaker 1436 0.903 0.853 0.877
Aroma 1347 0.770 0.682 0.723
ASMOV 1409 0.799 0.772 0.785
BLOOMS 1164 0.954 0.731 0.828
CODI 1023 0.968 0.651 0.779
Ef2Match 1243 0.955 0.781 0.859

GeRMeSMB 528 0.884 0.307 0.456
NBJLM 1327 0.920 0.803 0.858
SOBOM 1246 0.949 0.778 0.855
TaxoMap 1223 0.924 0.743 0.824

Tables 2 and 3 report the SAQ measure results for the various semantic similarity
measures listed on the columns. The first number in parentheses after the semantic
similarity label indicates the rank of that measure within the row of values for each
OA system for only the measures in that table. The second number in parenthesis is
the rank of that measure for both tables combined. For the most part each value for a
semantic similarity measure had an identical rank across all rows. For example, the
lower distance had the highest SAQ value (rank of 1) compared to all other semantic
similarity measures across all OA systems in the Table 2. When compared with all
measures in both tables, the lower distance was ranked 4th. The Wu-Palmer (WP)
measure had the lowest SAQ value (rank of 6) compared to all other semantic
similarity measures across all OA systems in Table 2. When compared with all
measures in both tables 2 and 3, WP had the lowest SAQ value (rank of 15). If the
ranking was not identical across all OA systems, a ranking was only one greater or
one less than the most often reoccurring rank in the column. If more than half of one
column ranks had an identical rank value, that rank was used for the SAQ. Note
that the first and second rows of the tables are the SAQ results on the partial and full
reference alignments provided for the anatomy track.

The SAQ values for the lower distance measure seem to indicate that the alignment
quality is extremely good for all these OA systems with it almost being perfect for
CODI. There also is very little difference in the OA systems with a range of only

67

0.00259 between all the values for the SAQ result using the lower cardinality distance
measure. The SAQ values for the Wu-Palmer measure seem to indicate that the
alignment quality is not as high and has a wider range with a range of 0.01314. But
notice all the other SAQ values are greater than 0.90. Another observation is the
difference in SAQ results for the two path-based measures. The Leacock-Chodorow
agrees more with the IC based results. This experiment indicates there is a substantial
difference in SAQ measures depending on what semantic similarity measure is used.

To further investigate this issue, the average WP semantic similarity measure and
the average Lin semantic similarity measure was calculated between all 1520*1519/2
pairs of concepts from both the MA and the HA. The WP averages for the MA and
HA are 0.015 and 0.074 respectively. The Lin averages for the MA and HA are 0.018
and 0.315 respectively. For the MA, there is little difference in the WP and Lin
measures but a substantial difference for the HA. A possible explanation is the MA
ontology is not as deep as the HA (maximum depth of 7 vs. 13) and has a less
complex structure than the HA (4% vs. 13% of the nodes with multiple parents).

Table 2. SAQ using lower distance, 2 path-based, 3 IC-based semantic similarity measures

OA
Systems

Lower dist
1-D(F)
(1) (4)

WP
(6) (15)

LC
(4) (13)

Lin
(3) (12)

Resnik
(2) (11)

JC
(5) (14)

Partial ref 0.99934 0.70647 0.92652 0.94017 0.97274 0.93291
Full ref 0.99902 0.70179 0.92740 0.93633 0.93899 0.92662
AgrMaker 0.99906 0.70234 0.92706 0.93737 0.94009 0.92461
Aroma 0.99718 0.70469 0.92588 0.9385 0.94231 0.91968
ASMOV 0.99866 0.70202 0.92735 0.93836 0.94157 0.92352
BLOOMS 0.99846 0.70301 0.92721 0.94010 0.94296 0.92913
CODI 0.99977 0.70855 0.92660 0.94174 0.94339 0.93684
Ef2Match 0.99936 0.70595 0.92791 0.93816 0.94074 0.92839
GeRMeSMB 0.99936 0.69541 0.92872 0.93268 0.93330 0.92852
NBJLM 0.99907 0.70599 0.92728 0.93797 0.94061 0.92610
SOBOM 0.99921 0.70599 0.92789 0.93988 0.94254 0.93024
TaxoMap 0.99913 0.70816 0.92815 0.93881 0.94154 0.92614

Table 3 shows the results for the SAQ measure using the nine set based semantic
similarity measures. The rankings indicate that the downset measures have extremely
high SAQ values and the range over all SAQ values using downsets is 0.99996
0.99729 = 0.00267. The higher SAQ measure for the downset semantic similarity
measures over the upset ones was a surprising result. Intuition suggests that the upset
set semantic similarity measures should be better than the downset ones. The
rationale is that for downsets, the descendents represent more specific concepts. For
example if c is a descendent of a and b, then c inherits features from both A and B but
those inherited features may be entirely different and for different purposes. They do
not represent common features. But if a and b both have the common ancestor c, then
both tures.

The unusually high SAQ values for the downset semantic similarity measures
which ranked 1st, 2nd and 3rd overall caused further investigations which determined
that the downset semantic similarity measures are not useful for the SAQ measure.

68

When downsets are used in the SAQ, many intersections between the two
sets of descendents are empty. With an empty intersection, all the downset semantic
similarity measures produce a 0. This situation is verified by counting the number of
cases for the reference alignment where the result for |sim(a,b) 0|
resulting in a 0 contribution to the simDiffoverall total. Close to 50% of the sumDiff
calculations were |0 0|. Not one sumdiff produced from any upset semantic
similarity measures resulted in a |0 0| case. Since the hour set measures include both
the upset and the downset, the hour measures also are affected by the extremely large
number of cases where there is an empty intersection for the downset. The smaller
semantic similarity values then produced smaller sumdiff values, thereby, reducing the
simDiffaverage. A small simDiffaverage using the downset measures is not an accurate
reflection of the quality of the alignment.

Table 3. SAQ using the nine set-based semantic similarity measures

OA Systems Jacc
Up
(5) (6)

Jacc
Down
(1) (1)

Jacc
Hr
(4) (5)

Dice
Up
(8) (9)

Dice
Down
(2) (2)

Dice
Hr
(6) (7)

Inc
Up
(9) (10)

Inc
Down
(3) (3)

Inc
Hr
(7) (8)

Partial ref 0.97962 0.99986 0.98311 0.96464 0.99980 0.97030 0.96343 0.99952 0.97962
Full ref 0.97862 0.99982 0.98211 0.96272 0.99974 0.96837 0.96117 0.99922 0.97862
AgrMaker 0.97895 0.99985 0.98243 0.96324 0.99976 0.96896 0.96206 0.99903 0.96363
Aroma 0.97958 0.99978 0.98410 0.96442 0.99966 0.97186 0.96350 0.99729 0.96456
ASMOV 0.97957 0.99971 0.98361 0.96436 0.99961 0.97098 0.96309 0.99870 0.96499
BLOOMS 0.97989 0.99984 0.98359 0.96498 0.99976 0.97105 0.96375 0.99868 0.96507
CODI 0.98020 0.99996 0.98253 0.96551 0.99994 0.96929 0.96384 0.99993 0.96508
Ef2Match 0.97941 0.99987 0.98279 0.96407 0.99980 0.96960 0.96281 0.99948 0.96467
GeRMeSMB 0.97934 0.99990 0.97994 0.96347 0.99985 0.96452 0.96137 0.99932 0.96144
NBJLM 0.97914 0.99984 0.98257 0.96366 0.99975 0.96924 0.96219 0.99908 0.96401
SOBOM 0.97966 0.99986 0.98320 0.96461 0.99978 0.97037 0.96336 0.99926 0.96514
TaxoMap 0.97923 0.99978 0.98284 0.96395 0.99971 0.96982 0.96276 0.99971 0.96463

A question also raised from this experiment is why the lower cardinality distance
measure produces the 4th greatest SAQ values. It too uses the downsets to
determine the distance between two concepts. In [30], dl was chosen with the
rationale that the ontologies are more strongly down-branching than up-branching so
that down-sets are larger. Siblings deep in the hierarchy are closer together than
siblings high in the hierarchy. The intuition behind this seems faulty. The lower
cardinality distance suffers from the same problem that the downset set-based
measures suffer from what happens when there is no downset intersection. The
SAQ using |dl(a,b) - dl | translates into the difference between the sum of the
number of descendents for a and b and the sum of the number of descendents for

tly in the total number of
descendents within their respective ontologies does not mean the mapping is a good
mapping. The concepts being mapped could all be leaf or close to leaf nodes but in
totally different subtrees of the ontology. Further investigation on the reference
alignment shows that the average number of descendents for source and target
anchors is 3.2 and 2.8. These averages indicate a very small difference in the number
of descendents, and therefore, a very small simDiffaverage.

69

Table 4. Pearson Correlation with p-value for the SAQ and precision, recall, and f-measure.

SAQ Precision
Corr p-value

Recall
Corr p-value

F-measure
Corr p-value

Lower dist 0.7474974 0.01294 -0.1145901 0.7526 0.02893312 0.9368
WP 0.3600771 0.3068 0.6443854 0.2114 0.7366019 0.01511
LC 0.3710125 0.2912 -0.3711803 0.291 -0.3101822 0.3831
Lin 0.314404 0.3763 0.6277758 0.05198 0.7163154 0.01978
Res 0.131069 0.7182 0.7417546 0.01405 0.7808777 0.007669
JC 0.8058114 0.004886 -0.2055725 0.5688 -0.0002435 0.9995
Jacc Up 0.1846966 0.6095 -0.163976 0.6508 -0.05489762 0.8803
Jacc Down 0.6936438 0.0261 -0.3623896 0.3034 -0.1866459 0.6056
Jacc Hour -0.2395826 0.505 0.7383087 0.01475 0.6876649 0.02797
Dice Up 0.2132382 0.5542 0.06231594 0.8642 0.171189 0.6363
Dice Down 0.719249 0.01905 -0.404883 0.2458 -0.2190521 0.5432
Dice Hour -0.2128156 0.555 0.7432621 0.01376 0.6995049 0.02435
Inc Up 0.07231682 0.8426 0.3695583 0.2932 0.4315503 0.213
Inc Down 0.7811095 0.007638 -0.07342486 0.8402 0.08693707 0.8113
Inc Hour 0.1428098 0.6939 0.7285981 0.01685 0.7683169 0.009428

In [30] the Pearson correlation of the lower cardinality distance with the f-measure
was given as -0.780. The Pearson correlation for this measure with precision in Table
4 is a 0.7474974. It is positive here since the SAQ is converted into a quality indicator
by subtracting from 1. The correlation with f-measure is only 0.02893312. The
difference in reported values for the f-measure is unclear unless the reported
correlation value in [30] is actually for precision and not f-measure.

From Table 4, all the downset set-based measures had significant correlation with
precision and yet, the investigation of the downset measures showed the problem with
the huge number of |0 0| cases where the downset intersection for both pairs of
concepts was empty. The Jiang-Conrath (JC) SAQ is the only other one that had
significant correlation with the precision measure. More investigation needs to be
done on the SAQ to validate its high correlation with precision.

5 Conclusions and Future Work

This research has investigated the use of semantic similarity measures to evaluate
the quality of the mappings produced by OA systems and parallels the work in [30]
which experimented with one distance measure between concepts. The research goal
is to develop additional means of alignment evaluation that do not depend on a
reference alignment. As the experimental results show there are some difficulties
with this approach depending on the selected semantic similarity measure.

More research and experiments with SAQ should be undertaken to determine how
useful SAQ is for assisting in ontology alignment evaluation especially with respect
to precision. SAQ correlation with precision is more intuitive than with recall or f-
measure since SAQ is based only on the produced mappings. SAQ has no knowledge
of missed mappings.

70

Further investigation is needed to determine how much poor mappings affect the
resulting SAQ and identify and eliminate these very poor mappings if the semantic
similarity difference is above a specified threshold. The semantic similarity
difference operation might be more useful in the alignment process itself than in the
evaluation of the final mappings. The OA systems in this experiment specifically use
semantic similarity with a knowledge source and not between concepts in the source
and target ontologies in their matching algorithms. If a semantic similarity measure is
used in an OA system s matching process, research is needed to see how the SAQ
evaluation of its mapping result may be biased based on the selected measure.

Acknowledgments. The authors acknowledge the implementation of the SAQ
measure was embedded in AgreementMaker and Cosmin Stroe served as a consultant.

References

1. Giunchiglia, F. Shvaiko, P. and Yatskevich, M.: S-Match: an algorithm and an
implementation of semantic matching. Technical Report DIT-04-015, Department of
Information Engineering and Computer Science, University of Trento. Proc. of the first
European Semantic Web Symposium (ESWS) (2004)

2. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Ontology Matching: A Machine
Learning Approach. In: Handbook on Ontologies in Information Systems. pp. 397 416.
Springer (2003)

3. Rodriguez, M. A., Egenhofer, M. J.: Determining Semantic Similarity among Entity Classes
from Different Ontologies. IEEE Transactions on Knowledge and Data Engineering, vol. 15,
issue 2, pp, 442--456 (2003)

4. Tversky, A.: Features of Similarity. Psychological Rev., 84, pp. 327--352 (1977)
5. Sabou, : Exploring the Semantic Web as Background Knowledge

for Ontology Matching. J. Data Semantics 11, pp. 156--190 (2008)
6. Miller, G., Beckwith, R., Fellbaum, C., Gross, D., and Miller, K.J.: Introduction to Wordnet:

An on-line Lexical Database. International Journal of Lexicography 3(4), pp. 235 244
(1990)

7. Euzenat, J., Valtchev, P.: An integrative proximity measure for ontology alignment. In: Proc.
ISWC-2003 Workshop on semantic information integration, Sanibel Island (FL US), pp. 33-
-38 (2003)

8. Tang, J., Liang, B.Y., Li, Juanzi, Wang, Kehong: Risk Minimization based Ontology
Mapping. 2004 Advanced Workshop on Content Computing (AWCC). LNCS, vol. 3309,
pp. 469--480. Springer-Verlag (2004)

9. Li, Juanzi, Tang, Jie, Yi, Li, Luo, Qiong: RiMOM: A Dynamic Multistrategy Ontology
Alignment Framework. IEEE Transactions on Knowledge and Data Engineering, vol. 21
issue. 8. pp. 1218--1232 (2009)

10. Unified Medical Language System (UMLS) http://umlsks.nlm.nih.gov
11. Cruz, I. F., Sunna, W.: Structural Alignment Methods with Applications to Geospatial

Ontologies. Transactions in GIS, Special Issue on Semantic Similarity Measurement and
Geospatial Applications vol. 12 no. 6, pp. 683 711 (2008)

12. Cruz, I F., Palandri Antonelli, F., Stroe, C.: AgreementMaker: Efficient Matching for
Large Real-World Schemas and Ontologies. PVLDB,vol. 2, no. 2, pp. 1586--1589 (2009).

13. Cruz, I. F., Stroe, C., Caci, M., Caimi, F., Palmonari, M., Palandri Antonelli, F., Keles, U.
C.: Using AgreementMaker to Align Ontologies for OAEI. In: ISWC International

71

Workshop on Ontology Matching (OM), ser. CEUR Workshop Proceedings vol. 689, pp.
118 125 (2010)

14. Jean-Mary, Y.R., Shironoshita, E. P., Kabuka, M. R.: Ontology matching with semantic
verification. Web Semantics, vol 7 issue 3. pp. 235--251 (2009)

15. Posse, C., Sanfilippo, A., Gopalan, B., Riensche, R., Beagley, N., Baddeley, B.: Cross-
Ontological Analytics: Combining Associative and Hierarchical Relations in the Gene
Ontologies to Assess Gene Product Similarity. International Conference on Computational
Science (2), pp. 871 878 (2006)

16. d'Amato , C., Fanizzi, N., Esposito, F.: A dissimilarity measure for ALC concept
descriptions. In: Proc. ACM Symposium on Applied Computing (SAC), ACM.
pp. 1695 1699 (2006)

17. Araujo, R., and Pinto, H. S. Towards semantics-based ontology similarity. In: Proc.
Workshop on Ontology Matching (OM), International Semantic Web Conference (ISWC).
(2007)

18. Janowicz, K., Wilkes, M.: SIM-DL_A: A Novel Semantic Similarity Measure for
Description Logics Reducing Inter-Concept to Inter-Instance Similarity. In: The 6th Annual
European Semantic Web Conference (ESWC2009). Lecture Notes in Computer Science
5554, Springer. pp. 353-367 (2009)

19. Cross, V. and Yu, Xinran: Investigating Ontological Similarity Theoretically with Fuzzy
Set Theory, Information Content, and Tversky Similarity and Empirically with the Gene
Ontology. In: Proc. of the 5th International Conference on Scalable Uncertainty
Management, Dayton OH (2011)

20.Rada R, Mili H, Bicknell E, Blettner M: Development and Application of a Metric on
Semantic Nets. In: IEEE Transaction on Systems, Man, and Cybernetics vol. 19, pp. 17 -30
(1989)

21. Leacock C. and Chodorow, M.: Combining local context and WordNet Similarity for Word
Sense Identification. In: WordNet: An Electronic Lexical Database. Fellbaum, Ed.
Cambridge, MA: MIT Press, pp. 265--283 (1998)

22. Su, Xiaomeng: Semantic Enrichment for Ontology Mapping, Ph.D. Thesis, Dept. of
Computer and Information Science, Norwegian University of Science and Technology
(2004)

23. Wu Z, Palmer M. S.: Verb Semantics and Lexical Selection. In: Proc. of the 32nd. Annual
Meeting of the Association for Computational Linguistics, pp. 133--138. (1994)

24. Resnik, P.: Using Information Content to Evaluate Semantic Similarity in Taxonomy. In:
Proc. of the 14th International Joint Conference on Artificial Intelligence, pp, 448--453
(1995)

25. Seco N, Veale T, Hayes J.: An Intrinsic Information Content Metric for Semantic Similarity
in Wordnet. In: ECAI. pp. 1089--1090 (2004)

26. Lin D.: An Information-theoretic Definition of Similarity. In: Proc. of the 15th
International Conference on Machine Learning. Morgan Kaufmann. pp. 296--304 (1998).

27. Giuseppe, P., Talia D.: UFOme: An Ontology Mapping System with Strategy Prediction
Capabilities. Data Knowl.Eng. vol. 69 no. 5, pp. 444--71 (2010)

28. Jiang J, Conrath D: Semantic Similarity Based on Corpus Statistics and Lexical Taxonomy.
In: Proc. of the 10th International Conference on Research on Computational Linguistics,
Taiwan (1997)

29. Cross V., Sudkamp, T.: Similarity and Compatibility in Fuzzy Set Theory, Heildelberg:
Physical-Verlag (2002)

30. Joslyn, Cliff A., Paulson, P., White, A.: Measuring the Structural Preservation of Semantic
Hierarchy Alignment. In: ISWC International Workshop on Ontology Matching. CEUR-
WS. (2009).

31. Euzenat, J.et al.: The Results of the Ontology Alignment Evaluation Initiative 2010.
Ontology Matching Workshop, International Semantic Web Conference (2010)

72

Ontology matching benchmarks:
generation and evaluation

Maria Roşoiu, Cássia Trojahn, and Jérôme Euzenat

INRIA & LIG, Grenoble, France
Firstname.Lastname@inria.fr

Abstract. The OAEI Benchmark data set has been used as a main ref-
erence to evaluate and compare matching systems. It requires matching
an ontology with systematically modified versions of itself. However, it
has two main drawbacks: it has not varied since 2004 and it has become
a relatively easy task for matchers. In this paper, we present the de-
sign of a modular test generator that overcomes these drawbacks. Using
this generator, we have reproduced Benchmark both with the original
seed ontology and with other ontologies. Evaluating different matchers
on these generated tests, we have observed that (a) the difficulties en-
countered by a matcher at a test are preserved across the seed ontology,
(b) contrary to our expectations, we found no systematic positive bias
towards the original data set which has been available for developers to
test their systems, and (c) the generated data sets have consistent results
across matchers and across seed ontologies. However, the discriminant
power of the generated tests is still too low and more tests would be
necessary to draw definitive conclusions.
Keywords: Ontology matching, Matching evaluation, Test generation,
Semantic web.

1 Introduction

Evaluating ontology matching may be achieved in several ways. The most com-
mon one consists of providing matchers with two ontologies and comparing the
returned alignment with a reference alignment [4]. However, this raises the issue
of the choice of ontologies and the validity of the reference.

Since 2004, the Ontology Alignment Evaluation Initiative (OAEI)1 makes
available a collection of data sets for evaluating matching systems. One such
data set is Benchmark. It is a well-defined set of tests in which each test is
composed of two ontologies and a reference alignment. The tests are based on one
particular ontology, from the bibliographic domain, and systematic alterations
of this ontology, e.g., removing classes, renaming properties.

Benchmark was designed with the aim of covering the problem space, i.e.,
the various situations in which a matcher may be. However, this data set has
various drawbacks: (a) lack of realism: tests are mechanically generated and cover

1 http://oaei.ontologymatching.org/

73

a systematic alteration space, (b) lack of variability: it always uses the same seed
ontology altered in the exact same way, and (c) lack of discriminability: the tests
are not difficult enough to discriminate well matchers.

We are not particularly interested in Drawback (a) because it has been over-
came by other data tests made available by OAEI. We focus on drawbacks (b)
and (c). To that extent, we have developed a test generator that may be used
with any seed ontology and allows for fine tuning the input parameters, as well
as randomized modifications over the ontology entities. A byproduct of this gen-
erator is that it enables us to evaluate the relevance of the Benchmark dataset:
by reproducing this dataset and using it to evaluate different matchers in the
same conditions, we can assess how much the results obtained are dependent on
the particular seed ontology or the particular matcher.

We run different matchers on the generated tests, which allows us to draw
conclusions on the results obtained so far with Benchmark:

– The difficulties encountered by a matcher at a test are preserved across the
seed ontology, hence, Benchmark is relevant.

– Matchers have, in general, no better results with the original Benchmark than
with the new generated data sets, this goes counter our expectation that,
because tests and results were available, matchers would perform better.

– Matcher results are generally consistent across seed ontologies and ontology
results are generally consistent across matchers, but with low discrimination.
This confirm that the lack of discriminability is due to Benchmark and not
to the seed ontology.

The rest of the paper is structured as follows. In Section 2, we present the
state-of-the-art in ontology matching test generation. In Section 3, we present
the architecture of our test generator and the strategy we came with in order
to reproduce the Benchmark dataset. In Section 4, we expose the results we
have obtained with new generated datasets and their variability. Finally, the
conclusions and future work are presented in Section 5.

2 Ontology matching evaluation and test generation

In this section, we briefly present the current setting of ontology matching eval-
uation (Section 2.1), the Benchmark data set (Section 2.2) and the state-of-the-
art in alignment test generators (Section 2.3). The interested reader can find a
broader overview of ontology matching evaluation in [4].

2.1 Evaluating ontology matching systems

Matching can be seen as an operation which takes as input two ontologies (o and
o′), a set of parameters (p), a possibly empty partial alignment (A′) and a set of
resources (r) and outputs an alignment (A) between these ontologies (Fig. 1).

An alignment can be defined as a set of correspondences. A correspondence
between two ontologies o and o′ is a triple 〈e, r, e′〉, where e is an entity belonging

74

to the first ontology, e′ is an entity belonging to the second ontology, r is a
relation, e.g., equivalence or subsumption, between them.

o

o′

matching

parameters

resources

A′

R

evaluator m

Fig. 1: Ontology matching process and evaluation (from [5]).

A matcher can be evaluated comparing its output alignment (A) with a
reference alignment (R) using some measure (Fig. 1). Usually, such measures
are precision, recall and F-measure [5]. Thus, in order to evaluate a matching
system, one has to generate datasets in which a test is composed of two ontologies
to be matched (o and o′) and a reference alignment (R).

2.2 The Benchmark dataset

Benchmark aims at testing the strengths and the weaknesses of matching sys-
tems, depending on the availability of ontology features. This dataset has 111
tests, requiring to match an ontology written in OWL-DL to another one:

– Tests 1xx - compare the original ontology with itself, a random one and its
generalization in OWL-Lite.

– Tests 2xx - compare the original ontology with the ontology obtained by
applying the following set of modifications to it (Fig. 2):
• names (naming conventions: synonyms, random strings, different gener-

alization, translation into other language)
• comments (no comments)
• hierarchy (flattened hierarchy / expanded hierarchy / no specialization)
• instances (no instance)
• properties (no properties, no restrictions)
• classes (flattened classes / expanded classes)

– Test 3xx - compare the original ontology with real ones found on the web.

Since 2004, Benchmark has been generated from the same seed ontology through
the same set of XSLT stylesheets. This means, in particular, that no random
modification is applied to these ontologies: the same 20% of classes are renamed
and this renaming is always the same. This has advantages for studying the
evolution of the field, because the test is always the same.

However, the Benchmark data set can be criticised on three main aspects:

75

203

208 209 210

204

201-2

205 206

207

251-2 248-2249-2 250-2252-2 202-2

230 231

259-8

259

266

260-4

260-6

260-8

254

262

260-2251-4 258-2

251-6 258-4

251

258260

265

240

261-2 247

261-4

252-8

252 261-8

261

248-4 254-2253-2

248-6 254-4253-4 262-2202-6

250-8 248-8251-8 249-8202-8

254-8250 257-8248 253-8258-8249202

225

228

239233236

259-2 257-2249-4

259-4 257-4249-6

259-6 254-6 253-6 262-4

262-8

250-6

261-6 257-6

262-6

202-4

252-6

258-6

237

246

253

250-4

257

238

252-4

201-4

241

201

101

222221224223

232

201-6

201-8

Fig. 2: The Benchmark lattice – the higher the test is in the hierarchy, the easier
it is. Tests in dashed lines are not reproduced in the tests we used here (see §4).

Lack of realism Benchmark is not realistic because it covers a whole system-
atic space of mechanical alterations and in reality a matcher is not faced
with such a space.

Lack in variability Benchmark always produces the same data set hence it
is not variable. This covers three slightly different kinds of problems: (a)
it can only be used with one seed ontology, (b) it always applies the same
transformations (to the same entities), instead of applying them randomly,
and (c) it is not flexible in the sense that it is not possible to produce an
arbitrary test (such as 12% renaming, 64% discarding properties).

Lack of discriminability [7] Benchmark seems in general easy enough to OAEI
participants so that they do not really allow them to make progress and to
compare them. This is because, many of the proposed tests are easy and
only a few are really difficult.

Our goal is to address variability and discriminability by producing a test gen-
erator (a) independent from the seed ontology, (b) with random modifications,
and (c) which allows to fine tune parameters in order to cover the alteration
space with any precision. With such a test generator it would be possible to gen-
erate different tests than Benchmark focusing on particular application profiles
or particularly difficult cases.

We do not address the lack of realism because Benchmark has been designed
to cover the problem space and not to offer one realistic profile2. Other initiatives,
such as other tracks of OAEI and other generators, address this issue.
2 One reviewer argues that we currently consider an alteration space, instead of a

problem space, which assumes some realism, i.e., that these problems actually occurs.
Moreover, (s)he write that we choose the kind of alteration and the granularity. This
is right. But this alteration space is our attempt to cover, and not to represent, the
problem space.

76

2.3 Other ontology alignment generators

So far, some alignment test generators have been developed.
An ontology generator inspired by Benchmark is the one developed in [2]. Its

seed ontology is a random tree which is computed using a Gaussian distribution
with average 4 and deviation 4 in order to determine the number of children per
node. The second ontology is obtained from the first one by applying a set of al-
terations, similar to the ones used in Benchmark, such as label replacement, word
addition or removal in labels, node deletion and node child addition and children
shuffling. Then, these two generated ontologies are used to generate alignments
between them. The aim of generating the original ontology is to perform realistic
tests and to allow a wider coverage of variations in their structure.

The generator proposed in [10] satisfies two requirements: (a) to generate the
structure and the instances of two taxonomies, and (b) to generate the mappings
between these two generated taxonomies. Both taxonomies must have a fixed
size and a Boltzmann sampler is used to achieve this. The probabilistic model
used ensures an equal probability of appearance of a tree having a given size.
Therefore, the input data is controlled using this sampler. The number of child
nodes is controlled as well. Then, the mappings between the two taxonomies are
generated, which must not be contradicted by the generated data. To achieve
this goal, three constraints were enforced: the mappings must not introduce a
cycle in the newly obtained graph (the mappings and the two given taxonomies),
the mappings must not contradict the knowledge of the two taxonomies and they
must not entail each other. In the end, instances are generated.

The TaxMe method [7] is build from existing directories and only approx-
imates the reference alignment, it is not really a generator. In XML schema
matching, STBenchmark [1] offers a way to generate one precise test (pair of
schemas) by altering a source schema based on the combination of 11 base alter-
ators. Their combination is defined through a set of input parameters. Swing [6]
takes a similar approach as Benchmark and introduces a new interesting way of
altering ontologies by using patterns. However, it is not an automatic generator
and it is aimed at generating instance data: the same ontology is, in the end,
used for all tests.

We decided to rewrite our own generator because we wanted to reproduce
Benchmark first. Tournaire’s generator was not suited because he was aiming at
realism; Besana’s generator would have been useful but was not available.

3 A modular benchmark test generator

We developed a test generator in Java based on the Jena API3. We present the
principles of the generator (Section 3.1) and the testing strategy (Section 3.2).

3 http://jena.sourceforge.net/ontology/index.html

77

3.1 Generator principles

Test generator architecture. The basic principles of the test generator is that,
from one ontology, it can generate an altered one and an alignment between these
two ontologies. The generator can as well accept a generated ontology, that is
useful for generating scalability tests.

Because the alterations may be applied in sequence, we designed an alterator
module taking as input an ontology and an alignment between this ontology and
the seed ontology. This module outputs an altered ontology and an alignment
between this ontology and the seed one (Fig. 3).

alterator

p
o

A

o′

A′

Fig. 3: Modular structure of test generators.

Test generator parameters. In order to assess the capability of matchers with
respect to particular ontology features, we consider the following alterations:
remove/add percentage of classes; remove/add percentage of properties; remove
percentage of comments; remove percentage of restrictions; remove all classes
from a level; rename percentage of classes; rename percentage of properties; add
a number of classes to a specific level; flatten a level; remove individuals.

o
o′

R

p

remove
classes

flatten
hierarchy

rename
properties

40%

100%

100%

Fig. 4: Modular one-shot test generation.

Generating a dataset. For modifying an ontology according to a set of pa-
rameters we use the generator as illustrated in Fig. 4. It receives as input the
seed ontology and the parameters which represent the alterations to be apply.
The output is the modified ontology and the reference alignment. The program
is implemented in a serial manner.

The test generator can be also used to reproduce data sets such as Bench-
mark. For that purpose, the program will either generate all the required tests
independently by running in parallel the necessary composition of alterators

78

253-4

253-4

254-4

254-4

202-4

202-4

o

rename
classes

40%
flatten

hierarchy

100%
remove

instances

100%

rename
classes

40%
flatten

hierarchy

100%
remove

properties

100%

rename
classes

40%

rename
classes

40%

flatten
hierarchy

100%

remove
instances

100%

remove
properties

100%

Fig. 5: Random (left) and continuous (left) test suite generation.

(Fig. 5, left) or generate them in sequence, as the initial Benchmark data set,
i.e., by using a previous test and altering it further (Fig. 5, right). In the latter
case, this corresponds to selecting paths in the lattice of Fig. 2 which cover the
whole data set.

This approach may also be used to generate complete data sets covering
the whole alteration space with a varying degree of precision (incrementing the
alteration proportion by 50% or by 2%).

3.2 Preliminary experiments

Before evaluating matchers on the generated data sets, we have tested the gen-
erator through unit tests, checking if the percentage of alteration was indeed
respected. Initially, the parameters were applied in a random order, using the
bibliographic ontology as basis. From the results, we noticed a non expected
matcher behaviour, that allowed us to improve the generation strategy.
Random vs. continuous policies. Contrary to expected, matchers did not
had a continuous degradation of their performances as more alterations were
applied. This made difficult to read one Benchmark test result, as developers
would like to read them. This is the consequence of generating the dataset fully
randomly (Fig. 5, left), where each test is generated independently from the
others. In this modality, some tests with more alterations may be easier than
other with less alterations by chance.

We validated this explanation by generating continuous tests (Fig. 5, right)
as Benchmark were generated. In this case, new tests are generated from pre-
vious ones with the modular architecture of the generator. This behaviour is
only observable locally, i.e., on one data set. When generating randomly sev-
eral datasets, matcher behaviours are on average continuous. In results reported
below, half of the tests were obtained with the random generation and half of

79

them with continuous generation. Their results are the same (within 1 percentage
point variation).
Modification dependencies. We observed that test difficulty may not be the
same across tests supposed to have the same amount of alteration. This is ex-
plained by the dependency between alterations. Consider, for example, a scenario
in which we would like to remove 60% of classes and to rename 20% of classes.
According to these two parameters, three extreme cases may happen (as illus-
trated in Fig. 6):

– rename 20% of classes and then remove 60% of classes, including all renamed
classes. In this situation, the test is easier than expected because all renamed
classes have been removed;

– rename 20% of classes and then remove 60% of classes, including a part of
renamed classes. In this situation, the test is as hard as expected because
the required proportion of the renamed classes have been removed.

– rename 20% of classes and then remove 60% of classes, without removing
a renamed class. In this situation, the test is harder than expected because
none of the renamed classes has been removed.

easier

removed classes
renamed classes

expected

removed classes

renamed classes

harder

removed classes

renamed classes

Fig. 6: Test dependency.

Hence, a random disposition of parameters might reduce the really hard
cases. As can be seen from the example, the nominal expected case may be
restored by removing 60% of the classes before renaming 20% of the remaining.
Therefore, we established a relevant order for parameters: remove classes, remove
properties, remove comments, remove restrictions, add classes, add properties,
rename classes, rename properties. In this way, we obtained the expected results.
This order helps determining the paths in Fig. 2 used for generating Benchmark.
Such an order was not previously observed in the Benchmark tests because the
value of parameters, except rename resources, was set to the value of 100%.

4 Benchmark validity

In order to test the validity of the Benchmark dataset principles, we used the
test generator to reproduce them with different characteristics. Three modalities
were used in the evaluation:

80

1. Regenerate the dataset using the same bibliographic ontology (biblio).
2. Generate datasets from two conference ontologies [11] (cmt and ekaw), of

similar size and expressiveness as biblio.
3. Generate datasets from other ontologies of two other domains (tourism4 and

finance5).

These modalities were chosen because we assume that since participants have
had the opportunity to test their systems with the original Benchmark, their
results may be higher. The same holds for the conference dataset that these
systems had the occasion to deal with, while the third group of tests is new for
them. We thus expected them to be harder. We could evaluate the robustness of
our generator, since the finance ontology has more than 300 classes and almost
2000 individuals.

In order to remove the possibility that the obtained results are an artifact
of the generated test, we ran the tests five times for each method (continuous
and random) and then we computed the average among the obtained results.
Likewise, the tests are the same at each run (these tests are 201-202, 221-225, 228,
232-233, 236-241, 246-254, 257-262, 265-266). We decided not to reproduce the
ones in which the labels are translated into another language or the ones in which
the labels are replaced with their synonyms, because the corresponding alterators
are not sufficiently good. The same algorithms with the same parameters have
been used for all tests (the tests with the original Benchmark have been run
again). In total, the results of this section are based on the execution of (1+(5
ontologies × 5 runs × 2 modalities) × 102 tests × 3 matchers =) 15606 matching
tasks, i.e., a matcher has been run against a pair of ontologies and the result has
been evaluated against a reference alignment.

4.1 Matchers

To test the generator, we used three different matchers participating in previous
OAEI: Aroma, Anchor-Flood (Aflood) and Falcon-AO (Falcon). They are stable
enough and generally available, yet sufficiently different.

Anchor-Flood tries to find alignments starting with some anchors and using
the locality of a reference (super-concepts, sub-concepts, siblings, etc.) [8]. It is
composed of two modules. The first one uses lexical and statistical information
to extract the initial anchors. Then, starting with these anchors, it builds small
blocks across ontologies and establishes the similarities between the two found
blocks. Each similarity is stored in a partial alignment and, the process continues
using as anchors the pairs found in the partial alignment. The process finishes
when no more correspondences are found. We have used the preliminary OAEI
2010 version of Aflood.

Aroma [3] is divided in three stages. First, it builds a set of relevant terms
for each entity, i.e. class or property. In order to achieve this, a single and binary

4 http://www.bltk.ru/OWL/tourism.owl
5 http://www.fadyart.com/ontologies/data/Finance.owl

81

term extractor applied to stemmed text is used to extract the vocabulary of
a class or a property. In the second stage, the subsumption relations between
entities are found using the implication intensity measure and an association rule
model. Third, it establishes the best correspondence for each entity deducing first
the equivalence relations, then suppressing the alignment graph cycles and the
redundant correspondences. We have used Aroma 1.1.

Falcon-AO [9] is composed of two matchers: a linguistic (LMO) and a struc-
tural matcher (GMO). The linguistic matcher has two parts. The first one uses
string comparisons and the second one uses virtual documents to describe each
ontology entity. A virtual document is a “bag of words” containing the name,
the comments, the labels and also neighbors names or labels of an entity. Vector
space techniques are employed to measure the similarity between these virtual
documents. The structural matcher represents an ontology as a bipartite graph
and tries to find the similarity between the two input ontologies. In the end, if the
result returned by the linguistic matcher is satisfying, it is returned. Otherwise,
the structural matcher result is returned. We have used Falcon-AO 0.3.

4.2 Results

Table 1 provides the aggregated precision, recall and F-measure for each matcher
and each data set. We discuss them only from the standpoint of F-measure
because it allows for a more direct comparison.

original biblio cmt ekaw tourism finance Σ

P F R P F R P F R P F R P F R P F R F
Aflood .99 .87 .78 .75 .67 .59 .95 .72 .58 .95 .72 .58 .94 .76 .62 .96 .78 .66 .75
Aroma .79 .63 .53 .86 .68 .55 .92 .65 .50 .96 .68 .52 .85 .74 .64 .94 .73 .60 .68
Falcon .83 .76 .70 .85 .77 .70 .82 .69 .59 .89 .70 .57 .83 .73 .65 .92 .77 .66 .74

Average .74 .71 .69 . .70 .74 .76 72

Table 1: Average results (on 5 random and 5 continuous runs) for the 2xx Bench-
mark series for the three matchers and six data sets.

First, we observed independently that the difficulties encountered by a matcher
at a test are preserved across the seed ontology. Hence, Benchmark is useful for
identifying weaknesses in matchers. What we mean here, is that by looking at the
results, test by test, the relative performance of test for a matcher is preserved
across seed ontologies. This is not visible in Table 1.

Then, for most of the matchers, the results obtained with the original Bench-
mark are not the highest. This goes counter our expectation of a positive bias in
favour of the original Benchmark. In fact, the results are contrasted since Aflood
has a significantly better score than with the reproduced Benchmark, Aroma
has its worse score and Falcon has a very close score. It seems that the original

82

Benchmark is quite hard because for two matchers, results are better on the
(randomised) reproduced Benchmark. Original Benchmark results, even if they
do not show a systematic positive bias, seems to be the outlier.

The two other groups of tests, ekaw and cmt on one hand and tourism and
finance on the other hand, have homogeneous results within the group and dif-
ferent results across groups. This indicates that the type of seed ontology has
an influence on the results but for ontologies of the same type results are ho-
mogeneous. It seems that biblio is harder than conference which is harder than
tourism-finance and this for all matchers (but Falcon).

But overall, results are found in the same range. If we exclude the results of
Aflood and Aroma on the original Benchmark, the results of matchers vary of
11, 9 and 8 percentage points respectively.

Similarly, the order between matchers observed with the original Benchmark
seems to be preserved in four out of six data sets. Surprisingly, the main outlier is
the reproduced Benchmark. However, the few percentage point difference that is
observed do not allow us to conclude, especially with respect to the 24 percentage
points observed for the original Benchmark and the 10 percentage points in
reproduced Benchmark.

What we observe is a relative homogeneity of these results: there is no more
diversity across matchers than across data sets. In fact, the lack of discriminabil-
ity observed in Benchmark is even reinforced in the other tests: the original
Benchmark has 24 percentage points span while the reproduced biblio has only
10 points and the other data sets are lower. Hence, this is a property of the
alterations generating Benchmark, thus another type of generation should be
used.

5 Conclusion

In this paper we have looked for improving the tools available for evaluating
ontology matchers. For that purpose, we have developed a test generator which
follows a simple modular architecture and API. This generator does not depend
on the seed ontology. It allows different modifications at each run of the program
and the set of input parameters can be adjusted in order to cover the problem
space with any precision. The generator can be extended by adding new ontology
modifier modules and it can be used for generating individual tests with con-
trolled characteristics as well as full data sets. Thus, we have largely improved
the variability of generated tests.

The test generator was used to reproduce the Benchmark dataset not only for
the bibliographic ontology, but for other ontologies with different structures. We
observed that the obtained results are not better on original Benchmark than
on new and different ontologies. This contradicts the assumption that there is a
systematic positive bias towards Benchmark.

We observed that for the same type of seed ontology, each matcher has ho-
mogeneous results and that the order between matchers obtained on the original

83

Benchmark (Aflood, Falcon, Aroma) was preserved in four cases out of six. How-
ever, the difference between systems is too small to draw definitive conclusions.
The new tests still lack discriminability. It is thus a feature of the Benchmark
generation modalities.

We plan to improve these experiments by using other matching systems. This
can be achieved using the SEALS platform and it is planned for the OAEI 2011
campaign for which the generator will be used. We may also use different more
difficult generation modalities, in order to increase discriminability. Another per-
spective is to use the test generator for exploring the notion of test hardness,
that could help to better approach the lack of discriminability.

Acknowledgements

This work has been partially supported by the SEALS project (IST-2009-238975).

References

1. Bogdan Alexe, Wang-Chiew Tan, and Yannis Velegrakis. STBenchmark: towards
a benchmark for mapping systems. In Proc. 34th Very Large Databases conference
(VLDB), Auckland (NZ), pages 230–244, 2008.

2. Paolo Besana. Predicting the content of peer-to-peer interactions. PhD thesis,
University of Edinburgh, 2009.

3. Jérôme David, Fabrice Guillet, and Henri Briand. Association rule ontology match-
ing approach. International Journal of Semantic Web and Information Systems,
3(2):27–49, 2007.

4. Jérôme Euzenat, Christian Meilicke, Heiner Stuckenschmidt, Pavel Shvaiko, and
Cássia Trojahn dos Santos. Ontology alignment evaluation initiative: Six years of
experience. Journal of Data Semantics, XV:158–192, 2011.

5. Jérôme Euzenat and Pavel Shvaiko. Ontology matching. Springer-Verlag, Heidel-
berg (DE), 2007.

6. Alfio Ferrara, Stefano Montanelli, Jan Noessner, and Heiner Stuckenschmidt.
Benchmarking matching applications on the semantic web. In Proc. 8th Extended
Semantic Web Conference (ESWC), Herssounisos (GR), number 6644 in Lecture
notes in computer science, pages 108–122, 2011.

7. Fausto Giunchiglia, Mikalai Yatskevich, Paolo Avesani, and Pavel Shvaiko. A large
scale dataset for the evaluation of ontology matching systems. Knowledge engi-
neering review, 24(2):137–157, 2009.

8. Md. Seddiqui Hanif and Masaki Aono. Anchor-flood: Results for OAEI 2009. In
Proc. 4th ISWC workshop on ontology matching (OM), Washington (DC US), 2009.

9. Wei Hu, Yuzhong Qu, and Gong Cheng. Matching large ontologies: A divide-and-
conquer approach. Data and Knowledge Engineering, 67(1):140–160, 2008.

10. Rémi Tournaire. Découverte automatique de correspondances entre ontologies. PhD
thesis, Université de Grenoble, 2010.

11. Ondřej Šváb, Vojtěch Svátek, Petr Berka, Dušan Rak, and Petr Tomášek. Onto-
farm: Towards an experimental collection of parallel ontologies. In Poster Track
of ISWC, 2005.

84

Final results of the
Ontology Alignment Evaluation Initiative 2011�

Jérôme Euzenat1, Alfio Ferrara2, Willem Robert van Hage3, Laura Hollink4, Christian
Meilicke5, Andriy Nikolov6, François Scharffe7, Pavel Shvaiko8, Heiner

Stuckenschmidt5, Ondřej Šváb-Zamazal9, and Cássia Trojahn1

1 INRIA & LIG, Montbonnot, France
{jerome.euzenat,cassia.trojahn}@inria.fr

2 Universita degli studi di Milano, Italy
ferrara@dico.unimi.it

3 Vrije Universiteit Amsterdam, The Netherlands
W.R.van.Hage@vu.nl

4 Delft University of Technology, The Netherlands
l.hollink@tudelft.nl

5 University of Mannheim, Mannheim, Germany
{christian,heiner}@informatik.uni-mannheim.de

6 The Open University, Milton Keynes, UK
A.Nikolov@open.ac.uk
7 LIRMM, Montpellier, FR

francois.scharffe@lirmm.fr
8 TasLab, Informatica Trentina, Trento, Italy

pavel.shvaiko@infotn.it
9 University of Economics, Prague, Czech Republic

ondrej.zamazal@vse.cz

Abstract. Ontology matching consists of finding correspondences between se-
mantically related entities of two ontologies. OAEI campaigns aim at comparing
ontology matching systems on precisely defined test cases. These test cases can
use ontologies of different nature (from simple directories to expressive OWL
ontologies) and use different modalities, e.g., blind evaluation, open evaluation,
consensus. OAEI-2011 builds over previous campaigns by having 4 tracks with 6
test cases followed by 18 participants. Since 2010, the campaign has been using
a new evaluation modality which provides more automation to the evaluation. In
particular, this year it allowed to compare run time across systems. This paper is
an overall presentation of the OAEI 2011 campaign.

1 Introduction

The Ontology Alignment Evaluation Initiative1 (OAEI) is a coordinated international
initiative, which organizes the evaluation of the increasing number of ontology match-
ing systems [10; 8; 15]. The main goal of OAEI is to compare systems and algorithms
� This paper improves on the “First results” initially published in the on-site proceedings of the

ISWC workshop on Ontology Matching (OM-2011). The only official results of the campaign,
however, are on the OAEI web site.

1 http://oaei.ontologymatching.org

85

on the same basis and to allow anyone for drawing conclusions about the best match-
ing strategies. Our ambition is that, from such evaluations, tool developers can improve
their systems.

Two first events were organized in 2004: (i) the Information Interpretation and In-
tegration Conference (I3CON) held at the NIST Performance Metrics for Intelligent
Systems (PerMIS) workshop and (ii) the Ontology Alignment Contest held at the Eval-
uation of Ontology-based Tools (EON) workshop of the annual International Semantic
Web Conference (ISWC) [17]. Then, a unique OAEI campaign occurred in 2005 at the
workshop on Integrating Ontologies held in conjunction with the International Confer-
ence on Knowledge Capture (K-Cap) [1]. Starting from 2006 through 2010 the OAEI
campaigns were held at the Ontology Matching workshops collocated with ISWC [9;
7; 2; 5; 6]. Finally in 2011, the OAEI results were presented again at the Ontology
Matching workshop collocated with ISWC, in Bonn, Germany2.

Since last year, we have been promoting an environment for automatically process-
ing evaluations (§2.2), which were developed within the SEALS (Semantic Evaluation
At Large Scale) project3. This project aims at providing a software infrastructure for au-
tomatically executing evaluations, and evaluation campaigns for typical semantic web
tools, including ontology matching. Several OAEI data sets were evaluated under the
SEALS modality. This provides a more uniform evaluation setting.

This paper serves as a synthesis to the 2011 evaluation campaign and as an intro-
duction to the results provided in the papers of the participants. The remainder of the
paper is organized as follows. In Section 2, we present the overall evaluation method-
ology that has been used. Sections 3-6 discuss the settings and the results of each of the
test cases. Section 7 overviews lessons learned from the campaign. Finally, Section 8
outlines future plans and Section 9 concludes the paper.

2 General methodology

We first present the test cases proposed this year to the OAEI participants (§2.1). Then,
we discuss the resources used by participants to test their systems and the execution
environment used for running the tools (§2.2). Next, we describe the steps of the OAEI
campaign (§2.3-2.5) and report on the general execution of the campaign (§2.6).

2.1 Tracks and test cases

This year’s campaign consisted of 4 tracks gathering 6 data sets and different evaluation
modalities:

The benchmark track (§3): Like in previous campaigns, a systematic benchmark se-
ries have been proposed. The goal of this benchmark series is to identify the areas
in which each matching algorithm is strong or weak. The test is based on one partic-
ular ontology dedicated to the very narrow domain of bibliography and a number
of alternative ontologies of the same domain for which reference alignments are

2 http://om2011.ontologymatching.org
3 http://www.seals-project.eu

86

provided. This year, we used new systematically generated benchmarks, based on
other ontologies than the bibliographic one.

The expressive ontologies track offers real world ontologies using OWL modeling
capabilities:
Anatomy (§4): The anatomy real world case is about matching the Adult Mouse

Anatomy (2744 classes) and a part of the NCI Thesaurus (3304 classes) de-
scribing the human anatomy.

Conference (§5): The goal of the conference task is to find all correct correspon-
dences within a collection of ontologies describing the domain of organizing
conferences (the domain being well understandable for every researcher). Ad-
ditionally, ‘interesting correspondences’ are also welcome. Results were evalu-
ated automatically against reference alignments and by using logical reasoning
techniques.

Oriented alignments: This track focused on the evaluation of alignments that contain
other relations than equivalences. It provides two data sets of real ontologies taken
from a) Academia (alterations of ontologies from the OAEI benchmark series), b)
Course catalogs (alterations of ontologies concerning courses in the universities of
Cornell and Washington). The alterations aim to introduce additional subsumption
correspondences between classes that cannot be inferred via reasoning.

Model matching: This data set compares model matching tools from the Model-
Driven Engineering (MDE) community on ontologies. The test cases are available
in two formats: OWL and Ecore. The models to be matched have been automati-
cally derived from a model-based repository.

Instance matching (§6): The goal of the instance matching track is to evaluate the per-
formance of different tools on the task of matching RDF individuals which originate
from different sources but describe the same real-world entity. Instance matching
is organized in two sub-tasks:

Data interlinking (DI) This year the Data interlinking track focused on retrieving
New York Times (NYT) interlinks with DBPedia, Freebase and Geonames.
The NYT data set includes 4 data subsets: persons, locations, organizations and
descriptors that should be matched to themselves to detect duplicates, and to
DBPedia, Freebase and Geonames. Only Geonames has links to the Locations
data set of NYT.

OWL data track (IIMB): The synthetic OWL data track is focused on (i) provid-
ing an evaluation data set for various kinds of data transformations, including
value transformations, structural transformations, and logical transformations;
(ii) covering a wide spectrum of possible techniques and tools. To this end, the
IIMB benchmark is generated by starting from an initial OWL knowledge base
that is transformed into a set of modified knowledge bases by applying several
automatic transformations of data. Participants are requested to find the correct
correspondences among individuals of the first knowledge base and individuals
of the others.

Table 1 summarizes the variation in the results expected from the tests under con-
sideration.

87

test formalism relations confidence modalities language SEALS

benchmarks OWL = [0 1] open EN
√

anatomy OWL = [0 1] open EN
√

conference OWL-DL =, <= [0 1] blind+open EN
√

di RDF = [0 1] open EN
iimb RDF = [0 1] open EN

Table 1. Characteristics of the test cases (open evaluation is made with already published refer-
ence alignments and blind evaluation is made by organizers from reference alignments unknown
to the participants).

This year we had to cancel the Oriented alignments and Model matching tracks
which have not had enough participation. We preserved the IIMB track with only one
participant, especially because the participant was not tied to the organizers and partic-
ipated in the other tracks as well.

2.2 The SEALS platform

In 2010, participants of the Benchmark, Anatomy and Conference tracks were asked
for the first time to use the SEALS evaluation services: they had to wrap their tools as
web services and the tools were executed on the machines of the tool developers [18].

In 2011, tool developers had to implement a simple interface and to wrap their tools
in a predefined way including all required libraries and resources. A tutorial for tool
wrapping was provided to the participants. This tutorial described how to wrap a tool
and how to use a simple client to run a full evaluation locally. After local tests had
been conducted successfully, the wrapped tool was uploaded for a test on the SEALS
portal4. Consequently it was executed on the SEALS platform by the organisers in a
semi-automated way. This approach allowed to measure runtime and ensured the repro-
ducibility of the results for the first time in the history of OAEI. As a side effect, this
approach ensures also that a tool is executed with the same settings for all of the three
tracks. This was already requested by the organizers in the past years. However, this
rule was sometimes ignored by participants.

2.3 Preparatory phase

Ontologies to be matched and (where applicable) reference alignments have been pro-
vided in advance during the period between May 30th and June 27th, 2011. This gave
potential participants the occasion to send observations, bug corrections, remarks and
other test cases to the organizers. The goal of this preparatory period is to ensure that the
delivered tests make sense to the participants. The final test base was released on July
6th, 2011. The data sets did not evolve after that, except for the reference alignment of
the Anatomy track to which minor changes have been applied to increase its quality.

4 http://www.seals-project.eu/join-the-community/

88

2.4 Execution phase

During the execution phase, participants used their systems to automatically match the
ontologies from the test cases. In most cases, ontologies are described in OWL-DL and
serialized in the RDF/XML format [3]. Participants were asked to use one algorithm
and the same set of parameters for all tests in all tracks. It is fair to select the set of
parameters that provides the best results (for the tests where results are known). Beside
parameters, the input of the algorithms must be the two ontologies to be matched and
any general purpose resource available to everyone, i.e., no resource especially designed
for the test. In particular, participants should not use the data (ontologies and reference
alignments) from other test cases to help their algorithms.

Participants can self-evaluate their results either by comparing their output with
reference alignments or by using the SEALS client to compute precision and recall.

2.5 Evaluation phase

Participants have been encouraged to provide (preliminary) results or to upload their
wrapped tools on the SEALS portal by September 1st, 2011. Organizers evaluated the
results and gave feedback to the participants. For the SEALS modality, a full-fledged
test on the platform has been conducted by the organizers and problems were reported
to the tool developers, until finally a properly executable version of the tool has been
uploaded on the SEALS portal. Participants were asked to send their final results or up-
load the final version of their tools by September 23th, 2011. Participants also provided
the papers that are published hereafter.

As soon as first results were available, these results were published on the respective
web pages by the track organizers. The standard evaluation measures are precision and
recall computed against the reference alignments. For the matter of aggregation of the
measures, we used weighted harmonic means (weights being the size of the true posi-
tives). This clearly helps in the case of empty alignments. Another technique that was
used is the computation of precision/recall graphs so it was advised that participants
provide their results with a weight to each correspondence they found. New measures
addressing some limitations of precision and recall have also been used for testing pur-
poses as well as measures for compensating the lack of complete reference alignments.
Additionally, we measured runtimes for all tracks conducted under the SEALS modal-
ity.

2.6 Comments on the execution

For a few years, the number of participating systems has remained roughly stable: 4
participants in 2004, 7 in 2005, 10 in 2006, 17 in 2007, 13 in 2008, 16 in 2009, 15 in
2010 and 18 in 2011. However, participating systems are now constantly changing.

The number of covered runs has increased more than observed last year: 48 in 2007,
50 in 2008, 53 in 2009, 37 in 2010, and 53 in 2011. This is, of course, due to the ability
to run all systems participating in the SEALS modality in all tracks. However, not all
tools participating in the SEALS modality could generate results for the anatomy track
(see Section 4). This does not really contradict the conjecture we made last year that

89

systems are more specialized. In fact, only two systems (AgreementMaker and CODI)
participated also in the instance matching tasks, and CODI only participated in a task
(IIMB) in which no other instance matching system entered.

This year we were able to run most of the matchers in a controlled evaluation envi-
ronment, in order to test their portability and deployability. This allowed us comparing
systems on the same execution basis. This is also a guarantee that the tested system can
be executed out of their particular development environment.

The list of participants is summarized in Table 2.

System A
gr

M
ak

er
A

ro
m

a
C

SA
C

ID
E

R
C

O
D

I
L

D
O

A
L

ily
L

og
M

ap
M

aa
sM

tc
h

M
ap

E
V

O
M

ap
PS

O
M

ap
SS

S
O

A
C

A
S

O
M

R
O

pt
im

a
Se

ri
m

i
YA

M
++

Z
hi

sh
i

To
ta

l=
18

Confidence
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

benchmarks
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

16
anatomy

√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
16

conference
√ √ √ √ √ √ √ √ √ √ √ √ √ √

14
di

√ √ √
3

iimb
√

1

Total 4 3 3 3 4 3 3 3 3 3 3 3 2 2 3 1 3 1 53

Table 2. Participants and the state of their submissions. Confidence stands for the type of result
returned by a system: it is ticked when the confidence has been measured as non boolean value.

Two systems require a special remark. YAM++ used a setting that was learned from
the reference alignments of the benchmark data set from OAEI 2009, which is highly
similar to the corresponding benchmark in 2011. This affects the results of the tradi-
tional OAEI benchmark and no other tests. Moreover, we have run the benchmark in
newly generated tests where YAM++ is indeed having weaker performances. Consider-
ing that indeed benchmarks was one of the few tests on which to train algorithms, we
decided to keep YAM++ results with this warning.

AgreementMaker used machine learning techniques to choose automatically be-
tween one of three settings optimized for the benchmark, anatomy and conference data
set. It used a subset of the available reference alignments as input to the training phase
and clearly a specific tailored setting for passing these tests. This is typically prohibited
by OAEI rules. However, at the same time, AgreementMaker has improved its results
over last year so we found interesting to report them.

The summary of the results track by track is provided in the following sections.

3 Benchmark

The goal of the benchmark data set is to provide a stable and detailed picture of each
algorithm. For that purpose, algorithms are run on systematically generated test cases.

90

3.1 Test data

The systematic benchmark test set is built around a seed ontology and many variations
of it. The ontologies are described in OWL-DL and serialized in the RDF/XML format.
The reference ontology is that of test #101. Participants have to match this reference
ontology with the variations. Variations are focused on the characterization of the be-
havior of the tools rather than having them compete on real-life problems. They are
organized in three groups:

Simple tests (1xx) such as comparing the reference ontology with itself, with another
irrelevant ontology (the wine ontology used in the OWL primer) or the same ontol-
ogy in its restriction to OWL-Lite;

Systematic tests (2xx) obtained by discarding features from a reference ontology. It
aims at evaluating how an algorithm behaves when a particular type of information
is lacking. The considered features were:

– Name of entities that can be replaced by random strings, synonyms, name with
different conventions, strings in another language than English;

– Comments that can be suppressed or translated in another language;
– Specialization hierarchy that can be suppressed, expanded or flattened;
– Instances that can be suppressed;
– Properties that can be suppressed or having the restrictions on classes dis-

carded;
– Classes that can be expanded, i.e., replaced by several classes or flattened.

Four real-life ontologies of bibliographic references (3xx) found on the web and left
mostly untouched (there were added xmlns and xml:base attributes). This is only
used for the initial benchmark.

This year, we departed from the usual bibliographic benchmark that have been used
since 2004. We used a new test generator [14] in order to reproduce the structure of
benchmark from different seed ontologies. We have generated three different bench-
marks against which matchers have been evaluated:

benchmark (biblio) is the benchmark data set that has been used since 2004. It is used
for participants to check that they can run the tests. It also allows for comparison
with other systems since 2004. The seed ontology concerns bibliographic refer-
ences and is inspired freely from BibTeX. It contains 33 named classes, 24 object
properties, 40 data properties, 56 named individuals and 20 anonymous individuals.
We have considered the original version of benchmark (referred as original in the
subsections above) and a new automatically generated one (biblio).

benchmark2 (ekaw) The Ekaw ontology, one of the ontologies from the conference
track (§5), was used as seed ontology for generating the Benchmark2 data set. It
contains 74 classes and 33 object properties. The results with this new data set
were provided to participants after the preliminary evaluation.

benchmark3 (finance) This data set is based on the Finance ontology5, which contains
322 classes, 247 object properties, 64 data properties and 1113 named individuals.
This ontology was not disclosed to the participants.

5 http://www.fadyart.com/ontologies/data/Finance.owl

91

Having these three data sets allows us to better evaluate the dependency between the
results and the seed ontology. The SEALS platform allows for evaluating matchers
against these many data sets automatically.

For all data sets, the reference alignments are still limited: they only match named
classes and properties and use the “=” relation with confidence of 1. Full description of
these tests can be found on the OAEI web site.

3.2 Results

16 systems have participated in the benchmark track of this year’s campaign (see Ta-
ble 2). From the eleven participants last year, only four participated this year (Agree-
mentMaker, Aroma, CODI and MapPSO). On the other hand, there are ten new partici-
pants, while two participants (CIDER and Lily) have been participating in the previous
campaigns as well. In the following, we present the evaluation results, both in terms of
runtime and compliance with relation to reference alignments.

Portability. 18 systems have been registered on the SEALS portal. One has abandoned
due to requirements posed by the platform and another one abandoned silently. Thus, 16
systems bundled their tools into the SEALS format. From these 16 systems, we have not
been able to run the final versions of OMR and OACAS (packaging error). CODI was
not working on the operating system version under which we measured runtime. CODI
runs under Windows and some versions of Linux, but has specific requirements not met
on the Linux version that has been used for runnning the SEALS platform (Fedora 8).
Some other systems still have (fixable) problems with the output they generate6.

Runtime. This year we were able to measure the performance of matchers in terms of
runtime. We used a 3GHz Xeon 5472 (4 cores) machine running Linux Fedora 8 with
8GB RAM. This is a very preliminary setting for mainly testing the deployability of
tools into the SEALS platform.

Table 3 presents the time required by systems to complete the 94 tests in each data
set7. These results are based on 3 runs of each matcher on each data sets. We also
include the result of a simple edit distance algorithm on labels (edna). Unfortunately,
we were not able to compare CODI’s runtime with other systems’.

Considering all tasks but finance, there are systems which can run them within
less than 15mn (Aroma, edna, LogMap, CSA, YAM++, MapEVO, AgreementMaker,
MapSSS), there are systems performing the tasks within one hour (Cider, MaasMatch,
Lily) and systems which need more time (MapPSO, LDOA, Optima). Figure 1 better
illustrates the correlation between the number of elements in each seed ontology and
the time taken by matchers for generating the 94 alignments. The faster matcher, inde-
pendently from the seed ontology, is Aroma (even for finance), followed by LogMap,

6 All evaluations have been performed with the Alignment API 4.2 [3] with the exception of
LDOA for which we had to adapt the relaxed evaluators to obtain results.

7 From the 111 tests in the original benchmark data set, 17 of them have not been automati-
cally generated: 102–104, 203–210, 230–231, 301–304. For comparative purposes, they were
discarded.

92

original biblio ekaw finance
System Runtime Top-5 Runtime Top-5 Runtime Top-5 Runtime Top-5

edna 1.07 1.06 1.00 33.70
AgrMaker 12.42

√
—x 2.81

√
3.81h

√
Aroma 1.05 1.10

√
0.77 10.83

√
CSA 2.47

√
2.61

√
3.69

√
3.10h

√
CIDER 32.50 30.30 28.08 46.15h

√
CODI —Error

√
—Error

√
—Error

√
—Error

LDOA 28.94h 29.31h 17h —T
Lily 48.60 48.18

√
8.76 —T

LogMap 2.45 2.47 2.16 —Error
MaasMtch 28.32 36.06 35.87 29.23h

√
MapEVO 6.77 7.44 9.96 1.25h
MapPSO 3.05h 3.09h 3.72h 85.98h
MapSSS 8.84

√
—x 4.42

√
—x

OACAS —Error —Error —Error —Error
OMR —Error —Error —Error —Error

Optima 3.15h 2.48h 88.80h —T
YAM++ 6.51

√
6.68

√
8.02

√
—T

Table 3. Runtime (in minutes) based on 3 runs, and the five best systems in terms of F-measure
in each data set (top-5). ‘Error’ indicates that the tool could not run in the current setting; or their
final version has some packaging error. ‘T’ indicates that tool could not process the single 101
test in less than 2 hours. ‘x’ indicates that the tool breaks when parsing some ontologies. Results
in bold face are based on only 1 run.

CSA, YAM++, AgreementMaker (AgrMaker) and MapSSS. Furthermore, as detailed
in the following, AgreementMaker, CSA, CODI and YAM++ are also the best systems
for most of the different data sets.

For finance, we observed that many participants were not able to deal with large
ontologies. This applies to the slowest systems of the other tasks, but other problems
occur with AgreementMaker and MapSSS. Fast systems like LogMap could not process
some of the test cases due to the inconsistency of the finance ontology (as CODI).
Finally, other relatively fast systems such as YAM++ and Lily had to time out. We plan
to work on these two issues in the next campaigns.

Compliance. Concerning compliance, we focus on the benchmark2 (ekaw) data set.
Table 4 shows the results of participants as well as those given by edna (simple edit
distance algorithm on labels). The full results are on the OAEI web site.

As shown in Table 4, two systems achieve top performance in terms of F-measure:
MapSSS and YAM++, with CODI, CSA and AgreementMaker as close followers, re-
spectively. Lily and CIDER had presented intermediary values of precision and recall.
All systems achieve a high level of precision and relatively low values of recall. Only
MapEVO had a significantly lower recall than edna (with LogMap and MaasMatch
(MaasMtch) with slightly lower values), while no system had lower precision.

93

system
refalign

edna
A

grM
aker

A
rom

a
C

SA
C

ID
E

R
C

O
D

I
L

D
O

A
test

Prec.FM
eas.R

ec.
Prec.FM

eas.R
ec.

Prec.FM
eas.R

ec.
Prec.FM

eas.R
ec.

Prec.FM
eas.R

ec.
Prec.FM

eas.R
ec.

Prec.FM
eas.R

ec.
Prec.FM

eas.R
ec.

1xx
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

.96
1.00

.96
.25

.19
.15

.77
.86

.97
2xx

1.00
1.00

1.00
.50

.51
.51

.98
.71

.56
.93

.68
.53

.82
.72

.64
.89

.70
.58

.94
.74

.61
.51

.51
.51

H
-m

ean
1.00

1.00
1.00

.50
.51

.52
.98

.71
.56

.93
.68

.53
.82

.73
.65

.89
.70

.58
.93

.73
.60

.51
.51

.51

Sym
m

etric
1.00

1.00
1.00

.53
.53

.54
.98

.71
.56

.94
.68

.54
.83

.73
.66

.91
.71

.59
.94

.73
.61

.52
.52

.52
E

ffort
1.00

1.00
1.00

.53
.53

.55
.98

.71
.56

.94
.68

.54
.84

.73
.66

.90
.71

.59
.93

.72
.60

.52
.52

.52
P-oriented

1.00
1.00

1.00
.56

.56
.57

.98
.71

.56
.95

.68
.54

.84
.74

.67
.92

.72
.60

.95
.74

.61
.52

.52
.52

R
-oriented

1.00
1.00

1.00
.56

.56
.57

.98
.71

.56
.95

.68
.54

.84
.74

.67
.92

.72
.60

.95
.74

.61
.52

.52
.52

W
eighted

1.00
1.00

1.00
.71

.60
.52

.98
.71

.56
.95

.64
.49

.87
.58

.44
.91

.68
.54

.93
.73

.60
.57

.52
.48

L
ily

L
ogM

ap
M

aasM
tch

M
apE

V
O

M
apPSO

M
apSSS

YA
M

++
O

ptim
a

test
Prec.FM

eas.R
ec.

Prec.FM
eas.R

ec.
Prec.FM

eas.R
ec.

Prec.FM
eas.R

ec.
Prec.FM

eas.R
ec.

Prec.FM
eas.R

ec.
Prec.FM

eas.R
ec.

Prec.FM
eas.R

ec.

1xx
1.00

1.00
1.00

1.00
1.00

1.00
1.00

.99
.98

.99
1.00

1.00
.99

.96
.92

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
2xx

.93
.70

.57
.99

.66
.49

.99
.60

.43
.54

.31
.21

.63
.63

.62
.96

.77
.64

.97
.74

.60
.59

.55
.52

H
-m

ean
.93

.70
.57

.99
.67

.50
.99

.61
.44

.55
.32

.22
.64

.63
.62

.96
.77

.64
.97

.74
.60

.60
.56

.53

Sym
m

etric
.93

.71
.58

.99
.67

.50
.99

.61
.44

.63
.33

.22
.66

.64
.63

.97
.77

.64
.97

.74
.60

.60
.56

.53
E

ffort
.93

.71
.58

.99
.67

.50
.99

.61
.44

.63
.33

.23
.66

.64
.63

.97
.77

.64
.98

.74
.60

.61
.56

.53
P-oriented

.94
.71

.58
.99

.67
.50

.99
.61

.44
.64

.33
.23

.68
.66

.65
.97

.78
.65

.98
.74

.60
.61

.56
.54

R
-oriented

.94
.71

.58
.99

.67
.50

.99
.61

.44
.64

.33
.23

.68
.66

.65
.97

.78
.65

.98
.74

.60
.61

.56
.54

W
eighted

.95
.56

.39
.99

.55
.38

.99
.61

.44
.75

.34
.22

.76
.58

.47
.96

.77
.64

.99
.14

.07
.60

.56
.53

Table
4.R

esults
obtained

by
participants

on
the

B
enchm

ark2
(ekaw

)
testcase

(harm
onic

m
eans).R

elaxed
precision

and
recallcorrespond

to
the

three
m

easuresof [4]:sym
m

etric
proxim

ity,correction
effortand

oriented
(precision

and
recall).W

eighted
precision

and
recalltakesinto

accountthe
confidence

associated
to

correspondence
by

the
m

atchers.

94

 1

 10

 100

 1000

 10000

biblio (97+76) ekaw (107) finance (644+1327)

R
un

tim
e

(m
n)

Test (size)

AgrMaker
Aroma
CIDER

CSA
edna

LDOA

Lily
LogMap

MaasMtch

MapEVO
MapPSO
MapSSS

Optima
YAM

Fig. 1. Logarithmic plot of the time taken by matchers (averaged on 3 runs) to deal with different
data sets: biblio, ekaw and finance

Looking at each group of tests, in simple tests (1xx) all systems have similar per-
formance, excluding CODI. As noted in previous campaigns, the algorithms have their
best score with the 1xx test series. This is because there are no modifications in the
labels of classes and properties in these tests and basically all matchers are able to deal
with the heterogeneity in labels. Considering that Benchmark2 has one single test in
1xx, the discriminant category is 2xx, with 101 tests. For this category, the top five sys-
tems in terms of F-measure (as stated above) are: MapSSS, YAM++, CODI, CSA and
AgreementMaker, respectively (CIDER and Lily as followers).

Many algorithms have provided their results with confidence measures. It is thus
possible to draw precision/recall graphs in order to compare them. Figure 2 shows the
precision and recall graphs. These results are only relevant for the results of participants
who provide confidence measures different from 1 or 0 (see Table 2). As last year, they
show the real precision at n% recall and they stop when no more correspondences are
available (then the end point corresponds to the precision and recall reported in Table 4).

The results have also been compared with the relaxed measures proposed in [4],
namely symmetric proximity, correction effort and oriented measures (‘Symmetric’,
‘Effort’, ‘P/R-oriented’ in Table 4). Table 4 shows that these measures provide a uni-
form and limited improvement to most systems. As last year, the exception is MapEVO,
which has a considerable improvement in precision. This could be explained by the fact
this system misses the target, by not that far (the false negative correspondences found
by the matcher are close to the correspondences in the reference alignment) so the gain
provided by the relaxed measures has a considerable impact for this system. This may
also be explained by the global optimization of the system which tends to be glob-

95

ally roughly correct as opposed to locally strictly correct as measured by precision and
recall.

The same confidence-weighted precision and recall as last year have been com-
puted. They reward systems able to provide accurate confidence measures (or penalizes
less mistakes on correspondences with low confidence) [6]. These measures provide
precision increasing for most of the systems, specially edna, MapEVO and MapPSO
(which had possibly many incorrect correspondences with low confidence). This shows
that the simple edit distance computed by edna is valuable as a confidence measure (the
weighted precision and recall for edna could be taken as a decent baseline). It also pro-
vides recall decrease specially for CSA, Lily, LogMap, MapPSO and YAM++ (which
had apparently many correct correspondences with low confidence). The variation for
YAM++ is quite impressive: this is because YAM++ provides especially low confidence
to correct correspondences. Some systems, such as AgreementMaker, CODI, Maas-
Match and MapSSS, generate all correspondences with confidence = 1, so they have no
change.

Comparison across data sets. Table 5 presents the average F-measure for 3 runs, for
each data set (as Table 3, some of these results are based on only one run). These three
runs are not necessary: even if matchers exhibit non deterministic behavior on a test case
basis, their average F-measure on the whole data set remains the same [14]. This year,
although most of the systems participating in 2010 have improved their algorithms,
none of them could outperform ASMOV, the best system in the 2010 campaign.

With respect to the original benchmark data set and the new generated one (original
and biblio in Table 5), we could observe a 1-2% constant and negative variation in F-
measure, for most of the systems (except CODI and MapEVO). Furthermore, most of
the systems perform better with the bibliographic ontology than with ekaw (a variation
of 5-15%). The exceptions are LDOA, LogMap and MapPSO, followed by MaasMatch
and CIDER with relatively stable F-measures. Although we have not enough results
for a fair comparison with finance, we could observe that CSA and MaasMatch are the
most stable matchers (with less variation than the others), followed by Aroma, CIDER
and AgreementMaker, respectively.

Finally, the group of best systems in each data set remains relatively the same across
the different seed ontologies. Disregarding finance, CSA, CODI and YAM++ are ahead
as the best systems for all three data sets, with MapSSS (2 out of 3) and Agreement-
Maker, Aroma and Lily (1 out of 3) as followers.

3.3 Conclusions

For the first time, we could observe a high variation in the time matchers require to
complete the alignment tasks (from some minutes to some days). We can also conclude
that compliance is not proportional to runtime: the top systems in terms of F-measure
were able to finish the alignment tasks in less than 15mn (with Aroma and LogMap as
faster matchers, with intermediary levels of compliance). Regarding the capability of
dealing with large ontologies, many of the participants were not able to process them,
leaving room for further improvement on this issue.

96

recall0. 1.
0.

p
re
ci
si
on

1.

edna
.52

AgrMaker
.56

aroma
.52

CSA
.59

CIDER
.57

CODI
.60

LDOA
.49

Lily
.56

LogMap
.50

MaasMtch
.44

MapEVO
.22

MapPSO
.58

MapSSS
.64

Optima
.53

YAM++
.60

Fig. 2. Precision/recall graphs for benchmarks. The alignments generated by matchers are cut
under a threshold necessary for achieving n% recall and the corresponding precision is computed.
The numbers in the legend are the Mean Average Precision (MAP): the average precision for each
correct retrieved correspondence. Systems for which these graphs are not meaningful (because
they did not provide graded confidence values) are drawn in dashed lines.

97

2010 2011
original original biblio ekaw finance

System Fmeas. Top-5 Fmeas. Top-5 Fmeas. Top-5 Fmeas. Top-5 Fmeas. Top-5
ASMOV .93

√
AgrMaker .89

√
.88

√
x .71 .78

Aroma .59 .78 .76
√

.68 .70
√

CSA .84
√

.83
√

.73
√

.79
√

CIDER .76 .74 .70 .67
√

CODI .55 .80
√

.75
√

.73
√

x
edna .51 .52 .51 .51 .50

LDOA .47 .46 .52 T
Lily .76 .77

√
.70 T

LogMap .60 .57 .66 x
MaasMtch .59 .58 .61 .61

√
MapEVO .41 .37 .33 .20
MapPSO .61 .50 .48 .63 .14
MapSSS .84

√
x .78

√
T

Optima .64 .65 .56 T
YAM++ .87

√
.86

√
.75

√
T

Table 5. Results obtained by participants on each data set (based on 94 tests), including the results
from the participants in 2010, and the top-five F-measure (five better systems in each data set).

With respect to compliance, newcomers (CSA, YAM++ and MapSSS) have mostly
outperformed other participants, for the new generated benchmarks. On the other hand,
for the very known original benchmark data set, none of the systems was able to out-
perform the top-performer of the last year (ASMOV).

98

4 Anatomy

As in the previous years, the anatomy track confronts the existing matching technology
with a specific type of ontologies from the biomedical domain. In this domain, many
ontologies have been built covering different aspects of medical research. We focus
on fragments of two biomedical ontologies which describe the human anatomy and the
anatomy of the mouse. The data set of this track has been used since 2007. For a detailed
description we refer the reader to the OAEI 2007 results paper [7].

4.1 Experimental setting

Contrary to the previous years, we distinguish only between two evaluation experi-
ments. Subtask #1 is about applying a matcher with its standard setting to the matching
task. In the previous years we have also asked for additional alignments that favor pre-
cision over recall and vice versa (subtask #2 and #3). These subtasks are not part of
the anatomy track in 2011 due to the fact that the SEALS platform does not allow for
running tools with different configurations. Furthermore, we have proposed a fourth
subtask, in which a partial reference alignment has to be used as an additional input.

In our experiments we compare precision, recall, F-measure and recall+. We have
introduced recall+ to measure the amount of detected non-trivial correspondences.
From 2007 to 2009, we reported on runtimes measured by the participants themselves.
This survey revealed large differences in runtimes. This year we can compare the run-
times of participants by executing them on our own on the same machine. We used a
Windows 2007 machine with 2.4 GHz (2 cores) and 7GB RAM allocated to the match-
ing systems.

For the 2011 evaluation, we improved again the reference alignment of the data set.
We removed doubtful correspondences and included several correct correspondences
that had not been included in the past. As a result, we measured for the alignments
generated in 2010 a slightly better F-measure (≈+1%) compared to the computation
based on the old reference alignment. For that reason we have also included the top-3
systems of 2010 with recomputed precision/recall scores.

4.2 Results

In the following we analyze the robustness of the submitted systems and their runtimes.
Further, we report on the quality of the generated alignment, mainly in terms of preci-
sion and recall.

Robustness and scalability. In 2011 there were 16 participants in the SEALS modality,
while in 2010 we had only 9 participants for the anatomy track. However, this compar-
ison is misleading. Some of these 16 systems are not really intended to match large
biomedical ontologies. For that reason our first interest is related to the question, which
systems generate a meaningful result in an acceptable time span. Results are shown in
Table 6. First, we focused on the question whether systems finish the matching task in
less than 24h. This is the case for a surprisingly low number of systems. The systems

99

that do not finish in time can be separated in those systems that throw an exception
related to insufficient memory after some time (marked with ’X’). The other group of
systems were still running when we stopped the experiments after 24 hours (marked
with ’T’).8

Obviously, matching relatively large ontologies is a problem for five out of four-
teen executable systems. The two systems MapPSO and MapEVO can cope with on-
tologies that contain more than 1000 concepts, but have problems with finding correct
correspondences. Both systems generate comprehensive alignments, however, MapPSO
finds only one correct corespondence and MapEVO finds none. This can be related to
the way labels are encoded in the ontologies. The ontologies from the anatomy track
differ from the ontologies of the benchmark and conference tracks in this respect.

Matcher Runtime Size Precision F-measure Recall Recall+

AgrMaker 634 1436 .943 .917 .892 .728
LogMap 24 1355 .948 .894 .846 .599
AgrMaker2010 - 1436 .914 .890 .866 .658
CODI 1890 1298 .965 .889 .825 .564
NBJLM2010 - 1327 .931 .870 .815 .592
Ef2Match2010 - 1243 .965 .870 .792 .455
Lily 563 1368 .814 .772 .734 .511
StringEquiv - 934 .997 .766 .622 .000
Aroma 39 1279 .742 .679 .625 .323
CSA 4685 2472 .465 .576 .757 .595
MaasMtch 66389 438 .995 .445 .287 .003
MapPSO 9041 2730 .000 .000 .001 .000
MapEVO 270 1079 .000 .000 .000 .000
Cider T 0 - - - -
LDOA T 0 - - - -
MapSSS X 0 - - - -
Optima X 0 - - - -
YAM++ X 0 - - - -

Table 6. Comparison against the reference alignment, runtime is measured in seconds, the size
column refers to the number of correspondences in the generated alignment.

For those systems that generate an acceptable result, we observe a high variance
in measured runtimes. Clearly ahead is the system LogMap (24s), followed by Aroma
(39s). Next are Lily and AgreementMaker (approx. 10mn), CODI (30mn), CSA (1h15),
and finally MaasMatch (18h).

Results for subtask #1. The results of our experiments are also presented in Table 6.
Since we have improved the reference alignment, we have also included recomputed
precision/recall scores for the top-3 alignments submitted in 2010 (marked by subscript
2010). Keep in mind that in 2010 AgreementMaker (AgrMaker) submitted an align-
ment that was the best submission to the OAEI anatomy track compared to all previous

8 We could not execute the two systems OACAS and OMR, not listed in the table, because the
required interfaces have not been properly implemented.

100

submissions in terms of F-measure. Note that we also added the base-line StringEquiv,
which refers to a matcher that compares the normalized labels of two concepts. If these
labels are identical, a correspondence is generated. Recall+ is defined as recall, with the
difference that the reference alignment is replaced by the set difference of R \ ASE ,
where ASE is defined as the alignment generated by StringEquiv.

This year we have three systems that generate very good results, namely Agreement-
Maker, LogMap and CODI. The results of LogMap and CODI are very similar. Both
systems manage to generate an alignment with F-measure close to the 2010 submis-
sion of AgreementMaker. LogMap is slightly ahead. However, in 2011 the alignment
generated by AgreementMaker is even better than in the previous year. In particular,
AgreementMaker finds more correct correspondences, which can be seen in recall as
well as in recall+ scores. At the same time, AgreementMaker can increase its precision.
Also remarkable are the good results of LogMap, given the fact that the system finishes
the matching task in less than half a minute. It is thus 25 times faster than Agreement-
Maker and more than 75 times faster than CODI.

Lily, Aroma, CSA, and MaasMatch (MaasMatch) have less good results than the
three top matching systems, however, they have proved to be applicable to larger match-
ing tasks and can generate acceptable results for a pair of ontologies from the biomedi-
cal domain. While these systems cannot (or barely) top the String-Equivalence baseline
in terms of F-measure, they manage, nevertheless, to generate many correct non-trivial
correspondences. A detailed analysis of the results revealed that they miss at the same
time many trivial correspondences. This is an uncommon result, which might, for exam-
ple, be related to some pruning operations performed during the comparison of match-
able entities. An exception is the MaasMatch system. It generates results that are highly
similar to a subset of the alignment generated by the StringEquiv baseline.

Using an input alignment. This specific task was known as subtask #4 in the pre-
vious OAEI campaigns. Originally, we planned to study the impact of different input
alignments of varying size. The idea is that a partial input alignment, which might have
been generated by a human expert, can help the matching system to find missing cor-
respondences. However, taking into account only those systems that could generate a
meaningful alignment in time, only AgreementMaker, implemented the required inter-
face. Thus, a comparative evaluation is not possible. We may have to put more effort in
advertising this specific subtask for the next OAEI.

Alignment coherence. This year we also evaluated alignment coherence. The anatomy
data set contains only a small amount of disjointness statements, the ontologies under
discussion are in EL++. Thus, even simple techniques might have an impact on the
coherence of the generated alignments. For the anatomy data set the systems LogMap,
CODI, and MaasMatch generate coherent alignments. The first two systems put a focus
on alignment coherence and apply special methods to ensure coherence. MaasMatch
has generated a small, highly precise, and coherent alignment. The alignments gener-
ated by the other systems are incoherent. A more detailed analysis related to alignment
coherence is conducted for the alignments of the conference data set in Section 5.

101

4.3 Conclusions

Less than half of the systems generate good or at least acceptable results for the match-
ing task of the anatomy track. With respect to those systems that failed on anatomy, we
can assume that this track was not in the focus of their developers. This means at the
same time that many systems are particularly designed or configured for matching tasks
that we find in the benchmark and conference tracks. Only few of them are robust “all-
round” matching systems that are capable of solving different tasks without changing
their settings or algorithms.

The positive results of 2011 are the top results of AgreementMaker and the runtime
performance of LogMap. AgreementMaker generated a very good result by increasing
precision and recall compared to its last years submissions, which was the best submis-
sion in 2010 already. LogMap clearly outperforms all other systems in terms of runtimes
and still generates good results. We refer the reader to the OAEI papers of these two
systems for details on the algorithms.

5 Conference

The conference test case introduces matching several moderately expressive ontologies.
Within this track, participant results were evaluated using diverse evaluation methods.
As last year, the evaluation has been supported by the SEALS platform.

5.1 Test data

The collection consists of sixteen ontologies in the domain of organizing conferences.
Ontologies have been developed within the OntoFarm project9.

The main features of this test case are:

– Generally understandable domain. Most ontology engineers are familiar with or-
ganizing conferences. Therefore, they can create their own ontologies as well as
evaluate the alignments among their concepts with enough erudition.

– Independence of ontologies. Ontologies were developed independently and based
on different resources, they thus capture the issues in organizing conferences from
different points of view and with different terminologies.

– Relative richness in axioms. Most ontologies were equipped with OWL DL axioms
of various kinds; this opens a way to use semantic matchers.

Ontologies differ in numbers of classes, of properties, in expressivity, but also in
underlying resources. Ten ontologies are based on tools supporting the task of organiz-
ing conferences, two are based on experience of people with personal participation in
conference organization, and three are based on web pages of concrete conferences.

Participants were asked to provide all correct correspondences (equivalence and/or
subsumption correspondences) and/or ’interesting correspondences’ within the confer-
ence data set.

9 http://nb.vse.cz/˜svatek/ontofarm.html

102

5.2 Results

This year, we provided results in terms of F2-measure and F0.5-measure, comparison
with two baseline matchers and precision/recall triangular graph.

Evaluation based on the reference alignments. We evaluated the results of partici-
pants against reference alignments. They include all pairwise combinations between 7
different ontologies, i.e. 21 alignments.

Matcher Prec. F0.5Meas. Rec. Prec. F1Meas. Rec. Prec. F2Meas. Rec.

YAM++ .8 .73 .53 .78 .65 .56 .78 .59 .56
CODI .74 .7 .57 .74 .64 .57 .74 .6 .57

LogMap .85 .75 .5 .84 .63 .5 .84 .54 .5
AgrMaker .8 .69 .44 .65 .62 .59 .58 .61 .62
BaseLine2 .79 .7 .47 .79 .59 .47 .79 .51 .47
MaasMtch .83 .69 .42 .83 .56 .42 .83 .47 .42
BaseLine1 .8 .68 .43 .8 .56 .43 .8 .47 .43

CSA .61 .58 .47 .5 .55 .6 .5 .58 .6
CIDER .67 .61 .44 .64 .53 .45 .38 .48 .51

MapSSS .55 .53 .47 .55 .51 .47 .55 .48 .47

Lily .48 .42 .27 .36 .41 .47 .37 .45 .47
AROMA .35 .37 .46 .35 .4 .46 .35 .43 .46
Optima .25 .28 .57 .25 .35 .57 .25 .45 .57

MapPSO .28 .25 .17 .21 .23 .25 .12 .26 .36
LDOA .1 .12 .56 .1 .17 .56 .1 .29 .56

MapEVO .27 .08 .02 .15 .04 .02 .02 .02 .02

Table 7. The highest average F[0.5|1|2]-measure and their corresponding precision and recall for
some threshold for each matcher.

For better comparison, we evaluated alignments with regard to three different aver-
age10 F-measures independently. We used F0.5-measure (where β = 0.5) which weights
precision higher than recall, F1-measure (the usual F-measure, where β = 1), which is
the harmonic mean of precision and recall, and F2-measure (for β = 2) which weights
recall higher than precision. For each of these F-measures, we selected a global con-
fidence threshold that provides the highest average F[0.5|1|2]-measure. Results of these
three independent evaluations11 are provided in Table 7.

Matchers are ordered according to their highest average F1-measure. Additionally,
there are two simple string matchers as baselines. Baseline1 is a string matcher based
on string equality applied on local names of entities which were lowercased before.
Baseline2 enhances baseline1 with three string operations: removing of dashes, un-
derscores and “has” words from all local names. These two baselines divide matchers
into four groups. Group 1 consists of best matchers (YAM++, CODI, LogMap and
AgreementMaker) having better results than baseline2 in terms of F1-measure. Match-
ers which perform worse than baseline2 in terms of F1-measure but still better than
10 Computed using the absolute scores, i.e. number of true positive examples.
11 Precision and recall can be different in all three cases.

103

baseline1 are in Group 2 (MaasMatch). Group 3 (CSA, CIDER and MapSSS) con-
tains matchers which are better than baseline1 at least in terms of F2-measure. Other
matchers (Lily, Aroma, Optima, MapPSO, LDOA and MapEVO) perform worse than
baseline1 (Group 4). Optima, MapSSS and CODI did not provide graded confidence
values. Performance of matchers regarding F1-measure is visualized in Figure 3.

rec=1.0 rec=.8 rec=.6 pre=1.0pre=.8pre=.6

F1-measure=0.5

F1-measure=0.6

F1-measure=0.7

YAM++

CODI
LogMap

AgrMaker

Baseline2
MaasMtch
Baseline1
CSA

CIDER
MapSSS

Fig. 3. Precision/recall triangular graph for conference. Matchers of participants from the first
three groups are represented as squares. Baselines are represented as circles. Dotted lines depict
level of precision/recall while values of F1-measure are depicted by areas bordered by corre-
sponding lines F1-measure=0.[5|6|7].

In conclusion, all best matchers (group one) are very close to each other. However,
the matcher with the highest average F1-measure (.65) is YAM++, the highest average
F2-measure (.61) is AgreementMaker and the highest average F0.5-measure (.75) is
LogMap. In any case, we should take into account that this evaluation has been made
over a subset of all possible alignments (one fifth).

Comparison with previous years. Three matchers also participated in the previous year.
AgreementMaker improved its average F1-measure from .58 to .62 by higher precision
(from .53 to .65) and lower recall (from .62 to .59), CODI increased its average F1-
measure from .62 to .64 by higher recall (from .48 to .57) and lower precision (from .86
to .74). AROMA (with its AROMA- variant) slightly decreased its average F1-measure
from .42 to .40 by lower precision (from .36 to .35) and recall (from .49 to .46).

Evaluation based on alignment coherence. As in the previous years, we apply the
Maximum Cardinality measure proposed in [13] to measure the degree of alignment

104

incoherence. Details on the algorithms can be found in [12]. The reasoner underlying
our implementation is Pellet [16].

The results of our experiments are depicted in Table 8. It shows the average for all
test cases of the conference track, which covers more than the ontologies that are con-
nected via reference alignments. We had to omit the test cases in which the ontologies
Confious and Linklings are involved as source or target ontologies. These on-
tologies resulted in many cases in reasoning problems. Thus, we had 91 test cases for
each matching system. However, we faced reasoning problems for some combinations
of test cases and alignments. In this case we computed the average score by ignoring
these test cases. These problems occurred mainly for highly incoherent alignments. The
last row in Table 8 informs about the number of test cases that were excluded. Note that
we did not analyze the results of those systems that generated alignments with precision
less than .25.

Matcher A
gr

M
ak

er

A
R

O
M

A

C
ID

E
R

C
O

D
I

C
SA

L
ily

L
og

M
ap

M
aa

sM
tc

h

M
ap

SS
S

O
pt

im
a

YA
M

Size 13.9 14.1 17.9 9.5 50.8 17 8 7.5 10 31.3 10.1
Inc. Alignments 49/90 58/88 69/88 0/91 69/69 70/90 8/91 21/91 51/90 73/84 41/91
Degree of Inc. 12% 16% 13% 0% >29% 14% 2% 4% 9% >31% 7%
Reasoning problems 1 3 3 0 22 1 0 0 1 7 0

Table 8. Average size of alignments, number of incoherent alignments, and average degree of
incoherence. The prefix > is added if the search algorithm stopped in one of the testcases due to
a timeout of 10min prior to computing the degree of incoherence.

CODI is the only system that guarantees the coherence of the generated alignments.
While last year some of the alignments were incoherent, all of the alignments generated
in 2011 are coherent. LogMap, a system with special focus on alignment coherence
and efficiency [11], generates in most cases coherent alignments. A closer look at the
outliers reveals that all incoherent alignments occured for ontology pairs where the
ontology Cocus was involved. This ontology suffers from a very specific modeling
error based on the inappropriate use of universal quantification. At the third position we
find MaasMatch. MaasMatch generates less incoherent alignments than the remaining
systems. This might be related to the high precision of the system. Contrary to LogMap,
incoherent alignments are generated for different combinations of ontologies and there
is no specific pattern emerging.

It is not easy to interpret the results of the remaining matching systems due to the
different sizes of the alignments that they have generated. The more correspondences
are contained in an alignment, the higher is the probability that this results in a concepts
unsatisfiability. It is not always clear whether a relatively low/high degree of incoher-
ence is mainly caused by the small/large size of the alignments, or related to the use of
a specific technique. Overall, we conclude that alignment coherence is not taken into
account by these systems. However, in 2011 we have at least some systems that apply
specific methods to ensure coherence for all or at least for a large subset of generated
alignments. Compared to the previous years, this is a positive result of our analysis.

105

6 Instance matching

The goal of the instance matching track is to evaluate the performance of different
matching tools on the task of matching RDF individuals which originate from different
sources but describe the same real-world entity. Data interlinking is known under many
names according to various research communities: equivalence mining, record linkage,
object consolidation and coreference resolution to mention the most used ones. In each
case, these terms are used for the task of finding equivalent entities in or across data
sets. As the quantity of data sets published on the Web of data dramatically increases,
the need for tools helping to interlink resources becomes more critical. It is particularly
important to maximize the automation of the interlinking process in order to be able to
follow this expansion.

Unlike the other tracks, the instance matching tests specifically focus on an ontol-
ogy ABox. However, the problems which have to be resolved in order to correctly match
instances can originate at the schema level (use of different properties and classification
schemas) as well as at the data level, e.g., different formats of values. This year, the
track included two tasks. The first task, data interlinking (DI), aims at testing the per-
formance of tools on large-scale real-world data sets published according to the linked
data principles. The second one (IIMB) uses a set of artificially generated and real test
cases respectively. These are designed to illustrate all common cases of discrepancies
between individual descriptions (different value formats, modified properties, different
classification schemas). The list of participants to the instance matching track is shown
in Table 9.

Dataset AgrMaker SERIMI Zhishi CODI
DI-nyt-dbpedia-locations

√ √ √
DI-nyt-dbpedia-organizations

√ √ √
DI-nyt-dbpedia-people

√ √ √
DI-nyt-freebase-locations

√ √ √
DI-nyt-freebase-organizations

√ √ √
DI-nyt-freebase-people

√ √ √
DI-nyt-geonames

√ √ √
IIMB

√

Table 9. Participants in the instance matching track.

6.1 Data interlinking task (DI) – New York Times

This year the data interlinking task consists of matching the New York Times subject
headings to DBpedia, Freebase and Geonames. The New York Times has developed
over the past 150 years an authoritative vocabulary for annotating news items. The vo-
cabulary contains about 30,000 subject headings, or tags. They are progressively pub-
lished as linked open data and, by July 2010, over 10,000 of these subject headings, in
the categories People, Organizations, Locations and Descriptors, have been published12.

12 http://data.nytimes.com/

106

The New York Times data set was used in OAEI 2010 track on very large crosslingual
resources.

The reference alignments are extracted from the links provided and curated by The
New-York Times. However, the set of reference links has been updated to reflect the
changes made to the external data sets during the year. In particular, several missing
links were added, links pointing to non-existing DBPedia instances were removed, and
links to instances redirecting to others were updated. Moreover, the Descriptors facet
has been removed from the evaluation, since there was not a clear identity criterion for
its instances.

Facet # Concepts Links to Freebase Links to DBPedia Links to Geonames
People 4,979 4,979 4,977 0
Organizations 3,044 3,044 1,965 0
Locations 1,920 1,920 1,920 1,920

Table 10. Number of links between the New-York Times corpus and other data sources.

Subject heading facets are represented in SKOS. Each subject heading facet con-
tains the label of the skos:Concept (skos:label), the facet it belongs to (skos:inScheme),
and some specific properties: nyt:associated article count for the number of NYT ar-
ticles the concept is associated with and nyt:topicPage pointing to the topic page (in
HTML) gathering different information published on the subject. The Location facet
also contains geo-coordinates. The concepts have links to DBpedia, Freebase and/or
GeoNames.

AgreementMaker SERIMI Zhishi.links
Dataset Prec. FMeas. Rec. Prec. FMeas. Rec. Prec. FMeas. Rec.

DI-nyt-dbpedia-loc. .79 .69 .61 .69 .68 .67 .92 .92 .91
DI-nyt-dbpedia-org. .84 .74 .67 .89 .88 .87 .90 .91 .93
DI-nyt-dbpedia-peo. .98 .88 .80 .94 .94 .94 .97 .97 .97
DI-nyt-freebase-loc. .88 .85 .81 .92 .91 .90 .90 .88 .86
DI-nyt-freebase-org. .87 .80 .74 .92 .91 .89 .89 .87 .85
DI-nyt-freebase-peo. .97 .96 .95 .93 .92 .91 .93 .93 .92
DI-nyt-geonames. .90 .85 .80 .79 .80 .81 .94 .91 .88
H-mean. .92 .85 .80 .89 .89 .88 .93 .92 .92

Table 11. Results of the DI subtrack.

DI results. An overview of the precision, recall and F1-measure results per data set of
the DI subtrack is shown in Table 11. A precision-recall graph visualization is shown
in Figure 4. The results show a variation in both systems and data sets. Zhishi.links
produces consistently high quality matches over all data sets, and obtains the highest
overall scores. Matches to DBpedia locations (DI-nyt-dbpedia-loc.) appear to be diffi-
cult as AgreementMaker and SERIMI perform poorly on both precision and recall. This
is not the case for Freebase locations (DI-nyt-freebase-loc.) and to a much lesser extent
for Geonames (DI-nyt-geonames). We hypthesize that this is due to many locations
not being present in DBPedia. Agreementmaker’s scores considerably higher on People

107

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1
P
re
ci
si
on

AgreementMaker
SERIMI
Zhishi.links

Fig. 4. Precision/recall of tools participating in the DI subtrack.

than on Locations and Organizations, which can be observed in both the DBpedia and
the Freebase data set.

6.2 OWL data task (IIMB)

The OWL data task is focused on two main goals:

1. to provide an evaluation data set for various kinds of data transformations, including
value transformations, structural transformations and logical transformations;

2. to cover a wide spectrum of possible techniques and tools.

To this end, we provided the ISLab Instance Matching Benchmark (IIMB). Partici-
pants were requested to find the correct correspondences among individuals of the first
knowledge base and individuals of the other one. An important task here is that some
of the transformations require automatic reasoning for finding the expected alignments.

IIMB is composed of a set of test cases, each one represented by a set of instances,
i.e., an OWL ABox, built from an initial data set of real linked data extracted from the
web. Then, the ABox is automatically modified in several ways by generating a set of
new ABoxes, called test cases. Each test case is produced by transforming the individ-
ual descriptions in the reference ABox in new individual descriptions that are inserted
in the test case at hand. The goal of transforming the original individuals is twofold:
on one side, we provide a simulated situation where data referring to the same objects
are provided in different data sources; on the other side, we generate different data sets

108

with a variable level of data quality and complexity. IIMB provides transformation tech-
niques supporting modifications of data property values, modifications of number and
type of properties used for the individual description, and modifications of the individ-
uals classification. The first kind of transformations is called data value transformation
and it aims at simulating the fact that data expressing the same real object in different
data sources may be different because of data errors or because of the usage of differ-
ent conventional patterns for data representation. The second kind of transformations is
called data structure transformation and it aims at simulating the fact that the same real
object may be described using different properties/attributes in different data sources.
Finally, the third kind of transformations, called data semantic transformation, simu-
lates the fact that the same real object may be classified in different ways in different
data sources.

The 2011 edition of IIMB is created by extracting data from Freebase, an open
knowledge base that contains information about 11 million real objects including
movies, books, TV shows, celebrities, locations, companies and more. Data extraction
has been performed using the query language JSON together with the Freebase JAVA
API13. IIMB2011 is a collection of OWL ontologies consisting of 29 concepts, 20 ob-
ject properties, 12 data properties and more than 4000 individuals divided into 80 test
cases.

Test cases from 0 to 20 contain changes in data format (misspelling, errors in text,
etcetera); test cases 21 to 40 contain changes in structure (properties missing, RDF
triples changed); 41 to 60 contain logical changes (class membership changed, logical
errors); finally, test cases 61 to 80 contain a mix of the previous. One system, CODI,
participated in this task. Its results (Table 5) show how precision drops moderately and
recall drops dramatically as more errors are introduced.

IIMB results An overview of the precision, recall and F1-measure results per set of
tests of the IIMB subtrack is shown in Table 5. A precision-recall graph visualization is
shown in Figure 6.

codi

test Prec. FMeas. Rec.
001–010 .94 .84 .76
011–020 .94 .87 .81
021–030 .89 .79 .70
031–040 .83 .66 .55
041–050 .86 .72 .62
051–060 .83 .72 .64
061–070 .89 .59 .44
071–080 .73 .33 .21

Fig. 5. Results of the IIMB subtrack.

13 http://code.google.com/p/freebase-java/

109

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1
P
re
ci
si
on

codi

Fig. 6. Precision/recall of the CODI tool participating in the IIMB subtrack.

7 Lesson learned and suggestions

This year we implemented most of our 2010 future plans by providing a common plat-
form on which evaluation could be performed. There still remains one lesson not really
taken into account that we identify with an asterisk (*) and that we will tackle in the
coming months. The main lessons from this year are:

A) This year again indicated that requiring participants to implement a minimal inter-
face was not a strong obstacle to participation. The interface allows for comparing
matchers on the same or similar hardware. It also allows for running more tests or
reproducing results without running a new campaign.

B) By using the SEALS platform, we have eliminated the network issue that we had
last year with web services and we can better testify the portability of tools.

C) The client available for testing and evaluating wrapped tools was intensively used
by participants to test and improve their systems. So, interoperability and the abil-
ity to get immediate feedback was appreciated by the tool developers. Moreover,
participants could use the client to generate preliminary results to be included in
their papers.

D) There is a high variance in runtimes and there seems to be no correlation between
runtime and quality of the generated results.

*E) The low number of systems that could generate results for the Anatomy track is
an uncommon result. It seems that not many matching systems of this year are
capable of matching large ontologies (>1000 entities). Even if we had introduced
new benchmark generation facilities, we have not used it towards scalability bench-
marks. We plan to address this in the next few months.

110

F) Last years we reported that there are not many new systems entering the competi-
tion. This year we had many new participants. Only a minority of systems partici-
pated in one of the previous years.

G) Two systems have not fully respected the OAEI rules. YAM++ used a setting
learned from the reference alignments of the 2009 benchmark data set. Due to the
fact that we run benchmarks also with newly generated tests, we decided to keep
the YAM++ results with this warning. AgreementMaker used a specific setting to
distinguish between Benchmarks, Anatomy and Conference. As AgreementMaker
has improved its results over the last year, we decide to report on them as well. For
the next campaigns we plan to be more attentive on these aspects.

H) In spite of claims that such evaluations were needed, we had to declare the model
matching and oriented alignments tracks unfruitful. It is a pity. This confirms that
setting up a data set is not sufficient for attracting participants.

I) More surprising, there are only a few matchers participating in the instance match-
ing track. This is especially surprising given the high number of papers submitted
and published on this topic nowadays. It seems that people involved in instance
matching should cooperate to propose standard formats and evaluation modalities
that everyone would use.

8 Future plans

In 2012, for logistic reasons, we plan to have an intermediate evaluation before OAEI-
2012. This evaluation will concentrate on exploiting fully the SEALS platform and, in
particular on:

– performing benchmark scalability tests by reducing randomly a large seed ontol-
ogy;

– generating discriminating benchmarks by suppressing easy tests;
– adding new tasks, such as multilingual resources, on the SEALS platform.

We plan to run these tests within the next six months with the already registered tools
that would like to be evaluated as well as with new tools willing to enter. These partial
results will be integrated within the results of OAEI-2012.

9 Conclusions

The trend of the previous years, the number of systems and tracks they participate in,
seem to stabilize. The average number of tracks entered by participants in 2011 (2.9) is
above that of 2010 (2.6). This number is dominated by the use of the SEALS platform:
each tool entering there can be evaluated on three tasks. It does not invalidate last year’s
remark that tools may be more specialized.

This year, systems did not deliver huge improvements in performance with respect
to last year’s performers which did not participate. However, AgreementMaker im-
proved its results of last year to become one of the top performer. In addition, we have
been able to test runtime and consistency of the tested matchers and noticed ample dif-
ferences between systems. This may become a differentiating feature among matchers.

111

All participants have provided a description of their systems and their experience in
the evaluation. These OAEI papers, like the present one, have not been peer reviewed.
However, they are full contributions to this evaluation exercise and reflect the hard work
and clever insight people put in the development of participating systems. Reading the
papers of the participants should help people involved in ontology matching to find what
makes these algorithms work and what could be improved. Sometimes participants offer
alternate evaluation results.

The Ontology Alignment Evaluation Initiative will continue these tests by improv-
ing both test cases and testing methodology for being more accurate. Further informa-
tion can be found at:

http://oaei.ontologymatching.org.

Acknowledgments
We warmly thank the participants of this campaign. We know that they have worked
hard for having their matching tools executable in time and they provided insightful
papers presenting their experience. The best way to learn about the results remains to
read the following papers.

We are grateful to Dominique Ritze for participating in the extension of the refer-
ence alignments for the conference track.

We thank Jan Noessner for providing data in the process of constructing the IIMB
data set. We are grateful to Martin Ringwald and Terry Hayamizu for providing the
reference alignment for the anatomy ontologies and thank Elena Beisswanger for her
thorough support on improving the quality of the data set.

We also thank the other members of the Ontology Alignment Evaluation Initia-
tive steering committee: Yannis Kalfoglou (Ricoh laboratories, UK), Miklos Nagy (The
Open University (UK), Natasha Noy (Stanford University, USA), Yuzhong Qu (South-
east University, CN), York Sure (Leibniz Gemeinschaft, DE), Jie Tang (Tsinghua Uni-
versity, CN), George Vouros (University of the Aegean, GR).

Jérôme Euzenat, Christian Meilicke, Heiner Stuckenschmidt and Cássia Trojahn
dos Santos have been partially supported by the SEALS (IST-2009-238975) European
project.

Ondřej Šváb-Zamazal has been supported by the CSF grant P202/10/0761.

References

1. Benhamin Ashpole, Marc Ehrig, Jérôme Euzenat, and Heiner Stuckenschmidt, editors. Proc.
of the K-Cap Workshop on Integrating Ontologies, Banff (Canada), 2005.

2. Caterina Caracciolo, Jérôme Euzenat, Laura Hollink, Ryutaro Ichise, Antoine Isaac,
Véronique Malaisé, Christian Meilicke, Juan Pane, Pavel Shvaiko, Heiner Stuckenschmidt,
Ondrej Sváb-Zamazal, and Vojtech Svátek. Results of the ontology alignment evaluation
initiative 2008. In Proc. 3rd International Workshop on Ontology Matching (OM) collocated
with ISWC, pages 73–120, Karlsruhe (Germany), 2008.

3. Jérôme David, Jérôme Euzenat, François Scharffe, and Cássia Trojahn dos Santos. The
alignment api 4.0. Semantic web journal, 2(1):3–10, 2011.

4. Marc Ehrig and Jérôme Euzenat. Relaxed precision and recall for ontology matching. In
Proc. of the K-Cap Workshop on Integrating Ontologies, pages 25–32, Banff (Canada), 2005.

112

5. Jérôme Euzenat, Alfio Ferrara, Laura Hollink, Antoine Isaac, Cliff Joslyn, Véronique
Malaisé, Christian Meilicke, Andriy Nikolov, Juan Pane, Marta Sabou, François Scharffe,
Pavel Shvaiko, Vassilis Spiliopoulos, Heiner Stuckenschmidt, Ondrej Sváb-Zamazal, Vo-
jtech Svátek, Cássia Trojahn dos Santos, George Vouros, and Shenghui Wang. Results of the
ontology alignment evaluation initiative 2009. In Proc. 4th Workshop on Ontology Matching
(OM) collocated with ISWC, pages 73–126, Chantilly (USA), 2009.

6. Jérôme Euzenat, Alfio Ferrara, Christian Meilicke, Andriy Nikolov, Juan Pane, François
Scharffe, Pavel Shvaiko, Heiner Stuckenschmidt, Ondrej Sváb-Zamazal, Vojtech Svátek, and
Cássia Trojahn dos Santos. Results of the ontology alignment evaluation initiative 2010. In
Pavel Shvaiko, Jérôme Euzenat, Fausto Giunchiglia, Heiner Stuckenschmidt, Ming Mao, and
Isabel Cruz, editors, Proc. 5th ISWC workshop on ontology matching (OM) collocated with
ISWC, Shanghai (China), pages 85–117, 2010.

7. Jérôme Euzenat, Antoine Isaac, Christian Meilicke, Pavel Shvaiko, Heiner Stuckenschmidt,
Ondrej Svab, Vojtech Svatek, Willem Robert van Hage, and Mikalai Yatskevich. Results of
the ontology alignment evaluation initiative 2007. In Proc. 2nd International Workshop on
Ontology Matching (OM) collocated with ISWC, pages 96–132, Busan (Korea), 2007.

8. Jérôme Euzenat, Christian Meilicke, Pavel Shvaiko, Heiner Stuckenschmidt, and Cássia Tro-
jahn dos Santos. Ontology alignment evaluation initiative: six years of experience. Journal
on Data Semantics, XV:158–192, 2011.

9. Jérôme Euzenat, Malgorzata Mochol, Pavel Shvaiko, Heiner Stuckenschmidt, Ondrej Svab,
Vojtech Svatek, Willem Robert van Hage, and Mikalai Yatskevich. Results of the ontol-
ogy alignment evaluation initiative 2006. In Proc. 1st International Workshop on Ontology
Matching (OM) collocated with ISWC, pages 73–95, Athens, Georgia (USA), 2006.

10. Jérôme Euzenat and Pavel Shvaiko. Ontology Matching. Springer, Heidelberg (DE), 2007.
11. Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau. Logmap: Logic-based and scalable on-

tology matching. In Proc. 10th International Semantic Web Conference (ISWC), pages 273–
288, 2011.

12. Christian Meilicke. Alignment Incoherence in Ontology Matching. PhD thesis, University
Mannheim, 2011.

13. Christian Meilicke and Heiner Stuckenschmidt. Incoherence as a basis for measuring the
quality of ontology mappings. In Proc. 3rd International Workshop on Ontology Matching
(OM) collocated with ISWC, pages 1–12, Karlsruhe (Germany), 2008.

14. Maria Roşoiu, Cássia Trojahn dos Santos, and Jérôme Euzenat. Ontology matching bench-
marks: generation and evaluation. In Pavel Shvaiko, Isabel Cruz, Jérôme Euzenat, Tom
Heath, Ming Mao, and Christoph Quix, editors, Proc. 6th International Workshop on Ontol-
ogy Matching (OM) collocated with ISWC, Bonn (Germany), 2011.

15. Pavel Shvaiko and Jérôme Euzenat. Ontology matching: state of the art and future challenges.
IEEE Transactions on Knowledge and Data Engineering, 2012, to appear.

16. Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden Katz. Pel-
let: a practical OWL-DL reasoner. Journal of Web Semantics: Science, Services and Agents
on the World Wide Web, 5(2):51–53, 2007.

17. York Sure, Oscar Corcho, Jérôme Euzenat, and Todd Hughes, editors. Proc. of the Workshop
on Evaluation of Ontology-based Tools (EON) collocated with ISWC, Hiroshima (Japan),
2004.

18. Cássia Trojahn dos Santos, Christian Meilicke, Jérôme Euzenat, and Heiner Stuckenschmidt.
Automating OAEI campaigns (first report). In Proc. International Workshop on Evaluation
of Semantic Technologies (iWEST) collocated with ISWC, Shanghai (China), 2010.

Grenoble, Milano, Amsterdam, Delft, Mannheim, Milton-Keynes, Montpellier, Trento,
Prague, November 2011

113

Using AgreementMaker to Align Ontologies
for OAEI 2011�

Isabel F. Cruz, Cosmin Stroe, Federico Caimi, Alessio Fabiani, Catia Pesquita,
Francisco M. Couto, Matteo Palmonari

ADVIS Lab, Department of Computer Science, University of Illinois at Chicago
{ifc|cstroe1|fcaimi|fabiani|pmatteo}@cs.uic.edu

Facultade de Ciencias da Universitade de Lisboa, Portugal
cpesquita@xldb.di.fc.ul.pt, fcouto@di.fc.ul.pt

University of Milan-Bicocca, Italy
matteo.palmonari@disco.unimib.it

Abstract. The AgreementMaker system is unique in that it features a powerful
user interface, a flexible and extensible architecture, an integrated evaluation en-
gine that relies on inherent quality measures, and semi-automatic and automatic
methods. This paper describes the participation of AgreementMaker in the 2011
OAEI competition in four tracks: benchmarks, anatomy, conference, and instance
matching. After its successful participation in 2009 and 2010, the goal in this
year’s participation is to explore previously unused features of the ontologies in
order to improve the matching results. Furthermore, the system should be able
to automatically adapt to the matching task, choosing the best configuration for
the given pair of ontologies. We believe that this year we have made considerable
progress in both of these areas.

1 Presentation of the system

We have been developing the AgreementMaker system since 2001, with a focus on real-
world applications [5,9] and in particular on geospatial applications [4,6,8,10,11,12,13,15].
However, the current version of AgreementMaker, whose development started in 2008,
represents a whole new effort. The code base has more than doubled since then, with
the AgreementMaker framework being expanded to accomodate many types of ontol-
ogy matching techniques.

� Partially supported by NSF Awards IIS–0513553 and IIS-0812258 and by the Intelligence
Advanced Research Projects Activity (IARPA) via Air Force Research Laboratory (AFRL)
contract number FA8650-10-C-7061. The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding any copyright annotation thereon.
The views and conclusions contained herein are those of the authors and should not be in-
terpreted as necessarily representing the official policies or endorsements, either expressed or
implied, of IARPA, AFRL, or the U.S. Government.

114

1.1 Purpose and state of the system

The AgreementMaker system [1,2,3,7] is an extensible ontology matching framework
that has been expanded to include many types of matching algorithms in order to handle
many different matching scenarios. At the heart of the system is its ability to efficiently
combine the results from several matching algorithms into one single and better re-
sult [2]. This capability allows us to focus on developing new matching algorithms and
later combine them with our existing approach in order to improve our results.

2 Schema Matching Techniques Introduced in OAEI 2011

As compared to previous years, we have introduced several matching techniques in
order to improve our matching algorithms.

2.1 Automatic Configuration Selection via Ontology Profiling Metrics

The AgreementMaker system can be run with different configurations that optimize
the system accuracy and coverage depending on the specific ontologies to be aligned.
Changing the composition of the matcher stack (e.g. an instance matcher is used only
when instances are available) has a high impact on the system performance. We devel-
oped an approach to adaptively optimize the configuration of AgreementMaker depend-
ing on the ontologies to be aligned.

The approach we adopted can be sketched as follows: the ontologies to be aligned
are profiled using several metrics proposed in the literature (e.g. relationship richness,
inheritance richness, WorldNet coverage and so on [16]). The metric-based profiles are
used to automatically classify the matching task into a configuration class with specific
settings. The classification is based on a supervised machine learning framework trained
with a subset of the OEAI dataset for which a reference alignment is available.

Our learning framework is very flexible: we can use many combinations of matchers
and parameters, various types of classifiers (KStar, Naive Bayes, Multilayer Perceptron
etc.) and new metrics. The experimental results show that the use of the automatic
configuration methods improved the overall performance of AgreementMaker in the
competition. In particular, in this paper we show the importance of this method for the
significant improvements we achieved in the Benchmark and Conference tracks. The
new AgreementMaker ’s matching process follows the steps represented in Figure 1:
the ontology pair to be matched is classified by the ontology-profiling algorithm; based
on the classification, a run configuration is created, and an ontology matching algorithm
is instantiated to create an alignment.

Fig. 1. AgreementMaker OAEI2011 Automatic configuration selection.

115

2.2 Lexicon Expansion via a Mediating Ontology

Fig. 2. Using a mediating on-
tology.

One approach to matching two domain specific ontologies
is to use a third ontology from the same domain as a me-
diating ontology, with the mediating ontology to provide
missing information relevant to the matching task. Shown
in Figure 2, the source and target ontologies, OS and OT

respectively, are first matched with the mediating ontology
OM . Mappings between the source and target ontologies
are then created based on the distance between the con-
cepts in the mediating ontology to which they have been
mapped previously.

For the specific problem of matching the Mouse Anatomy ontology to the Human
Anatomy ontology a successful approach has been to use the UBERON cross species
anatomy ontology as a mediating ontology [14]. We have adapted this approach to
our lexicon framework, using the BSM lex to match the MA and HA ontologies with
UBERON thereby making use of the extra synonyms defined in UBERON.

2.3 Extension of Synonyms

This strategy relies on synonyms defined in the OWL ontology itself, currently via the
hasRelatedSynonym property, to generate a lexicon of synonym terms (single or
multi-word terms). This is done by finding common terms between ontology synonyms
to infer synonyms terms.

For example, in the Human Anatomy ontology, the concept NCI C12275 (“Maxil-
lary Sinus”) has the synonyms “Antrum, Maxillary” and “Sinus, Maxillary”. Our algo-
rithm infers that “sinus” and “antrum” are synonyms as well without any external refer-
ence. These synonym terms are then used to create novel synonyms, by interchanging
terms in existing synonyms and labels with their synonymous term.

2.4 Alternate Hierarchy Support

In addition to the subclass hierarchy defined as part of the OWL ontologies of the
Anatomy track, there is also a “part of” hierarchy defined using the UNDEFINED part of
property. Taking into account this hierarchy in the VMM lex increases the percision and
recall of the matching algorithm.

3 Results

In this section, we present the results obtained by AgreementMaker in the OAEI 2011
competition. It participated in four tracks: benchmarks, anatomy, conference, and in-
stance matching. Tests were carried out on a PC running Ubuntu Linux 10.04 with
AMD AthlonTM II X4 635 processor running at 2.9 Ghz and 8 GB RAM.

3.1 Link to the system and parameters file

The AgreementMaker system is available at http://agreementmaker.org/. The
matching algorithm we used is implemented in the “OAEI 2011 Matcher” algorithm, in
the “Hybrid” category. The alignment results obtained by AgreementMaker in the OAEI
2010 are available at http://agreementmaker.org/oaei.

116

3.2 Benchmarks Track

Benchmarks Track Results In this track, a source ontology is compared to 111 on-
tologies that describe the same domain which can be divided into 3 categories: concept
tests cases (1xx cases), systematic tests cases (2xx cases), and real ontology test cases
(3xx cases). The 2xx benchmarks test cases are subdivided into 3 groups: 1) 201 to 210,
2) 221 to 247 and 3) 248 to 266. As shown in the Table 1, our results are very good in
all the tracks, due to the use of a combination of properties (lexical, structural, syntac-
tic, etc.) to match the ontologies. We are able to perform well even if only one of these
properties is available for comparison.

101-104 201-210 221-247 248-266 301-304 H-Mean
Precision 1.00 1.00 0.98 0.96 0.90 0.97
Recall 1.00 0.95 0.99 0.66 0.85 0.87
F-Measure 1.00 0.97 0.99 0.76 0.87 0.91

Table 1. Results of AgreementMaker in the Benchmarks track of the OAEI 2011 competition.

101-104 201-210 221-247 248-266 301-304 H-Mean
Precision 2010 0.98 0.97 0.95 0.96 0.88 0.95
Precision 2011 1.00 1.00 0.98 0.96 0.90 0.97
Recall 2010 1.00 0.90 0.99 0.74 0.53 0.79
Recall 2011 1.00 0.95 0.99 0.66 0.85 0.87
F-Measure 2010 0.99 0.94 0.97 0.82 0.61 0.84
F-Measure 2011 1.00 0.97 0.99 0.76 0.87 0.91

Table 2. Comparison of the results in the 2010 and 2011 OAEI Benchmarks track.

Benchmarks Track Comments Although we improved our results with respect last
year in almost all the tasks, we are particularly satisfied of our improvements on the
third group (301-304). This is because the goal of our system and of the matching meth-
ods we are using is to improve the performance on real ontology test cases. A detailed
comparison between the results achieved in the 2010 and 2011 competitions is shown
in Table 2. One of the main reasons for our improvements is the new automatic config-
uration method we introduced. In fact, the matching tasks of the Benchmark track are
very diverse in order to test several aspects of automatic matching methods; therefore,
when the user has to manually select only one configuration, she selects the configura-
tion that obtains the best average results on the whole set of matching tasks, but such
a configuration cannot be assumed to be the best one for each individual task. Instead,
thanks to the new automatic configuration method, the system automatically select the
best configuration for each individual matching task.

3.3 Anatomy Track

Anatomy Track Results This track consists of two real world ontologies to be matched,
the source ontology describing the Adult Mouse Anatomy (with 2744 classes) and
the target ontology is the NCI Thesaurus describing the Human Anatomy (with 3304

117

classes). This year, the reference alignment is available for this track, which allowed
us to have instant evaluation of our improvements, greatly reducing our development
time. As shown in Table 3, we have been able to consistently make improvements to our
matching algorithms. A large part of these improvements has been increasing the recall
by leveraging external sources, including WordNet and other anatomy ontologies. We
have also been able to improve precision by managing a finer grained control of our
combination algorithms.

Anatomy Track Runtime Precision Recall F-Measure
2009 ≈23 min 86.5% 79.8% 83.1%
2010 ≈5 min 90.3% 85.3% 87.7%
20111 ≈7 min 95.4% 88.4% 91.8%

Table 3. Comparison of previous results with this year’s results.

Anatomy Track Comments This year we have been able to further increase precision
and recall by using the UBERON multi-species anatomy ontology as a mediating ontol-
ogy, an approach demonstrated by others at the International Conference for Biomedical
Ontology [14], by extending our lexicon synonyms using synonym terms, and by using
the part-of hierarchy in our matching algorithms . Improvment of our algorithms capa-
bility to correctly discern relevant concept information allowed us to increase precision
by over 5% and was achieved by combining more similar matching algorithms first and
using those combined results for the final combination.

3.4 Conference Track

Manual Config. 2010 Manual Config. 2011 Automatic Config. 2011
Precision 0.53 0.83 0.71
Recall 0.62 0.45 0.62
F-Measure 0.58 0.56 0.64

Table 4. Results achieved by AgreementMaker in the 2011 OAEI conference track.

Conference Results The conference track consists of 15 ontologies from the confer-
ence organization domain and each ontology must be matched against every other ontol-
ogy. We ran our algorithms on all the matching tasks and evaluated precision, recall and
F-measure using the 21 provided reference alignments. We then computed an average
of these measures, summarized in Table 4. Precision, recall and F-measure obtained us-
ing the automatic configuration method introduced in section 2.1 are compared with the
results achieved with the manual configuration of the system used in OAEI 2010 and in
OAEI 2011. AgreementMaker significantly improved on F-measure by optimizing the
trade-off between precision and recall.

Conference Track Comments Some of the matching algorithms that we used in the
OAEI 2010 competition underwent minor changes and improvements this year. As a
consequence, when we manually defined a configuration of the system, we were able to
achieve a significant gain in precision in this particular track but at the cost of a lower

118

recall (which explains why F-measure decreases in the Conference 2011 track when a
specific configuration is manually selected). However, the capability to automatically
configure the system depending on the input ontologies, allows to achieve a very good
trade-off between precision and recall, with a sizable gain of 6% on the average F-
measure with respect to the best results we obtained last year.

4 Instance Matching

Fig. 3. Instance matching configuration.

Differently from our 2009 and 2010 par-
ticipations, we also entered the Instance
Matching track at OAEI 2011. While
our matchers were previously developed
specifically for working at the schema
level, we adapted our system to deal with
instances. We decided to focus on the
Data Interlinking sub-track, which con-
sists of recreating the links from New
York Times data to Freebase, DBPedia,
and GeoNames.

We found this track particularly in-
teresting and challenging, since it entails
the following new problems: a) datasets
are very large and not easy to wholly re-
trieve and work with, b) endpoints and
APIs have to be queried online in order to
get up-to-date information, c) these ser-
vices provide data in different formats,
and d) the source datasets (New York Times) do not have a schema associated with
them so we cannot rely on traditional ontology matching to create schema level map-
pings.

All of the tasks of this track of the competition are characterized by the presence of
a large amount of data. Therefore every instance in the source cannot be compared with
every other in the target. We faced the problem of deciding how to reduce the number
of comparisons, trying to minimize the loss in recall. Our solution consists of doing a
lookup using the label of the instance, the type (when provided), and querying against
an index which returns a reasonable number of candidate target instances.

We think this choice is very appropriate for several reasons: a) many SPARQL end-
points and APIs implement indexing which permits to get very fast answers to keyword
lookups, b) the online version of these Knowledge Bases is always richer and more up
to date with respect to downloadable versions, and c) we can query multiple Knowledge
Bases at the same time in a parallel fashion.

Once we query the online service and obtain the results, we compute a similarity
between the source instance and the candidate instances. These values are then used to
rank the candidates and eventually select the best one. Reusing some of the techniques
we have implemented for the other ontology matching tracks, we use different matchers

119

Source Target Types Precision Recall F-Measure
NYT Freebase People 0.966 0.950 0.958
NYT Freebase Locations 0.884 0.811 0.846
NYT Freebase Organizations 0.873 0.735 0.798
NYT GeoNames Locations 0.902 0.797 0.846
NYT DBPedia People 0.977 0.801 0.881
NYT DBPedia Locations 0.790 0.612 0.690
NYT DBPedia Organizations 0.840 0.667 0.744
Average 0.890 0.768 0.823
Harmonic Mean 0.886 0.754 0.815

Table 5. Results of AgreementMaker in the Instance Matching track.

that compare several features about the instances, and then combine their outputs in
order to give a final alignment.

The main features we use for comparison are: a) labels using a substring similarity,
b) comments and other literals using a Vector Space Model approach, c) RDF State-
ments considering property-value pairs, and d) the score values returned by the lookup
services (e.g. Freebase API, Apache Lucene score).

4.1 Instance Matching Results

The Data Interlinking sub-track of the Instance Matching at OAEI 2011 competition
is composed of seven tasks. The source dataset is always the New York Times, while
there are 3 different targets: Freebase, GeoNames, and DBPedia. The results obtained
by AgreementMaker in the Instance Matching track are summarized in Table 5, showing
precision, recall and F-measure for every matching task.

4.2 Comments about the Instance Matching results

The results are very good and encouraging. Both the average and the H-mean F-measure
are over 81%. Our system performs slightly better in Freebase than in DBPedia match-
ing, because the lookup service of the former returns fewer and more precise candi-
dates. Therefore, the disambiguation task is easier when working with Freebase data.
On GeoNames the result is very good thanks to the use of some shared properties
(geo:long, geo:lat) between the datasets.

5 Conclusions

In this paper we presented the results of the AgreementMaker system for aligning on-
tologies in the OAEI 2011 competition in the four tracks in which it participated: bench-
marks, anatomy, conference, and the data interlinking sub-track. We believe that while
our results are very good already, ongoing research can lead to further improvements.
The tracks of the OAEI have always been a challenge and have been a relevant measure
of quality among matching systems. In order to uphold this standard, we believe that
current matching tasks should be expanded to encompass the changing nature of the on-
tologies being used on the Semantic Web. More specifically, matching large ontologies
(more than 50,000 concepts) and focusing on more linked open datasets are important
directions to explore in the near future.

120

References

1. Isabel F. Cruz, Flavio Palandri Antonelli, and Cosmin Stroe. AgreementMaker: Efficient
Matching for Large Real-World Schemas and Ontologies. PVLDB, 2(2):1586–1589, 2009.

2. Isabel F. Cruz, Flavio Palandri Antonelli, and Cosmin Stroe. Efficient Selection of Mappings
and Automatic Quality-driven Combination of Matching Methods. In ISWC International
Workshop on Ontology Matching. CEUR-WS, 2009.

3. Isabel F. Cruz, Flavio Palandri Antonelli, and Cosmin Stroe. Integrated Ontology Matching
and Evaluation. In International Semantic Web Conference (Posters & Demos), 2009.

4. Isabel F. Cruz and Afsheen Rajendran. Exploring a New Approach to the Alignment of
Ontologies. In ISWC Workshop on Semantic Web Technologies for Searching and Retrieving
Scientific Data, volume 83 of CEUR-WS, pages 7–12, 2003.

5. Isabel F. Cruz and Afsheen Rajendran. Semantic Data Integration in Hierarchical Domains.
IEEE Intelligent Systems, March-April:66–73, 2003.

6. Isabel F. Cruz, Afsheen Rajendran, William Sunna, and Nancy Wiegand. Handling Semantic
Heterogeneities Using Declarative Agreements. In ACM Symposium on Advances in Geo-
graphic Information Systems (ACM GIS), pages 168–174, 2002.

7. Isabel F. Cruz, Cosmin Stroe, Michele Caci, Federico Caimi, Matteo Palmonari, Flavio Pa-
landri Antonelli, and Ulas C. Keles. Using AgreementMaker to Align Ontologies for OAEI
2010. In Proceedings of the International Conference on Biomedical Ontology, volume 689.
CEUR-WS, 2010.

8. Isabel F. Cruz and William Sunna. Structural Alignment Methods with Applications to
Geospatial Ontologies. Transactions in GIS, special issue on Semantic Similarity Measure-
ment and Geospatial Applications, 12(6):683–711, 2008.

9. Isabel F. Cruz, William Sunna, and Anjli Chaudhry. Ontology Alignment for Real-World
Applications. In National Conference on Digital Government Research (dg.o), pages 393–
394, 2004.

10. Isabel F. Cruz, William Sunna, and Anjli Chaudhry. Semi-Automatic Ontology Alignment
for Geospatial Data Integration. In International Conference on Geographic Information
Science (GIScience), volume 3234 of Lecture Notes in Computer Science, pages 51–66.
Springer, 2004.

11. Isabel F. Cruz, William Sunna, Nalin Makar, and Sujan Bathala. A Visual Tool for On-
tology Alignment to Enable Geospatial Interoperability. Journal of Visual Languages and
Computing, 18(3):230–254, 2007.

12. Isabel F. Cruz, William G. Sunna, and Kalyan Ayloo. Concept Level Matching of Geospatial
Ontologies. In GIS Planet International Conference and Exhibition on Geographic Informa-
tion, 2005.

13. Isabel F. Cruz and Huiyong Xiao. Data Integration for Querying Geospatial Sources. In John
Sample, Kevin Shaw, Shengru Tu, and Mahdi Abdelguerfi, editors, Geospatial Services and
Applications for the Internet, pages 113–137. Springer, 2008.

14. Anika Gross, Michael Hartung, Toralf Kirsten, and Erhard Rahm. Mapping Composition for
Matching Large Life Science Ontologies. In Proceedings of the International Conference on
Biomedical Ontology, pages 109–116, 2011.

15. William Sunna and Isabel F. Cruz. Structure-Based Methods to Enhance Geospatial Ontol-
ogy Alignment. In International Conference on GeoSpatial Semantics (GeoS), volume 4853
of Lecture Notes in Computer Science, pages 82–97. Springer, 2007.

16. Samir Tartir, I. Budak Arpinar, Michael Moore, Amit P. Sheth, and Boanerges Aleman-Meza.
OntoQA: Metric-Based Ontology Quality Analysis. In IEEE Workshop on Knowledge Ac-
quisition from Distributed, Autonomous, Semantically Heterogeneous Data and Knowledge
Sources, volume 9, 2005.

121

AROMA results for OAEI 2011

Jérôme David1

Université Pierre-Mendès-France, Grenoble
Laboratoire d’Informatique de Grenoble

INRIA Rhône-Alpes, Montbonnot Saint-Martin,
France

Jerome.David-at-inrialpes.fr

Abstract. This paper presents the results obtained by AROMA for its participa-
tion to OAEI. AROMA is an ontology alignment method that makes use of the
association paradigm and a statistical interestingness measure, the implication in-
tensity. AROMA performs a post-processing step that includes a terminological
matcher. This year we do not modify this matcher.

1 Presentation of AROMA

1.1 State, purpose, general statement

AROMA is an hybrid, extensional and asymmetric matching approach designed to find
out relations of equivalence and subsumption between entities, i.e. classes and prop-
erties, issued from two textual taxonomies (web directories or OWL ontologies). Our
approach makes use of the association rule paradigm [Agrawal et al., 1993], and a sta-
tistical interestingness measure. AROMA relies on the following assumption: An entity
A will be more specific than or equivalent to an entity B if the vocabulary (i.e. terms and
also data) used to describe A, its descendants, and its instances tends to be included in
that of B.

1.2 Specific techniques used

AROMA is divided into three successive main stages: (1) The pre processing stage
represents each entity, i.e. classes and properties, by a set of terms, (2) the second stage
consists of the discovery of association rules between entities, and finally (3) the post
processing stage aims at cleaning and enhancing the resulting alignment.

The first stage constructs a set of relevant terms and/or datavalues for each class
and property. To do this, we extract the vocabulary of class and property from their
annotations and individual values with the help of single and binary term extractor
applied to stemmed text. In order to keep a morphism between the partial orders of class
and property subsumption hierarchies in one hand and the inclusion of sets of term in
the other hand, the terms associated with a class or a property are also associated with
its ancestors.

The second stage of AROMA discovers the subsumption relations by using the
association rule model and the implication intensity measure [Gras et al., 2008]. In the

122

context of AROMA, an association rule a → b represents a quasi-implication (i.e. an
implication allowing some counter-examples) from the vocabulary of entity a into the
vocabulary of the entity b. Such a rule could be interpreted as a subsumption relation
from the antecedent entity toward the consequent one. For example, the binary rule
car → vehicle means: ”The concept car is more specific than the concept vehicle”.
The rule extraction algorithm takes advantage of the partial order structure provided
by the subsumption relation, and a property of the implication intensity for pruning the
search space.

The last stage concerns the post processing of the association rules set. It performs
the following tasks:

– deduction of equivalence relations,
– suppression of cycles in the alignment graph,
– suppression of redundant correspondences,
– selection of the best correspondence for each entity (the alignment is an injective

function),
– the enhancement of the alignment by using equality and a string similarity -based

matcher.

The equality -based matche considers that two entities are equivalent if they share
at least one annotation. This matcher is only applied on unaligned pairs of entities.

The string similarity based matcher still makes use of Jaro-Winkler similarity but
relies on a different weighting scheme. As an ontology entity is associated to a set
of annotations, i.e. local name, labels and comments, we use a collection measure for
aggregating the similarity values between all entity pairs.

In order to favour the measure values of most similar annotations pairs, we choose
to use the following collection measure:

Δmw(e, e′) =

⎧⎨
⎩

P
a∈T (e) arg maxa′∈T (e′) simjw(a,a′)2

P
a∈T (e) arg maxa′∈T (e′) simjw(a,a′) if |T (e)| ≤ |T (e′)|

Δmw(e′, e) otherwise

where T (e) is the set which contains the annotations and the local name of e, and simjw

is the Jaro-Winkler similarity. For all OAEI tracks, we choose a threshold value of 0.8.
For more details about AROMA, the reader should refer to [David et al., 2007;

David, 2007].

1.3 Link to the system and parameters file

The version 1.1 of AROMA has been used for OAEI2022. This version can be down-
loaded at : http://gforge.inria.fr/frs/download.php/23649/AROMA-1.1.zip.

The command line used for aligning two ontologies is:

java -jar aroma.jar onto1.owl onto2.owl [alignfile.rdf]

The resulting alignment is provided in the alignment format.

123

1.4 Link to the set of provided alignments (in align format)

http://www.inrialpes.fr/exmo/people/jdavid/oaei2009/results_AROMA_oaei2009.zip

2 Results

We participated to the benchmark, anatomy and conference tracks. We used the same
configuration of AROMA for all tracks. We did not experience scaling problem. Since
AROMA relies on syntactical data without using any multilingual resources, it is not
able to find alignment on the multilingual library track. Finally, we also did not par-
ticipate either to the instance matching track since AROMA is not designed for such a
task.

2.1 Benchmark

Since AROMA mainly relies on textual information, it obtains bad recall values when
the alterations affect all text annotations both in the class/property descriptions and in
their individual/property values. AROMA does not seem to be influenced by structural
alterations (222-247). On these tests, AROMA favours high precision values in com-
parison to recall values.

2.2 Anatomy

On anatomy test, we do not use any particular knowledge about biomedical domain.
AROMA runs quite fast since it takes benefits of the subsumption relation for pruning
the search space. ROMA needs around 1 min. to compute the alignment. This pruning
feature used by AROMA partially explained the low recall values obtained last year.
We enhanced the recall by using also an string equality based matcher before using
the lexical similarity based matcher. Since AROMA returns not only equivalence cor-
respondences but also subsumption correspondences, its precision value is negatively
influenced. It could be interesting to evaluate results by using semantic precision and
recall.

3 General comments

3.1 Comments on the OAEI test cases

In this section, we give some comments on the directory and oriented matching tracks
of OAEI.

Directory The two large directories, that were given in previous editions of OAEI,
are divided into very small sub directories. AROMA cannot align such very small di-
rectories because our method is based on a statistical measure and then it needs some
large amount of textual data. However, AROMA discovers correspondences when it is
applied to the complete directories. It would be interesting to reintroduce these large
taxonomies for the next editions.

124

Oriented matching We did not participate to this track because we think that it is not
well designed. Indeed, the proposed reference alignments are not complete.

For example in the 303 test, the reference alignment contains:

– 101#MastersThesis ≤ 103#Academic
– 103#MastersThesis ≤ 101#Academic

Obviously, no reliable matching algorithm would return these two correspondences
but rather:

– 101#MastersThesis ≡103#MastersThesis
– 101#Academic ≡ 103#Academic

In addition, from these two last correspondences, we could easily deduce the two first
ones.

Our suggestion for designing a better oriented matching track would be to remove
some classes and properties in the target ontologies so as to obtain complete reference
alignments with some subsumption relations. For example, it would be more accurate
to remove the concept MasterThesis from the ontology 103 in order to naturally change
101#MastersThesis ≡103#MastersThesis by 101#MastersThesis ≤ 103#Academic in
the reference alignment.

4 Conclusion

AROMA is a time efficient matcher but suffers of its prunning strategy: it has lower
support than other matchers. On anatomy track the precision is also degradated due to
the subomption correspondences it returns. For the next editions, we should improve
AROMA in terms of recall and precision. One way for doing that is to tune the param-
eters and also to had some strucural matcher.

References

[Agrawal et al., 1993] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining associa-
tion rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data, pages 207–216. ACM Press, 1993.

[David and Euzenat, 2008] Jérôme David and Jérôme Euzenat. Comparison between ontology
distances (preliminary results). In Proceedings of the 7th International Semantic Web Confer-
ence, volume 5318 of Lecture Notes in Computer Science, pages 245–260. Springer, 2008.

[David et al., 2007] Jérôme David, Fabrice Guillet, and Henri Briand. Association rule ontology
matching approach. International Journal on Semantic Web and Information Systems, 3(2):27–
49, 2007.

[David, 2007] Jérôme David. AROMA : une méthode pour la découverte d’alignements orientés
entre ontologies à partir de règles d’association. PhD thesis, Université de Nantes, 2007.

[Gras et al., 2008] Régis Gras, Einoshin Suzuki, Fabrice Guillet, and Filippo Spagnolo, editors.
Statistical Implicative Analysis, Theory and Applications, volume 127 of Studies in Computa-
tional Intelligence. Springer, 2008.

125

Ontology Matching with CIDER:
evaluation report for OAEI 2011

Jorge Gracia1, Jordi Bernad2, and Eduardo Mena2

1 Ontology Engineering Group, Universidad Politécnica de Madrid, Spain
jgracia@fi.upm.es

2 IIS Department, University of Zaragoza, Spain
{jbernad,emena}@unizar.es

Abstract. CIDER is a schema-based ontology alignment system. Its algorithm
compares each pair of ontology terms by, firstly, extracting their ontological con-
texts up to a certain depth (enriched by using lightweight inference) and, sec-
ondly, combining different elementary ontology matching techniques. In its cur-
rent version, CIDER uses artificial neural networks in order to combine such
elementary matchers.
In this paper we briefly describe CIDER and comment on its results at the Ontol-
ogy Alignment Evaluation Initiative 2011 campaign (OAEI’11). In this new ap-
proach, the burden of manual selection of weights has been definitely eliminated,
while preserving the performance with respect to CIDER’s previous participation
in the benchmark track (at OAEI’08).

1 Presentation of the system

CIDER (Context and Inference baseD alignER) is a system for ontology alignment
that performs semantic similarity computations among terms of two given ontologies.
It extracts the ontological context of the compared terms and enriches it by applying
lightweight inference rules. Elementary similarity comparisons are performed to com-
pare different features of the extracted ontological contexts. Such elementary compar-
isons are combined by means of artificial neural networks (ANNs).

CIDER was initially created in the context of a system [9] for discovering the se-
mantics of user keywords and already participated in the OAEI’08 campaign, leading to
good results [5]. In CIDER’s previous version, the elementary comparisons performed
during the similarity computation were combined linearly. The weights of this linear
combination were manually tuned after experimentation. This was a major limitation of
the approach, which hampered the flexibility of the method and the capacity for quickly
adapting it into different domains. This has been solved in the current version by the
addition of ANNs.

We expect to confirm that this contribution will not have a negative impact on the
initial algorithm. We also expect to discover areas of potential improvement that guide
us in our future exploration of this research path. For OAEI’11 campaign, CIDER has
participated in the Seals-based tracks3, i.e., benchmark, anatomy, and conference tracks.

3 http://oaei.ontologymatching.org/2011/seals-eval.html

126

1.1 State, purpose, general statement

According to the high level classification given in [3], our method is a schema-based
system (opposite to others which are instance-based, or mixed), because it relies mostly
on schema-level input information for performing ontology matching. CIDER admits
any two OWL ontologies and a threshold value as input. Comparisons among all pairs of
ontology terms are established, producing as output an RDF document with the obtained
alignments. In its current version, the process is enhanced with the use of ANNs. The
type of alignments that CIDER obtains is semantic equivalences.

1.2 Specific techniques used

Our alignment process takes as basis the semantic similarity measure described in [9],
with the improvements introduced in [5]. Briefly explained, the similarity computation
is as follows (see Figure 1):

Fig. 1. Scheme of the matching process.

1. Firstly, the ontological context of each ontology term is extracted, up to a certain
depth. That is (depending on the type of term), their synonyms, textual descriptions,
hypernyms, hyponyms, properties, domains, roles, associated concepts, etc. This
process is enriched by applying a lightweight inference mechanism4, in order to
add more semantic information that is not explicit in the asserted ontologies.

2. Secondly, several similarities between each pair of compared terms are computed:
Linguistic similarity between the labels of terms (based on Levenhstein [6] sim-
ilarity) as well as structural similarities, by exploiting the ontological context of
the terms and using vector space modelling [7] in the comparisons. This comprises
comparison of taxonomies and relationships among terms (e.g., properties of con-
cepts).

4 Typically transitive inference, although RDFS or more complex rules can be also applied, at
the cost of processing time.

127

3. Then, the different similarities are combined within an ANN to provide a final sim-
ilarity degree. ANNs constitute an adaptive type of systems composed of intercon-
nected artificial neurons, which change the structure based on external or internal
information that flows through the network during a learning phase [8]. CIDER
uses two different neural networks for computing similarities between classes and
properties, respectively5.

4. Finally, a matrix (M in Figure 1) with all similarities is obtained. The final align-
ment (A) is then extracted from this matrix, finding the highest rated one-to-one re-
lationships among terms, and filtering out the ones that are below the given thresh-
old.

Figure 2 shows, as an example, the structure of the neural network for computing
similarity between classes (the other one for properties follows an equivalent pattern).
Without entering into the details, this corresponds to a multilayer perceptron, which
consists of multiple layers of nodes in a directed graph, each layer fully connected to
the next one. Each connection (synapse) has an associated weight. In our particular
situation, the network is composed of three layers: input, hidden, and output layer (with
five, three, and one neurons respectively; additionally two bias neurons are used in the
input and hidden layer respectively). Each neuron in the input layer receives the value
of an elementary similarity measure. Each intermediate neuron uses a sigmoid function
to combine the inputs. Finally, the resultant similarity value is given by the neuron in
the output layer.

Fig. 2. Scheme of the neural network for computing similarity between classes. Highlighted con-
nexions correspond to higher weights.

5 Similarity between individuals follows the approach of the previous versions, although the
addition of a new ANN for that is planned as future work.

128

The inputs for the neural network that computes class similarity (labelled A - E
in the figure) are: lexical similarity between labels, similarity of textual descriptions
(e.g., rdfs:comment), similarity between hypernyms, similarity between hyponyms, and
similarity between associated properties.

In terms of implementation, the CIDER prototype has been developed in Java, ex-
tending the Alignment API [1]. To create and manipulate neural networks we use Neu-
roph Studio library6. The input to CIDER are OWL ontologies and the output is served
as a file expressed in the alignment format [1], although it can be easily translated into
another formats.

1.3 Adaptations made for the evaluation

According to the conditions of the competition7 “it is fair to select the set of param-
eters that provide the best results (for the tests where results are known)”. Thus, we
chose a subset of the OAEI’08 benchmark to train the neural networks and find suitable
weights for combining the elementary matchers that CIDER uses. We used the 2008
benchmark dataset but excluding cases 202 and 248-266 (which present a total absence
or randomization of labels and comments). The weights and the configuration of the
neural network remained constant for the whole evaluation.

Furthermore, as the Seals-based tracks of the competition do not consider mappings
between instances, we have disabled instance comparison. Finally, some minor techni-
cal adaptations were required for integrating the system into the Seals platform, such
as updating some libraries (e.g., Alignment API) or changing the way some parameters
are communicated.

1.4 Link to the system and parameters file

The version of CIDER used for this evaluation (v0.4c) can be found at Seals platform:
http://www.seals-project.eu/ . More information can be found at
http://sid.cps.unizar.es/SEMANTICWEB/ALIGNMENT/

1.5 Link to the set of provided alignments (in align format)

The resultant alignments will be provided by the Seals platform: http://www.seals-
project.eu/

2 Results

At the time of writing this, the preliminary results of this year competition are available
at [2], although the organisers will make public additional results in the future. From
the tracks in which CIDER participated, CIDER was not able to produce results on
the anatomy tests. The reason is that CIDER’s current implementation is not optimised

6 http://neuroph.sourceforge.net/
7 http://oaei.ontologymatching.org/2011/

129

to be used with large ontologies, and the execution of the test gave a timeout before
completion. Actually only six, out of the 16 participants in the anatomy track, were
able to complete the evaluation. We plan to improve CIDER’s performance for large
ontologies in a near future.

In the following paragraphs, we summarize the results obtained in the benchmark
and conference tracks (the detailed results can be found in [2]), as well as some com-
plementary experiments that we run locally.

2.1 Benchmark

The target of this experiment is the alignment of bibliographic ontologies. A reference
ontology is proposed, and many comparisons with other ontologies of the same do-
main are performed. The tests are systematically generated, modifying differently the
reference ontology in order to evaluate how the algorithm behaves when the aligned on-
tologies differ in some particular aspects. A total of 111 test cases have to be evaluated.
They are grouped in three sets:

1. Concept test (cases 1xx: 101, 102, ...), that explore comparisons between the refer-
ence ontology and itself, described with different expressivity levels.

2. Systematic (cases 2xx). It alters systematically the reference ontology to compare
different modifications or different missing information.

3. Real ontology (cases 3xx), where comparisons with other “real world” bibliographic
ontologies are explored.

As in our previous participation, we point out that our system is not intended to deal
with ontologies in which syntax is not significant at all, as it is the case for benchmark
cases 202 and 248-266 (these cases present a total absence or randomization of labels
and comments). Consequently, we expect a result with a low recall in this experiment,
as these benchmark tests do not favour methods that are not based on graph structure
analysis or similar techniques.

In addition to the traditional test data, a new benchmark data set (Benchmark2) has
been provided this year. This uses the EKAW conference ontology8 as basis and, same
as in the Benchmark data set, different systematic variations are explored, resulting in
103 test cases.

Finally, there was a “blind” benchmark data set that was used for providing the final
results in the competition. This test, consisting of 102 alignments, resulted in 0.89 pre-
cision, 0.58 recall and 0.70 F-Measure for CIDER, which is above the average results
in the competition (0.66 F-Measure, ranging from 0.32 to 0.77). Besides the usual pre-
cision/recall, other extended metrics were considered for this test in this year’s competi-
tion [2]. For instance, weighted precision/recall were computed taking into account the
score that the tool assigned to each correspondence. For this weighted metrics CIDER
obtained: 0.91 precision, 0.54 recall, and 0.68 F-measure (being the 4th best in the
competition, out of 16 participants).

In Table 1 we show the results of evaluating CIDER with the different benchmark
tracks: Benchmark (2010), Benchmark2 (2011), and “blind” Benchmark (2011). Addi-
tionally, and for comparison purposes, we also run the 2008 benchmark data with the

8 http://nb.vse.cz/ svabo/oaei2011/data/ekaw.owl

130

version of CIDER submitted for evaluation (v0.4) and compared it to the results ob-
tained by CIDER at OAEI08 (v0.1). Table 2 shows the results. Baseline results (edit
distance) are also included.

Benchmark Benchmark2 Benchmark(blind)
Precision 0.87 0.74 0.89

Recall 0.66 0.58 0.58
F-Measure 0.75 0.65 0.70
Table 1. Averaged results of CIDER for the benchmark datasets.

baseline(edna) CIDER v0.1 CIDER v0.4
Precision 0.56 0.97 0.88

Recall 0.60 0.62 0.69
F-Measure 0.58 0.76 0.77

Table 2. H-mean results for the OAEI08 benchmark dataset.

2.2 Conference

This track consisted of aligning several ontologies from the conference domain, which
resulted in 21 alignments. To evaluate the resultant alignments, various F-measures
were computed: F1 (harmonic mean between precision and recall), F2 (promotes re-
call), and F0.5 (promotes precision).

The results given by CIDER were: F1-Measure = 0.53, F2-Measure = 0.48, and
F0.5-Measure = 0.61, which place our system in intermediate positions in this track. We
expect that the use of more “real world” training data in CIDER will improve the results
in this track in future contests. The effect of the threshold selection in these results
has been nicely illustrated in the figures provided by the organisers9, and shows that
performance can be dramatically improved with a suitable selection of the threshold.

3 General comments

The following subsections contain some remarks and comments about the results ob-
tained and the evaluation process.

9 See http://nb.vse.cz/∼svabo/oaei2011/eval.html#reference)

131

3.1 Comments on the results

As it is shown in Table 2, a direct comparison between the current and previous version
of CIDER shows that the addition of ANNs does not has a negative effect on the algo-
rithm but, on the contrary, leads to slightly better results. Such results indicate also that
the new approach leads to a better recall, at the cost of precision.

The results for benchmark tracks (Table 1), although acceptable, are hampered by
the presence of test cases with ontologies lacking lexical information or that has been
randomly generated.

With respect to the conference track, the results are influenced by the fact that our
ANNs only used open data from the benchmark track for training. More reference align-
ments from “real world” ontologies will be used in the future for training the ANNs, in
order to cover different domains and different types of ontologies.

3.2 Discussions on the way to improve the proposed system

Although the obtained results are acceptable, we consider that there is still room for fur-
ther improvements. In fact, the addition of ANNs for similarity computation in CIDER
is in a preliminary stage and has to be further studied. We have to use more “real” data
for training, and alternative configurations for our multilayer perceptrons has to be stud-
ied. On the other hand, time response in CIDER is still an issue and has to be further
improved. Also, CIDER works well with small and medium sized ontologies but not
with large ones. Partitioning and other related techniques will be explored in order to
solve this.

3.3 Comments on the OAEI 2011 test cases

We have found the benchmark test very useful as a guideline for our internal improve-
ments of the method, as well as to establish a certain degree of comparisons with other
existing methods. On the other hand, we have missed some important issues that are not
taken into account in the systematic benchmark series. Some of them coincide with the
ones we already reported in 2008:

1. Benchmark tests only consider positive matchings, not measuring the ability of
different methods to avoid links among barely related ontologies.

2. For our purposes, we try to emulate the human behaviour when mapping ontologi-
cal terms. As human experts cannot properly identify mappings between ontologies
with scrambled texts, neither does our system. However, reference alignments pro-
vided in the benchmark evaluation for cases 202 and 248-266, do not follow this
intuition. We hope this bias will be reduced in future contests.

3. Related to the latter, cases in which equal topologies, but describing different things,
lead to false positives, are not explicitly taken into account in the benchmark.

4. How ambiguities can affect the method is not considered either in the test cases. It
is a consequence of using ontologies belonging to the same domain. For example,
it would be interesting to evaluate whether “film” in an ontology about movies is
mapped to “film” as a “thin layer” in another ontology. Therefore it is difficult to
evaluate the benefits of including certain disambiguation techniques in ontology
matching [4].

132

4 Conclusion

CIDER is a schema-based alignment system that compares the ontological contexts
(enriched with transitive inference) of each pair of terms in the aligned ontologies. Sev-
eral elementary ontology matching techniques are computed and combined by means
of artificial neural networks. We have presented here some results of the participa-
tion of CIDER at OAEI’11 contest, particularly in the Seals-based tracks (benchmark,
anatomy, and conference). The results on the benchmark track are good and constitute
our starting point for testing future improvements. We confirmed that the addition of
artificial neural networks keeps the performance and, furthermore, eliminates the ne-
cessity of tuning the weights manually.

Acknowledgments. This work is supported by the CICYT project TIN2010-21387-
C02-02, the Spanish Ministry of Science and Innovation within the Juan de la Cierva
program, and the EC within the FP7 project DynaLearn (no. 231526).

References

1. J. Euzenat. An API for ontology alignment. In 3rd International Semantic Web Conference
(ISWC’04), Hiroshima (Japan). Springer, November 2004.

2. J. Euzenat, A. Ferrara, W. R. van Hage, L. Hollink, C. Meilicke, A. Nikolov, D. Ritze,
F. Scharffe, P. Shvaiko, H. Stuckenschmidt, O. Šváb-Zamaza, and C. Trojahn. First results
of the ontology alignment evaluation initiative 2011. In In Proc. of 6th Ontology Matching
Workshop (OM11), at International Semantic Web Conference (ISWC11), Bonn, Germany,
2011.

3. J. Euzenat and P. Shvaiko. Ontology matching. Springer-Verlag, 2007.
4. J. Gracia, V. López, M. d’Aquin, M. Sabou, E. Motta, and E. Mena. Solving semantic ambi-

guity to improve semantic web based ontology matching. In Proc. of 2nd Ontology Matching
Workshop (OM’07), at 6th International Semantic Web Conference (ISWC’07), Busan (Ko-
rea), November 2007.

5. J. Gracia and E. Mena. Ontology matching with CIDER: Evaluation report for the OAEI
2008. In Proc. of 3rd Ontology Matching Workshop (OM’08), at 7th International Semantic
Web Conference (ISWC’08), Karlsruhe, Germany, volume 431, pages 140–146. CEUR-WS,
October 2008.

6. V. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. Cyber-
netics and Control Theory, 10(8):707–710, 1966. Original in Doklady Akademii Nauk SSSR
163(4): 845–848 (1965).

7. V. V. Raghavan and M. S. K. Wong. A critical analysis of vector space model for information
retrieval. Journal of the American Society for Information Science, 37(5):279–287, 1986.

8. M. Smith. Neural Networks for Statistical Modeling. John Wiley & Sons, Inc., New York,
NY, USA, 1993.

9. R. Trillo, J. Gracia, M. Espinoza, and E. Mena. Discovering the semantics of user keywords.
Journal on Universal Computer Science. Special Issue: Ontologies and their Applications,
November 2007.

133

CODI: Combinatorial Optimization for Data
Integration – Results for OAEI 2011

Jakob Huber, Timo Sztyler, Jan Noessner, and Christian Meilicke

KR & KM Research Group
University of Mannheim, Germany

{jahuber, tsztyler}@mail.uni-mannheim.de
{jan, christian}@informatik.uni-mannheim.de

Abstract. In this paper, we describe our probabilistic-logical alignment system
CODI (Combinatorial Optimization for Data Integration). The system provides a
declarative framework for the alignment of individuals, concepts, and properties
of two heterogeneous ontologies. CODI leverages both logical schema informa-
tion and lexical similarity measures with a well-defined semantics for A-Box and
T-Box matching. The alignments are computed by solving corresponding combi-
natorial optimization problems.

1 Presentation of the system

1.1 State, purpose, general statement

CODI (Combinatorial Optimization for Data Integration) leverages terminological struc-
ture for ontology matching. The current implementation produces mappings between
concepts, properties, and individuals. The system combines lexical similarity measures
with schema information to completely avoid incoherence and inconsistency during the
alignment process. CODI participates in 2011 for the second time in an OAEI campaign.
Thus, we put a special focus on differences compared to the previous 2010 version of
CODI.

1.2 Specific techniques used

CODI is based on the syntax and semantics of Markov logic [2] and transforms the
alignment problem to a maximum-a-posteriori optimization problem. This problem
needs a-priori confidence values for each matching hypotheses as input. Therefore, we
implemented an aggregation method of different similarity measures. Another new fea-
ture of CODI is the recognition of ontology pairs belonging to different versions of the
same ontology. In instance matching CODI does not compute lexical similarities for
all existing pairs of instances but utilizes object-property assertions for reducing the
necessary comparisons.

134

Markov Logic Framework Markov logic combines first-order logic and undirected
probabilistic graphical models [11]. A Markov logic network (MLN) is a set of first-
order formulae with weights. Intuitively, the more evidence there is that a formula is
true the higher the weight of this formula. It has been proposed as a possible approach
to several problems occurring in the context of the semantic web [2]. We have shown
that Markov logic provides a suitable framework for ontology matching as it captures
both hard logical axioms and soft uncertain statements about potential correspondences
between entities. The probabilistic-logical framework we propose for ontology match-
ing essentially adapts the syntax and semantics of Markov logic. However, we always
type predicates and we require a strict distinction between hard and soft formulae as
well as hidden and observable predicates. Given a set of constants (the classes and ob-
ject properties of the ontologies), a set of formulae (the axioms holding between the
objects and classes), and confidence values for correspondences, a Markov logic net-
work defines a probability distribution over possible alignments. We refer the reader to
[8, 7] for an in-depth discussion of the approach and some computational challenges.
For generating the Marcov logic networks we used the approach described in [12]. Our
OAEI paper from last year contains a more technical description of the framework [9].

Cardinality Constraints A method often applied in real-world scenarios is the selection
of a functional one-to-one alignment [1]. Within the ML framework, we can include a
set of hard cardinality constraints, restricting the alignment to be functional and one-to-
one.

Coherence Constraints Incoherence occurs when axioms in ontologies lead to logi-
cal contradictions. Clearly, it is desirable to avoid incoherence during the alignment
process. All existing approaches that put a focus on alignment coherence remove cor-
respondences after computing the alignment. Within the ML framework we can incor-
porate incoherence reducing constraints during the alignment process.

Stability Constraints Several approaches to ontology matching propagate alignment
evidence derived from structural relationships between concepts and properties. These
methods leverage the fact that existing evidence for the equivalence of concepts C and
D also makes it more likely that, for example, child concepts of C and D are equivalent.
One such approach to evidence propagation is similarity flooding [6]. As a reciprocal
idea, the general notion of stability was introduced, expressing that an alignment should
not introduce new structural knowledge [5].

Combination of Different Similarity Measures Compared to last year we improved
our lexical string similarity measures significantly. In a first step we collect and stan-
dardize all string information like ids, labels and annotations from the entities. Dur-
ing the standardization process we split tokens into separate words if necessary (e.g.
hasAuthor is transformed to has Author), replace special characters with spaces, and
remove few words like a or the according to a stop-words list.

Furthermore, the functionality of computing string similarities has been improved.
CODI is able to combine several string similarity measures by taking the average,

135

the maximum or by weighting each measure with a specific predefined weight. These
weights could be learned with machine learning algorithms. In the standard configu-
ration CODI combines the Cosine, Levenshtein, Jaro Winkler, Simth Waterman Goto,
Overlap coefficient, and Jaccard similarity measures1 with specific weights.

Matching different Ontology Versions A specific task in ontology matching is the
alignment of different versions of the same ontology. The test cases of the benchmark
track can be seen as an example for this kind of task. In the following we argue that
(a) matching versions requires a different approach compared to a standard matching
task, and (b) that, therefore, it is required to detect automatically that two ontologies are
different versions of the same ontology.

(a) Suppose that O and O′ are versions of the same ontology. Further, let O contain
less concepts and properties than O′. Then it is highly probable that many or nearly all
entities in O have a counterpart in O′. A good one-to-one alignment will have, thus,
as many correspondences as there are entities in O. Based on this assumption it makes
sense to lower the threshold or to use a structural measure in addition to the computation
of string-based similarities. In particular, we apply the following measure.

We first calculate the number of subclasses #sub, superclasses #sup, disjoint
classes #dis, and domain- and range-restrictions (#dom and #ran) for a specific
concept C. These results are then used to calculate a similarity. For example, given
C ∈ O and D ∈ O′ we have sim#sub(C,D) = (1+min(#sub(C),#sub(D)))/(1+
max(#sub(C),#sub(D))). The overall similarity sim(C,D) is then computed as
weighted average over all different similarity values for each of #sub, #sup, #dis,
#dom, #ran.

The resulting similarity measure is highly imprecise, but has a high recall if we ap-
ply it to two ontologies with high structural similarity. Whenever there is a high prob-
ability that the two input ontologies are versions of the same ontology, we add for each
concept C the top-k counterparts D with respect to sim(C,D) as matching hypotheses
with low confidence to the optimization problem (same for properties). This approach
sounds quite drastic, but keep in mind that there are anchor-correspondences generated
by our string-based measures and constraints that interact and result in a meaningful
final alignment.

(b) In order to determine whether two ontologies are versions of each other, we
apply the Hungarian method on the input generated by our structural measure. The
Hungarian method finds an optimal one-to-one alignment Aopt. Now suppose that we
match an ontology on itself. The number of correspondences in Aopt is then equal
to the number of entities in the ontology, i.e., Aopt has a full coverage. Moreover,
the total of confidences

∑
c∈Aopt

conf(c) will be |Aopt|. In general, we assume that∑
c∈Aopt

conf(c) divided by the size of the smaller ontology is close to 1 for versions
of the same ontology. In particular, we treat each pair of ontologies as versions if the
measured value is above 0.9.

1 Implemented in http://sourceforge.net/projects/simmetrics/.

136

Fig. 1. Process of Selecting Individuals for Computing their Lexical Similarities with thres =
0.7.

Instance Matching In real-world instance matching tasks we are often faced with data
sources containing a large amount of instances. Hence, it is obvious that computing the
lexical similarity for every pair of these instances is not suitable. We implemented an
approach which utilizes object-properties to determine the instances for which the simi-
larity should be computed. Our approach assumes that we have one common TBox and
two different ABoxes. Consequently, we assume that both TBoxes have been integrated
beforehand.

In a first step we compute anchor-alignments. Therefore, we compare a small sub-
set of all individuals with each other (e.g. all individuals which are asserted to a specific
concept like Film), compute their lexical similarities lexSim, and add those to the
anchor-alignments if their respective similarities are above a threshold thres. Then,
we take the first anchor-alignment a. For all individuals which are connected with an
object-property-assertion with one of the individuals in the alignment a we again com-
pute the lexical similarity lexSim. We add them to the end of the anchor-alignments if
lexSim is higher than the threshold thres. Figure 1 visualizes this process. The anchor-
alignments is a unique set, which means that only new alignments are added. We repeat
this procedure for the second, third, and all following anchor-alignments until we went
through the whole set.

137

The lexical similarity lexSim is computed as described in [9]. However, we inte-
grated coherence checks as proposed by [10] in order to avoid inconsistent alignments.
Comparisons can be further reduced, by omitting those individual pairs which have no
asserted inferred concept in common.

This basic idea is extended by some post-processing steps. For catching correspon-
dences which are not connected with an object-property-assertion, we compare all re-
maining individuals which do not yet occur in the anchor-alignment and add them if
their lexical similarity lexSim is above thres. At the end, a greedy algorithm for com-
puting a one-to-one alignment is applied.

These techniques reduce the runtime significantly on large instance-matching bench-
marks.

1.3 Adaptations made for the evaluation

Prior to each matching task, CODI automatically analyzes the input ontologies and
adapts itself to the matching task. The first distinction is based on the use of OBO
constructs. If this is the case CODI automatically switches to a setting optimized for
matching biomedical terms. The main difference in this setting is the use of a different
similarity measure which exploits the fact that in medical domains the order of words is
often transposed. The measure basically splits the two strings in two sets of words and
computes the largest common subset of these sets relative to the smaller one.

If this is not the case CODI checks if the ontologies might be versions of the same
ontology. This test does not always correctly discriminate and we sometimes do not
detect that two ontologies are different version of the same ontology resulting in poor
performance for some of the benchmark test cases.

1.4 Link to the System

CODI can be downloaded from the SEALS portal viahttp://www.seals-project.
eu/tool-services/browse-tools. Further information, an executable jar file,
and the source code are available at http://code.google.com/p/codi-matcher/.

1.5 Link to the Set of Provided Alignments

The alignments for the tracks Benchmark, Conference, and Anatomy has been cre-
ated on top of the SEALS platform. For IIMB the alignments can be found at http:
//code.google.com/p/codi-matcher/downloads/list

2 Results

Benchmark Track The benchmark track is constructed by applying controlled trans-
formations on one source ontology. Thus, all test-cases consist of different versions of
the same ontology. However, our adaptive method for detecting these ontologies only
categorize about 50 % beeing different versions of each other. Especially if their se-
mantic structure is heavily changed (e.g. deleting class hierarchy, etc.) our algorithm

138

fails. Nevertheless, with our adaptive method we were able to improve our F1 score
from 0.51 to 0.75 compared to last year. If all test-cases would have been correctly
categorized as different versions CODI’s F1 score would have been 0.83 which is 32
% higher than last year. For the newly introduced dataset 2 our adaptive setting even
produces a slightly higher F1 score of 0.70 compared to the correct assignments. Thus,
the structure of some test cases differs so much that it is beneficial to consider them not
as ontologies of the same version (even if they are). The results are shown in Table 1.

Table 1. Benchmark results

Dataset 1 Dataset 2
2011 2010 2011

adaptive correct adaptive correct
Precision 0.88 0.90 0.72 0.86 0.80
Recall 0.65 0.77 0.44 0.59 0.61
F1 score 0.75 0.83 0.51 0.70 0.69

Conference Track Since the conference dataset contains many trivial correspondences
matchers can easily reach a high precision. The challenge of this dataset consists in
finding the non-trivial correspondences. Concentrating on these non-trivial correspon-
dences we were able to increase our recall from 0.51 to 0.61 compared to the results of
last year and gained 2 % additional F1 score. In the conference track CODI was able
to detect that all ontology pairs are not versions of the same ontology. Consequently,
the adaptive and the correctly assigned results are similar (see Table 2). We also made
some experiments where we matched the Conference ontologies with the fixed version-
setting. We observed a significant loss in precision. This illustrates the importance of
an adaptive approach.

Table 2. Conference results

2011 2010
adaptive correct

Precision 0.75 0.75 0.87
Recall 0.61 0.61 0.51
F1 score 0.66 0.66 0.64

Anatomy Track Due to our special lexical similarity measure for medical ontologies,
we were able to improve our F1 score of last year from 0.794 to 0.879. Currently, our
results are better than the best participating system of the OAEI 2010. CODI requires
approximately 35min to finish this matching task on a 2.3GHz dual core machine with
8G RAM.

Table 3. Anatomy results

2011 2010
Precision 0.955 0.954
Recall 0.815 0.680
F1 score 0.879 0.794

139

IIMB Track The IIMB benchmark is created by applying lexical, semantical, and
structural transformation techniques on real data extracted from freebase [3]. The trans-
formations are divided into four transformation categories containing 20 transforma-
tions each. The size of the IIMB track heavily increased compared to last year. Each of
the 80 existing transformations consist of ontology files with sizes larger than 20 MB.
For computing a very basic string similarity for every pair of individuals the runtime
explodes to over one hour per test case. With our new instance matching method which
only compares related individuals we were able to reduce the runtime to 34 minutes
per test-case in average. This runtime includes the time for consistency checking, for
computing a functional one-to-one alignment, and for calculating a more sophisticated
lexical similarity.

Beside the increase in size, the transformations have been made much harder. Thus,
comparisons to last year results are not expedient. Table 4 summarizes the different
results of the CODI system for each of the 4 transformation categories2.

Table 4. IIMB results

Transformations 0-20 21-40 41-60 61-80 overall
Precision 0.93 0.83 0.73 0.66 0.79
Recall 0.78 0.59 0.67 0.28 0.63
F1 score 0.84 0.68 0.64 0.36 0.66

3 General comments

3.1 Discussions on the way to improve the proposed system

Improvements in usability by designing a suitable user interface are future steps that
have to be taken. Although we focussed this year on the implementation and evalua-
tion of a combination of more sophisticated lexical similarity measures, we think that
we still have not exploit CODIs full potential regarding this issue. Last but not least
improvements in matching different ontology versions will be subject of next years
participation.

3.2 Comments on the OAEI 2011 procedure

The SEALS evaluation campaign is very beneficial since it is the first time that the
matchers are publically available for download implementing a common interface.

3.3 Comments on the OAEI 2011 measures

We encourage the organizers to use semantic precision and recall measures as described
in [4].

2 In several test cases every supplementary information for individuals has been deleted. These
test cases will not be considered in the official OAEI evaluation and, thus, are omitted here.

140

4 Conclusion

This year we improved the lexical similarity measures and developed a methodology
for automatically choosing between different settings. Combining these improvements
with our Markov logic system from last year, we were able to improve our results for the
anatomy, conference, and benchmark track significantly. Furthermore, we developed a
new instance matching algorithm, which only computes the similarity of promising in-
stances. With this technique we were able to reduce the runtime of the large instance
matching benchmark.

The strength of the CODI system is the combination of lexical and structural infor-
mation and the declarative nature that allows easy experimentation. We will continue the
development of the CODI system and hope that our approach inspires other researchers
to leverage terminological structure and logical reasoning for ontology matching.

References

1. I. Cruz, F. Palandri, Antonelli, and C. Stroe. Efficient selection of mappings and automatic
quality-driven combination of matching methods. In Proceedings of the ISWC 2009 Work-
shop on Ontology Matching, 2009.

2. P. Domingos, D. Lowd, S. Kok, H. Poon, M. Richardson, and P. Singla. Just add weights:
Markov logic for the semantic web. In Proceedings of the Workshop on Uncertain Reasoning
for the Semantic Web, pages 1–25, 2008.

3. A. Ferrara, S. Montanelli, J. Noessner, and H. Stuckenschmidt. Benchmarking matching
applications on the semantic web. In The Semanic Web: Research and Applications - 8th
Extended Semantic Web Conference, ESWC 2011, Lecture Notes in Computer Science, pages
108–122, Heraklion, Crete, Greece, 2011. Springer.

4. D. Fleischhacker and H. Stuckenschmidt. A Practical Implementation of Semantic Precision
and Recall. In 2010 International Conference on Complex, Intelligent and Software Intensive
Systems, pages 986–991. IEEE, 2010.

5. C. Meilicke and H. Stuckenschmidt. Analyzing mapping extraction approaches. In Proceed-
ings of the Workshop on Ontology Matching, Busan, Korea, 2007.

6. S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph matching
algorithm and its application to schema matching. In Proceedings of ICDE, pages 117–128,
2002.

7. M. Niepert. A Delayed Column Generation Strategy for Exact k-Bounded MAP Inference in
Markov Logic Networks. In Proceedings of the 25th Conference on Uncertainty in Artificial
Intelligence, 2010.

8. M. Niepert, C. Meilicke, and H. Stuckenschmidt. A Probabilistic-Logical Framework for
Ontology Matching. In Proceedings of the 24th AAAI Conference on Artificial Intelligence,
2010.

9. J. Noessner and M. Niepert. Codi: Combinatorial optimization for data integration–results
for oaei 2010. Ontology Matching, page 142, 2010.

10. J. Noessner, M. Niepert, C. Meilicke, and H. Stuckenschmidt. Leveraging Terminological
Structure for Object Reconciliation. The Semantic Web: Research and Applications, pages
334–348, 2010.

11. M. Richardson and P. Domingos. Markov logic networks. Machine Learning, 62(1-2):107–
136, 2006.

12. S. Riedel. Improving the accuracy and efficiency of map inference for markov logic. In Pro-
ceedings of the Conference on Uncertainty in Artificial Intelligence, pages 468–475, 2008.

141

Cluster-based Similarity Aggregation for Ontology
Matching

Quang-Vinh Tran1, Ryutaro Ichise2, and Bao-Quoc Ho1

1 Faculty of Information Technology, Ho Chi Minh University of Science, Vietnam
{tqvinh,hbquoc}@fit.hcmus.edu.vn

2 Principles of Informatics Research Division, National Institute of Informatics, Tokyo, Japan
ichise@nii.ac.jp

Abstract. Cluster-based similarity aggregation (CSA) is an automatic similarity
aggregating system for ontology matching. The system have two main part. The
first is calculation and combination of different similarity measures. The second
is extracting alignment. The system first calculates five different basic measures
to create five similarity matrixes, i.e, string-based similarity measure, WordNet-
based similarity measure... Furthermore, it exploits the advantage of each mea-
sure through a weight estimation process. These similarity matrixes are combined
into a final similarity matrix. After that, the pre-alignment is extracted from this
matrix. Finally, to increase the accuracy of the system, the pruning process is
applied.

1 Presentation of the system

In the Internet, ontologies are widely used to provide semantic to data. Since they are
created by different users for different purposes, we need to develop a method to match
multiple ontologies for integrating data from different resources [2].

1.1 State, purpose, general statement

CSA (Cluster-based Similarity Aggregation) is the automatic weight aggregating sys-
tem for ontology alignment. The system is designed to search for semantic correspon-
dence between heterogeneous data sources from different ontologies. The current im-
plementation only support one-to-one alignment between concepts and properties (in-
cluding object properties and data properties). The core of CSA is utilizing the advan-
tage of each basic strategy for the alignment process. For example, the string-based
similarity measure works well when the two entities are similar linguistically while
the structure-based similarity measure is effective when the two entities are similar in
their local structure. The system automatically combines many similarity measurements
based on the analysis of their similarity matrix. Details of the system are described in
the following parts.

142

Fig. 1. The main process of CSA

1.2 Specific techniques used

The process of the system is illustrated in Figure 1. First, we calculate five basic similar-
ity measures. These similarities are String edit distance, WordNet based, Profile, Struc-
ture, and Instance based. Second, the weight for each similarity is estimated through a
weight estimation process. We then aggregate these similarities based on their weights.
After that, we propagate the similarity to get the final similarity matrix. The pre-alignment
is then extracted from this matrix. Finally, we apply the pruning process to get the final
alignment.

Similarity Generation The similarity between entities in the two ontologies is com-
puted by five basic measures. The String edit distance measures the lexical feature of
the entity’s name. The WordNet [3] exploits the similarity between words occur in
the entity’s name. We use the method of Wu and Palmer for calculating the WordNet
similarity [8]. The profile similarity makes use of the id, label, and comments infor-
mation contained in an entity. The profile for a class takes their properties, instances
into account. The profile for a property includes their domains and their ranges. We
then construct the weight feature vector using tf-idf. The similarity is then calculated
by the cosine similarity of the two vectors. The structure similarity is calculated for
class only. This similarity measures the difference in the local structure of an entity. We
implement the method introduced in [7] for the structure measure. This calculation is
based on the difference of number of class’s children, number of a class’s siblings, the
normalized depth from the root and the number of properties restricted to this class. The
instance-based measure is similar to the profile except that we only utilize the content
of instances that belong to classes and the properties appear in these instances.

Weight estimation Weight estimation is the core of CSA. In this step, we analyze each
similarity matrix of each basic measure to find which one is actually effective for the
alignment. This process is based on two sources of information. First, for each single
method, the process of finding a threshold for distinguishing matching pairs from non

143

matching pairs can be viewed as a binary classification problem [5]. The positive class
contains matching pairs and the negative class contains non matching ones. Second,
in one-to-one ontology alignment, the maximum number of matching pairs is equal to
the minimum number of entities in the two ontologies. If a single method is effective,
its correspondent similarity matrix must have the two criteria: The matrix that can dis-
tinguish matching from non matching pairs and the number of matching pairs must
approximate the minimum number of entities in the two ontologies.

On the basis of these criteria, we model the weight estimation process for concept
as follows: First, for each similarity matrix we use the K-means algorithm to cluster the
similarity values into two different classes (k = 2). The feature is the similarity value of
each pair of classes. The cluster with higher mean represents the matching set, and the
lower one represents the non matching set. We filter out all the values that belong to the
non matching set. What remains is the similarity matrix with the higher values. We then
we calculate the number of row that has value in the matrix. These row represent the
possible matching pairs. Because in our case we consider the one-to-one matching, one
concept from source ontology is only matched up to one concept from target ontology.
Finally, the weight is estimated by the ratio of the number of rows over the number of
matched values in the filtered matrix.

weight =
|number of row that has value|

|number of value in matching set| (1)

The weight estimation for property similarity matrix is calculated in the same man-
ner.

Similarity Aggregation The similarity combination can be defined as the weight aver-
age of the five basic measures. The weight for each measure is estimated in the previous
step.

Simcombine (e1, e2) =

∑n
i=1 weighti × Simi (e1, e2)∑n

i=1 weighti
(2)

Similarity Propagation This step considers the impact of structural information on
the similarity between each entity pair in the aggregated matrix. The intuition is that
the more similar in structure two entities are, the more similar they are. To exploit the
structure information, we use Descendant Similarity Inheritance [1].

Extraction In our system, only one-to-one matching is allowed. The final similarity
matrix can be viewed as a bipartite graph with the first set of vertices are entities from
source ontology and the second set of vertices are entities from target ontology. Thus,
the alignment extraction can be modeled as the process of finding the mapping from
the bipartite graph. To solve this, we apply the stable marriage problem algorithm [4].
We model the two set of entities as sets of men and women. For each man and each
woman, in the correspondence set, a list of priority of men and women is created based
on their similarity value. The stable marriage algorithm is then applied to find the stable
mapping between two sets. The result is the pre-alignment.

144

Table 1. Performance of CSA on benchmark track

Test Prec. Rec.
101 1.0 1.0
201-202 0.83 0.73
221-247 0.98 1.0
248-252 0.79 0.61
253-259 0.81 0.55
260-266 0.70 0.49
H-mean 0.82 0.65

Pruning This is the final step of our system. In this step we filter out a proportion of
entities pair that have low confidence to increase the precision of our system. For the
threshold, we set it manually. The result is the final alignment of the two ontologies.

1.3 Adaptations made for the evaluation

We do not make any specific adaptation for the OAEI 2011 campaign. The three track
are run in the same set of parameter.

1.4 Link to the system and parameters file

The CSA system can be downloaded from seal-project at http://www.seals-project.
eu/.

1.5 Link to the set of provided alignments (in align format)

The result of CSA system can be downloaded from seal-project at http://www.
seals-project.eu/.

2 Results

In this section, we present the results of the CSA system. We participate in the three
tracks of benchmarks, anatomy, and conference. The result is in the following part.

2.1 Benchmarks

On the benchmarks of 2011, the reference ontology are different that the previous year.
Since the descriptions, restrictions and instances are limited, it affects our algorithm
very much. The result is shown at Table 1. We group the test into six groups based
on their difficulty. The result shows the harmonic means precision and recall for each
group.

145

Table 2. Performance of CSA on anatomy track

Precision Recall F-measure
0.465 0.757 0.576

Table 3. Performance of CSA on conference track

Prec. F1Meas. Rec.
0.5 0.55 0.6

Prec. F2Meas. Rec.
0.5 0.58 0.6

Prec. F0.5Meas. Rec.
0.61 0.58 0.47

2.2 Anatomy

The anatomy dataset consists of two large ontologies of adult mouse anatomy with
2744 classes and a part of NCI Thesaurus for describing human anatomy with 3304
classes. The CSA result is shown in Table 2. Because of the high cost of computation,
the execution time is quite high (4685s). In this track our system is high in recall (0.76)
but the precision is quite low (0.47).

2.3 Conference

The results of conference track are shown in Table 3. It is difficult to archive the good
results since ontologies from this track are real and developed by different organizations
for different purposes.

3 General comments

This is the first time CSA has participated in the OAEI tracks, and our systems new to
the seals platform. Further, the same set of parameter for all test in all tracks are difficult,
because for each track the ontologies have a different characteristics to be processed.
Thus, for any given dataset we need a different method for defining the threshold to
extract the final alignment.

3.1 Comments on the results

Strengths CSA can be used to automatically combine different similarity measures.
Our system does not need any external resources or training data for estimating the
weight in the aggregation step.

146

Weaknesses The structure based similarity included in CSA is not strong enough to
distinguish the different between matching and non-matching pairs. There are no struc-
ture similarity for properties. Further, we have not yet integrated any semantic verifica-
tion or constraints in our system.

3.2 Discussions on the way to improve the proposed system

Our system is new and there are many opportunities to improve our method. First, we
can integrate more basic similarity measures for aggregating. Second, for the pruning
step, we can find the way for automatic defining a threshold rather than manually tuning.
Finally, we can use some semantic verification as in [6] to pruning the low confidence
matching pairs.

4 Conclusion

This is the first time the CSA has participated in OAEI campaign. In this year, we have
participated in three tracks of benchmarks, anatomy and conference. We have intro-
duced a new method for aggregating different similarity measures. The results show
that our method is promising.

References

1. Isabel F. Cruz and William Sunna. Structural alignment methods with applications to geospa-
tial ontologies. Transactions in GIS, 12(6):683–711, 2008.

2. Jérôme Euzenat and Pavel Shvaiko. Ontology matching. Springer-Verlag, Heidelberg (DE),
2007.

3. Christiane Fellbaum, editor. WordNet: an electronic lexical database. MIT Press, 1998.
4. David Gale and Lloyd S Shapley. College admissions and the stability of marriage. American

Mathematical Monthly, 69(1):9–15, 1962.
5. Ryutaro Ichise. Machine learning approach for ontology mapping using multiple concept sim-

ilarity measures. In Proceedings of the Seventh IEEE/ACIS International Conference on Com-
puter and Information Science, pages 340–346, Washington, DC, USA, 2008. IEEE Computer
Society.

6. Yves R. Jean-Mary, E. Patrick Shironoshita, and Mansur R. Kabuka. Ontology matching with
semantic verification. Web Semantics: Science, Services and Agents on the World Wide Web,
7:235–251, September 2009.

7. Ming Mao, Yefei Peng, and Michael Spring. An adaptive ontology mapping approach with
neural network based constraint satisfaction. Web Semantics: Science, Services and Agents on
the World Wide Web, 8:14–25, March 2010.

8. Zhibiao Wu and Martha Palmer. Verbs semantics and lexical selection. In Proceedings of the
32nd annual meeting on Association for Computational Linguistics, ACL ’94, pages 133–138,
Stroudsburg, PA, USA, 1994. Association for Computational Linguistics.

147

LDOA Results for OAEI 2011

Marouen Kachroudi, Essia Ben Moussa, Sami Zghal, and Sadok Ben

Yahia

University of Tunis El Manar
Computer Science Department, Faculty of Sciences of Tunis, Tunisia

Campus Universitaire, 1060 Tunis, Tunisia
{marouen.kachroudi,sadok.benyahia}@fst.rnu.tn

essia.ben moussa@etu.upmc.fr

sami.zghal@planet.tn

Abstract. This paper presents and discusses the results produced by
the Ldoa system for the 2011 Ontology Alignment Evaluation Initiative
(OAEI). This method is based on the exploitation of an external re-
source through Linked Data. These data represent a wealth at the level
of the Web. Indeed, it brings more semantics through relations that they
maintain. The proposed alignment method Ldoa exploits terminological
measures for concepts matching, topological measure for the exploration
of structures as well as a semantic approach based on Linked Data.

1 Presentation of the system

Ontology alignment is a major process which contributes to the foundation of se-
mantic Web, by facilitating the reconciliation of resources described by different
ontologies. It can be defined as a production of a set of correspondences between
the entities of two given ontologies. This process can be seen as a solution of
the data heterogeneousness in the semantic Web, by allowing their interoper-
ability. Indeed, a multitude of alignment methods appeared. These methods can
be classified according to their approaches and strategies. Certain methods are
based on lexical and linguistic treatments [1]. While other methods, qualified
as hybrids, besides the lexical treatments, they rely the structural study of the
ontologies to be aligned [2]. Nevertheless, this operation uses in certain cases
external resources [3]. They serve to complete the classic techniques of match-
ing, which exploit the structure or the wealth of the ontologies representative
language. With the emergence of Linked Data [4], Web of Data is growing and
realizes an important development. In classic Web, connections are anchors of
relations linking HTML documents. On the other hand, Linked Data establish
links between arbitrary objects. These connections exceed the borders of the
HTML documents, by gathering and describing all the data of the Web accord-
ing to the RDF (Resource Description Framework) formalism. Indeed, it is about
another pillar of semantic Web, which aims at favoring data sharing and reuse.
In this context, we introduce a new alignment method for OWL-DL ontologies
using external resource. An intuitive way of connecting data on Web is the use
of the owl:sameAs primitive, which is used to express links of identity.

148

2 LDOA

1.1 State, purpose, general statement

The proposed method, Ldoa (Linked Data for Ontology Alignment), presents
an originality by the fact that it exploits besides the classic techniques (the ter-
minological and structural measures of similarity) an external resource by using
Linked Data. These data bring complementary information on the ontological
entities to be aligned. This complementary information can increase in a consid-
erable way the interpretation and consequently semantics. The method Ldoa

implements an alignment strategy which aims at exploiting all the wealth of the
used ontologies. Indeed, it operates on three successive levels: terminological,
topological and semantic.

1.2 Specific techniques used

The introduced Ldoa method, as shown in figure 1, consists of two modules: a
pretreatment module and an alignment module. The pretreatment module allows
the transformation of the considered ontologies into two graphs. The alignment
module exploits the obtained graphs with the aim of establishing correspon-
dences between the various constituents of both ontologies to be aligned.

Fig. 1. Sketch of architecture for Ldoa method

Pretreatment module In the stage of pretreatment, both considered ontolo-
gies in entry are transformed into a structure of graph. For the Ldoa method,
parsing is realized through the Raptor API1. Indeed, all the informative wealth

1 http://librdf.org/raptor/

149

LDOA 3

of every ontology is described by a corresponding graph, i.e., classes, relations
and instances. Nodes of each graph are classes and instances, whereas arcs repre-
sent links between the ontological entities. Each entity of an ontology is expressed
with the RDF formalism : < subject, predicate,Object > [5] and described thanks
to OWL-DL constructors.

Alignment module The alignment module contains three complementary con-
stituents. The terminological similarity computation Tsc allows the calculation
of a compound terminological similarity between the descriptors of the ontologi-
cal entities to be aligned. The topological similarity computation Tpsc exploits
the internal structure of the ontologies by considering their hierarchies. The
semantic similarity computation Ssc uses Linked Data to look for a certain
complementarity between the entities.

– Terminological Similarity Computation (Tsc)

Terminological constituent of the Ldoa method rests on the exploitation of
three similarity measures based on strings treatment. These measures are
applied to three descriptors of each entity to be aligned. Each ontological
entity is described by three different descriptors : names, labels and com-
ments. The used similarity measures are adapted to the various descriptors
[6]. Levenshtein measure 2 [7] is used to calculate the similarity between
the names of the ontological entities. Jaro-Winkler measure 3 4 [8]com-
putes similarity between labels. SoftJaccard measure [9] is dedicated for
the computation of the similarity between comments.

– Topological Similarity Computation (Tpsc)

The Topological Similarity Computation Tpsc recovers from all the tech-
niques of alignment based on the study of the relational structures in the
morphology of an ontology. It is about the relations that an ontological entity
can maintain with its neighbors within. The hierarchy of the ontology [10].
Indeed, the Ldoa method exploits the taxonomic structure of ontological
classes to estimate their degree of similarity. This technique emphasizes on
the relational primitive OWL-DL SubClassOf , which endows an ontology
of a hierarchical shape comparable to a graph.

In Ldoa method, Wu-Palmer [11] similarity is used. It is a measure of
similarity between the concepts of ontologies. Resnik [12] defines the similar-
ity between two concepts by the quantity of information which they share.
This shared information is equal to the informative contents of the smallest
generalizing, i.e., the most specific concept which subsumes both concepts
in the ontology. Indeed, in a domain of concepts, the similarity is defined
with regard to the distance which separates two concepts in the hierarchy
and also by their position with regard to the root.

2
Levenshtein(s, t) = max(0, (min(|s|,|t|−δ(s,t))

min(|s|,|t|))
3
J-W(s, t) = σJ(s, t) + P × (1−σJ(s,t))

10
4
J(s, t) = 1

3
(|c(s,t)||s| + |c(s,t)|

|t| + |c(s,t)|−|tr(s,t)|
|c(s,t)|)

150

4 LDOA

– Semantic Similarity Computation (Ssc)
The (Ssc) usesDBpedia

5 as an external resource. This resource brings more
semantics at the level of the terms to be aligned. Indeed, for each visited
node of an ontology graph, a consultation of several data sets is launched.
This consultation is performed for the various descriptors of the ontological
entities to be aligned by exploiting OWL primitives, namely: sameAs and
seeAlso. This task allows to collect for the three various nodes descriptors
three sets of semantic equivalents (EN for names, EL for labels and EC for
comments). Whenever the descriptors belong to equivalent semantic sets,
the value of the semantic similarity is equal 1. Otherwise, the value of this
similarity is set to 0. The semantic similarity measure is computed as follow:

Ssc(E1, E2) =

⎧⎪⎨
⎪⎩
0 if {O2.name ∪ O2.comment

∪ O2.label} /∈ {EN ∪ EC ∪ EE}
1 otherwise.

The process of alignment ends with the computation of the correspondences
by aggregating the various stemming values of the three similarity constituents:
terminological, topological and semantic. The aggregation is realized through a
fair weighty combinaison in the various modules. The value of the correspon-
dence, VC , is computed as follows: VC(E1, E2) = ΠTsc×Tsc(E1, E2)+ΠTpsc×
Tpsc(E1, E2)+ΠSsc×Ssc(E1, E2), with the normalized sum of various weights
which is equal to 1 (ΠTsc + ΠTpsc + ΠSsc = 1). Indeed, the sum various level-
headednesses equal to 1 allows to obtain a value of correspondence which is equal
to 1. This facilitates then the process of comparison of the obtained results with
the other methods in the experimental study.

1.3 Adaptation made for the evaluation

The Ldoa method deals with the three test suites used in the Ontology Align-
ment Evaluation Initiative, i.e, Benchmark, Conference, and Anatomy. For this
reason, our method was wrapped in a certain folder structure to be evaluated
locally after being integrated in the SEALS platform. The package contains
all the libs files required by the method and a zipped .jar file that acts as a
bridge between the signature of the Ldoa method and the signature expected
by the SEALS platform. All the package content is described in an XML file,
namely descriptor.xml. The evaluation process can be launched through the
command-line interface by indicating the name of the test track.

1.4 Links to the system, parameters file and the set of provided
alignments

The release of the Ldoa method and the parameter file used for OAEI 2011 are
located at http://sourceforge.net/projects/the-ldoa-method/. The align-
ments RDF files of the OAEI 2011 provided by the Ldoa method are located
at http://sourceforge.net/projects/ldoaresults2011/.

5 http://wiki.dbpedia.org/

151

LDOA 5

2 Results

In this section, we describe the results of the Ldoa method against the three
test tracks (Benchmark, Anatomy, Conference) correspondingly to the SEALS
platform evaluation modalities for OAEI 2011.

2.1 Benchmark

The metrics of Precision and Recall, recapitulated in Table 1, are grouped by
family of tests. The values corresponding to the family 10x show that the Ldoa
method supplies good values. For the family 20x, values shows a degradation.
Those low values are explained by the fact that ontological entities of this family
of tests are marked by the absence of concepts names and comments. Also, in
two test cases those names are either translated nor replaced by their synonyms.
Indeed, the Ldoa method, based on terminological measures, syntactical and
semantic treatments, shows a degradation. For the two family tests 22x and 23x
Ldoa provides good values of recall but low values of precision. This is due
to the important number of similar pairs of entities detected by the method
that exceeds the number of pairs provided by the reference alignment. In addi-
tion, for test cases 24x, 25x and 26x we marked low values for both metrics of
precision and recall. In those test cases, we note the absence of certain entities
descriptors, i.e., scrambled labels, no comments, no instance, no property as well
as a flattened hierarchy. This decreases the efficiency of the terminological and
topological measures. For the real test cases, i.e., 30x, results obtained by the
Ldoa method supplies average values because our method can deals only with
equivalence alignment relations, contrary to the alignment result which contains
some inclusion (<) alignment relations.

Tests Precision Recall

10x 0.71 1.00

20x 0.44 0.50

22x 0.64 1.00

23x 0.57 1.00

24x 0.40 0.57

25x 0.34 0.46

26x 0.17 0.42

30x 0.47 0.69

Table 1. Precision and Recall metrics from OAEI 2011 for Benchmark dataset

2.2 Conference

This dataset consists of several, relatively expressive ontologies that describe the
domain of organizing conferences from different perspectives. Table 2 recapitu-
lates the Precision and the Recall. The goal of this track is to find all correct

152

6 LDOA

correspondences within a collection of ontologies describing the domain of orga-
nizing conferences (the domain being well understandable for every researcher).
Additionally, ”interesting correspondences” are also welcome. Results were eval-
uated automatically against reference alignments and by data-mining and logical
reasoning techniques.

Test Precision Recall

cmt-confOf 0.07 0.43
cmt-conference 0.04 0.31
cmt-edas 0.08 0.69
cmt-ekaw 0.04 0.45
cmt-iasted 0.03 1.00
cmt-sigkdd 0.11 0.83
confOf-edas 0.11 0.57
confOf-ekaw 0.12 0.50
confOf-iasted 0.04 0.44
confOf-sigkdd 0.05 0.57
conference-confOf 0.06 0.46
conference-edas 0.06 0.52
conference-ekaw 0.14 0.68
conference-iasted 0.03 0.35
conference-sigkdd 0.08 0.53
edas-ekaw 0.08 0.52
edas-iasted 0.05 0.52
edas-sigkdd 0.08 0.60
ekaw-iasted 0.04 0.60
ekaw-sigkdd 0.07 0.63
iasted-sigkdd 0.10 0.86

Table 2. Precision and Recall metrics from OAEI 2011 for Conference dataset

2.3 Anatomy

The anatomy real world case is to match the Adult Mouse Anatomy and the
NCI Thesaurus describing the human anatomy. Mouse has 2,744 classes, while
Human has 3,304 classes. Matching these ontologies is also challenging in terms
of efficiency because these ontologies are relatively large. Our method shows
problems when handling those two ontologies and can’t supply correspondences.

3 General comments

In the following some general statements about the OAEI procedure, modalities,
and results obtained are given.

153

LDOA 7

3.1 Comments on the results

For this year, the reference alignments of the three SEALS tracks are only con-
cerned with classes and properties. There is no coverage of instances, also called
individuals. This can explain the low values we obtained, especially for the Pre-
cision metric. We are looking for the possibility of adding individuals for the
reference alignments.

3.2 Discussions on the way to improve the proposed system

Besides, the determination of the adequate weights for the various constituents
is our current priority. Thus, we work on the automatic detection of hierarchical
trends in the considered ontologies, e.g., a standard treatment of the flattened
hierarchies strongly degraded the value of the measure of topological similarity.
Besides, the idea to concretize the semantic aspect in the alignment process will
bring us to conceive a purely semantic approach. This approach will have to asset
the coverage of semantics of all the ontological entities as well as for relations
which they maintain. In the scalability register, the Ldoa method would be able
to handle ontologies of real world having bigger sizes. So, using the WordNet

API [13] or dictionaries can be considered as a necessary step, to improve the
values of the terminological similarity measures, in particular in the multilingual
alignment task, (e.g., tests of the family 2xx).

3.3 Comments on the OAEI 2011 procedure

The SEALS evaluation campaign is very beneficial since it allows all alignment
systems to use a standardized interface which could possibly be used by ev-
eryone. The evaluation procedure was full automatized through the use of the
Matcherbridge class.

4 Conclusions

The Ldoamethod was briefly described. The results obtained for the OAEI 2011
tracks, cooresponding to the SEALS platform evaluation modalities. Several ob-
servations regarding these results were highlighted, in particular the impact of
the elimination of any ontological resource on the similarity values. Also the effect
of having a single configuration throughout all OAEI tracks were discussed. Fu-
ture development for Ldoa method will be targeted towards more interactivity
and intelligence in dealing with weights assigned for every similarity value when
some ontological resource are lost, i.e., terminologies, structures or semantics.

Acknowledgement

The authors would like to thank Aicha Ben Jrad for the valuable contributions
and feedback about DBpedia access and exploitation.

154

8 LDOA

References

1. Kortis, K., Vouros, G., Stergiou, K.: Towards automatic merging of domain on-
tologies: Approach the hcone-merge a. Journal of Web Semantics 4 (2006) 60–79

2. Xu, P., Tao, H., Zang, T., Wang, Y.: Alignment results of sobom for oaei 2009. In:
Proceedings of the 4th International Workshop on Ontology Matching (OM-2009),
Washington, USA (2009) 216–223

3. Safar, B., Reynaud, C.: Alignement d’ontologies basé sur des ressources
complémentaires illustration sur le système taxomap. Technique et Science In-
formatiques 28 (2009) 1211–1232

4. Parundekar, R., Knoblock, C., Ambite, J.: Linking and building ontologies of linked
data. In: Proceedings of 9th International Semantic Web Conference (ISWC 2010),
Shanghai, China (2010) 598–614

5. Klyne, G., Carroll, J.J.: Resource Description Framework (RDF): Concepts
and Abstract Syntax. Technical report, W3C: World Wide Web Consortium,
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/ (05/24/2010) (2004)

6. Zghal, S., Kachroudi, M., Ben Yahia, S., Mephu Nguifo, E.: OACAS: Ontologies
alignment using composition and aggregation of similarities. In: Proceedings of
the 1st International Conference on Knowledge Engineering and Ontology Devel-
opment (KEOD 2009), Madeira, Portugal (2009) 233–238

7. Levenshtein, I.V.: Binary codes capables of corrections, deletions, insertions and
reversals. Soviet Physics-Doklady 10 (1966) 707–710

8. Winkler, W.: The state of record linkage and current research problems. Technical
report, Statistical Research Division, U.S. Bureau of the Census (1999)

9. Largeron, C., Kaddour, B., Fernandez, M.: SoftJaccard : une mesure de simi-
larité entre ensembles de châınes de caratères pour l’unification d’entités nommées.
In: Actes des 9ème Journées Francophones Extraction et Gestion des Connaissances
(EGC’2009), Strasbourg, France (2009) 443–444

10. Ehrig, M.: Ontology alignment: bridging the semantic gap. Springer-Verlag, New-
York (2007)

11. Wu, Z., Palmer, M.: Verb semantics and lexical selection. In: Proceeding of 32nd

Annual Meeting of the Association for Computational Linguistics (ACL 1994).
(1994) 133–138

12. Resnik, P.: Using information content to evaluate semantic similarity in a tax-
onomy. In: Proceedings of the 14th International Joint Conference on Artificial
Intelligence (IJCAI 1995). (1995) 448–453

13. Miller, G.A.: WordNet : a Lexical Database for English. Communications of the
ACM 38 (1995) 39–41

155

Lily Results on SEALS Platform for OAEI 2011

Peng Wang

School of Computer Science and Engineering, Southeast University, China
pwang@seu.edu.cn

Abstract. This paper presents the alignment results of Lily on SEALS platform
for the ontology alignment contest OAEI 2011. Lily is an ontology matching
system. In OAEI 2011, Lily submited the results for three matching tasks on the
SEALS platform: benchmark, anatomy, conference. The specific techniques
used by Lily are introduced. The matching results of Lily are also discussed.

Keywords: Ontology Matching, SEALS Platform, OAEI

1 Presentation of the system

Lily is an ontology matching system for solving the key issues related to
heterogeneous ontologies, and it uses hybrid matching strategies to execute the
ontology matching task. Lily can be used to discovery alignments for both normal
size ontologies and large scale ontologies. In past ontology alignment contests, Lily
showed it is a good ontology matching system and obtained good results in some
tasks [1-3].

1.1 State, purpose, general statement

The core principle of the matching strategy in Lily is utilizing the useful information
effectively and correctly. Lily combines several novel and efficient matching
techniques to find alignments. Lily has three main matching functions: (1) Generic
Ontology Matching (GOM) is used for common matching tasks with normal size
ontologies. (2) Large scale Ontology Matching (LOM) is used for the matching tasks
with large size ontologies. (3) Ontology mapping debugging is used to verify and
improve the alignment results.

The matching process mainly contains three steps: (1) In preprocess, Lily parses
ontologies and prepares the necessary information for subsequent steps. (2) In
similarity computation step, Lily uses special methods to calculate the similarities
between elements from different ontologies. (3) In post-process, alignments are
extracted and refined by mapping debugging.

In OAEI2011, we redesign or modify some key algorithms, and we also make it
can be run on the SEALS platform.

156

1.2 Specific techniques used

Lily aims to provide high quality 1:1 concept pair or property pair alignments. The
main specific techniques used by Lily are as follows.

Semantic subgraph: An element may have heterogeneous semantic interpretations
in different ontologies. Therefore, understanding the real local meanings of elements
is very useful for similarity computation, which are the foundations for many
applications including ontology matching. Therefore, before similarity computation,
Lily first describes the meaning for each entity accurately. However, since different
ontologies have different preferences to describe their elements, obtaining the
semantic context of an element is an open problem. We proposed the semantic
subgraph to capture the real meanings of ontology elements [4]. To extract the
semantic subgraphs, a hybrid ontology graph is used to represent the semantic
relations between elements. An extracting algorithm based on an electrical circuit
model is then used with new conductivity calculation rules to improve the quality of
the semantic subgraphs. We have showed that the semantic subgraphs can properly
capture the local meanings of elements [4].

Based on the extracted semantic subgraphs, we can build more credible matching
clues. Therefore it can reduce the negative affection of the matching uncertain.

Generic ontology matching method: The similarity computation is based on the
semantic subgraphs, i.e. all the information used in the similarity computation is come
from the semantic subgraphs. Lily combines the text matching and structure matching
techniques.

Semantic Description Document (SDD) matcher measures the literal similarity
between ontologies. A semantic description document of a concept contains the
information about class hierarchies, related properties and instances. A semantic
description document of a property contains the information about hierarchies,
domains, ranges, restrictions and related instances. For the descriptions from different
entities, we calculate the similarities of the corresponding parts. Finally, all separate
similarities are combined with the experiential weights.

Matching weak informative ontologies: Most existing ontology matching
methods are based on the linguistic information. However, some ontologies have not
sufficient or regular linguistic information such as natural words and comments, so
the linguistic-based methods cannot work. Structure-based methods are more practical
for this situation. Similarity propagation is a feasible idea to realize the structure-
based matching. But traditional propagation does not take into consideration the
ontology features and will be faced with effectiveness and performance problems. We
analyze the classical similarity propagation algorithm Similarity Flood and propose a
new structure-based ontology matching method [5]. This method has two features: (1)
It has more strict but reasonable propagation conditions which make matching process
become more efficient and alignments become better. (2) A series of propagation
strategies are used to improve the matching quality. We have demonstrated that this
method performs well on the OAEI benchmark dataset [5].

However, the similarity propagation is not always perfect. When more alignments
are discovered, more incorrect alignments would also be introduced by the similarity
propagation. So Lily also uses a strategy to determine when to use the similarity
propagation.

157

Large scale ontology matching: Matching large ontologies is a challenge due to
the high time complexity. We propose a new matching method for large ontologies
based on reduction anchors [6]. This method has a distinct advantage over the divide-
and-conquer methods because it does not need to partition large ontologies. In
particular, two kinds of reduction anchors, positive and negative reduction anchors,
are proposed to reduce the time complexity in matching. Positive reduction anchors
use the concept hierarchy to predict the ignorable similarity calculations. Negative
reduction anchors use the locality of matching to predict the ignorable similarity
calculations. Our experimental results on the real world data sets show that the
proposed method is efficient for matching large ontologies [6].

Ontology mapping debugging Lily uses a technique called ontology mapping
debugging to improve the alignment results [7]. Different from existing methods,
which focus on finding efficient and effective solutions for the ontology mapping
problem, mapping debugging emphasis on analyzing the mapping result to
detect/diagnose the mapping defects. We proposed a technique called debugging
ontology mappings [7]. During debugging, some types of mapping errors, such as
redundant and inconsistent mappings, can be detected. Some warnings, including
imprecise mappings or abnormal mappings, are also locked by analyzing the features
of mapping result. More importantly, some errors and warnings can be repaired
automatically or can be presented to users with revising suggestions.

1.3 Adaptations made for the evaluation

Lily is fully automatic in OAEI2011, and there is no any parameter turning during the
matching. Lily has a simple strategy to choose the right matching method.

1.4 Link to the system and the set of provided alignments

Lily system for OAEI 2011 is available at http://cse.seu.edu.cn/people/pwang/
software/Lily/lily-package.zip

2 Results

2.1 benchmark

The Benchmark2010 dataset can be divided into five groups: 101-104, 201-210, 221-
247, 248-266 and 301-304.

101-104 Lily plays well for these test cases.
201-210 Lily can produce good results for this test set. Even without right labels

and comments information, Lily can find most correct alignments through making use
of other information such as instances. Using few alignment results obtained by the
basic methods as inputs, the similarity propagation strategy will generate more
alignments.

221-247 Lily can find most correct alignments using the labels and comments
information.

158

248-266 This group is the most difficult test set. Lily first uses the GOM method to
find alignments, and then use matching weak informative method to discover more
alignments.

301-304 This test set are the real ontologies. Lily only finds the equivalent
alignment relations.

The following table shows the average performance of each group and the overall
performance on the Benchmark2010 dataset.

Table 1. The results on the Benchmark2010

101-104 201-210 221-247 248-266 301-304 Average
Precision 1.00 0.92 0.98 0.81 0.71 0.86
Recall 1.00 0.82 0.99 0.51 0.69 0.66
F1-Measure 1.00 0.85 0.97 0.59 0.70 0.71

The BenchmarkII2011 dataset can be divided into three groups: 101-102, 221-247
and 248-266. It seems that this task is more difficult than Benchmark2010. Our
alignment results have small decrease in average.

The following table shows the average performance of each group and the overall
performance on the BenchmarkII2011 dataset.

Table 2. The results on the BenchmarkII2011

101-202 221-247 248-266 Average
Precision 0.92 0.96 0.74 0.79
Recall 0.65 0.98 0.55 0.63
F1-Measure 0.70 0.97 0.61 0.67

2.2 anatomy

The anatomy track consists of two real large-scale biological ontologies. Lily can
handle such ontologies smoothly with LOM method. Task#1 means that the matching
system has to be applied with standard settings to obtain a result that is as good as
possible. Table 3 shows the performance of the task #1 on anatomy dataset.

Compared to the result in OAEI2009, our result has little increase. However, it has
obvious gap to the results of other matching system in OAEI2010.

Table 3. The performance on the anatomy

Runtime Precision Recall F1-Measure
Task#1 20min 0.80 0.72 0.76

2.4 conference

This task contains 16 real world ontologies about conference. We only get part of
alignments from SEALS platform, which is showed in Table 4. The heterogeneous

159

character in this track is various. It is a challenge to generate good results for all
ontology pairs in this test set.

Table 4. The performance on the conference based on reference mappings

Ontology Pair Precision Recall F1-Measure
cmt-confOf 0.46 0.38 0.41
cmt-conference 0.21 0.25 0.23
cmt-edas 0.29 0.54 0.38
cmt-ekaw 0.25 0.45 0.32
cmt-iasted 0.18 0.50 0.27
cmt-sigkdd 0.27 0.25 0.26
confOf-edas 0.57 0.42 0.48
confOf-ekaw 0.72 0.65 0.68
confOf-iasted 0.38 0.67 0.48
confOf-sigkdd 0.09 0.14 0.11
conference-confOf 0.55 0.73 0.63
conference-edas 0.16 0.29 0.20
conference-ekaw 0.38 0.32 0.35
conference-iasted 0.39 0.50 0.44
conference-sigkdd 0.32 0.47 0.38
edas-ekaw 0.50 0.52 0.51
edas-iasted 0.31 0.47 0.37
edas-sigkdd 0.47 0.53 0.50
ekaw-iasted 0.30 0.70 0.42
ekaw-sigkdd 0.33 0.45 0.38
iasted-sigkdd 0.43 0.67 0.53

3. General comments

We redesign some key algorithms of Lily this year, but it does not produce better
alignment results than previous versions. For example, we try to use mapping
debugging technique to improve the precision of results. However, for the reason that
the generated results are 1:1 equivalent mappings, the mapping debugging can only
find few wrong alignments.

The SEALS platform is very important for ontology matching research. It provides
a way to examine new matching method and compare to other matching systems.

4 Conclusion
We briefly introduce our ontology matching tool Lily. The matching process and the
special techniques used by Lily are presented. The alignment results are carefully
analyzed.

References
1. Peng Wang, Baowen Xu: Lily: ontology alignment results for OAEI 2009. In The 4th

International Workshop on Ontology Matching, Washington Dc., USA (2009)
2. Peng Wang, Baowen Xu: Lily: Ontology Alignment Results for OAEI 2008. In The Third

International Workshop on Ontology Matching, Karlsruhe, Germany (2008)

160

3. Peng Wang, Baowen Xu: LILY: the results for the ontology alignment contest OAEI 2007.
In The Second International Workshop on Ontology Matching (OM2007), Busan, Korea
(2007)

4. Peng Wang, Baowen Xu, Yuming Zhou: Extracting Semantic Subgraphs to Capture the Real
Meanings of Ontology Elements. Journal of Tsinghua Science and Technology, vol. 15(6),
pp. 724-733 (2010)

5. Peng Wang, Baowen Xu: An Effective Similarity Propagation Model for Matching
Ontologies without Sufficient or Regular Linguistic Information, In The 4th Asian Semantic
Web Conference (ASWC2009), Shanghai, China (2009)

6. Peng Wang, Yuming Zhou, Baowen Xu: Matching Large Ontologies Based on Reduction
Anchors. In The Twenty-Second International Joint Conference on Artificial Intelligence
(IJCAI 2011), Barcelona, Catalonia, Spain (2011)

7. Peng Wang, Baowen Xu: Debugging Ontology Mapping: A Static Approach. Computing and
Informatics, vol. 27(1), pp. 21 36 (2008)

Appendix: Raw results

The final results of benchmark task are as follows.

Matrix of results

Comment Prec. Rec. # Comment Prec. Rec.
101 Reference alignment 1.00 1.00 251 1.00 0.08
103 Language generalization 1.00 1.00 251-2 0.93 0.83
104 Language restriction 1.00 1.00 251-4 0.91 0.74
201 No names 0.96 0.96 251-6 0.94 0.67
201-2 1.00 1.00 251-8 0.88 0.49
201-4 1.00 1.00 252 0.29 0.02
201-6 0.98 0.98 252-2 0.92 0.82
201-8 1.00 1.00 252-4 0.89 0.79
202 No names, no comment 0.43 0.03 252-6 0.90 0.80
202-2 0.95 0.86 252-8 0.92 0.82
202-4 0.94 0.76 253 0.33 0.02
202-6 0.94 0.67 253-2 0.94 0.80
202-8 0.92 0.51 253-4 0.92 0.71
203 Misspelling 0.98 0.98 253-6 0.95 0.64
204 Naming conventions 1.00 1.00 253-8 0.91 0.44
205 Synonyms 1.00 0.99 254 0.00 0.00
206 Translation 1.00 0.99 254-2 0.84 0.64
207 1.00 0.99 254-4 0.95 0.55
208 0.96 0.93 254-6 0.92 0.36
209 0.71 0.53 254-8 0.86 0.18
210 0.71 0.53 257 1.00 0.03
221 No specialisation 1.00 1.00 257-2 0.94 0.88
222 Flattened hierarchy 1.00 1.00 257-4 0.93 0.76
223 Expanded hierarchy 0.98 0.98 257-6 0.75 0.55

161

224 No instances 1.00 1.00 257-8 0.92 0.36
225 No restrictions 1.00 1.00 258 0.57 0.04
228 No properties 1.00 1.00 258-2 0.93 0.83
230 Flattened classes 0.94 1.00 258-4 0.92 0.75
231 Expanded classes 1.00 1.00 258-6 0.97 0.69
232 1.00 1.00 258-8 0.94 0.52
233 1.00 1.00 259 0.29 0.02
236 1.00 1.00 259-2 0.91 0.81
237 1.00 1.00 259-4 0.91 0.81
238 0.97 0.97 259-6 0.89 0.79
239 0.97 1.00 259-8 0.89 0.79
240 0.94 0.97 260 0.50 0.03
241 1.00 1.00 260-2 0.85 0.79
246 0.97 1.00 260-4 0.87 0.69
247 0.91 0.94 260-6 0.88 0.52
248 0.43 0.03 260-8 0.85 0.38
248-2 0.93 0.79 261 0.50 0.03
248-4 0.95 0.73 261-2 0.83 0.76
248-6 0.95 0.64 261-4 0.83 0.76
248-8 0.90 0.44 261-6 0.83 0.76
249 0.71 0.05 261-8 0.84 0.79
249-2 0.95 0.86 262 0.00 0.00
249-4 0.91 0.74 262-2 0.88 0.67
249-6 0.96 0.68 262-4 0.89 0.52
249-8 0.91 0.49 262-6 0.92 0.36
250 1.00 0.03 262-8 0.86 0.18
250-2 0.94 0.88 265 0.50 0.03
250-4 0.93 0.76 266 0.50 0.03
250-6 0.83 0.61 301 BibTeX/MIT 0.82 0.76
250-8 0.92 0.36 302 BibTeX/UMBC 0.54 0.42

303 Karlsruhe 0.57 0.65
304 INRIA 0.89 0.93

162

LogMap results for OAEI 2011

Ernesto Jiménez-Ruiz, Antón Morant, and Bernardo Cuenca Grau

Department of Computer Science, University of Oxford
{ernesto,anton.morant,berg}@cs.ox.ac.uk

Abstract. We present the results obtained by the ontology matching system LogMap
within the OAEI 2011 campaign. This is the first participation of LogMap in the
campaign, and the results have so far been quite promising.

1 Presentation of the System

The LogMap1 project started in January 2011 with the objective of developing a scal-
able and logic-based ontology matching system.

Such system should be able to deal efficiently with large-scale ontologies; further-
more, it should exploit logic-based reasoning and diagnosis techniques to compute out-
put mappings that do not lead to logical inconsistencies when integrated with the input
ontologies [7]. Although the development of LogMap is relatively recent, the authors’
experience in the field of ontology integration dates back to 2008 [9, 11].

1.1 Motivation and Problem Statement
Despite the impressive state of the art, large-scale biomedical ontologies still pose seri-
ous challenges to existing ontology matching tools [15, 6].

Insufficient scalability. Although existing matching tools can efficiently deal with
moderately sized ontologies (e.g. those in the OAEI Anatomy track), large-scale on-
tologies such as FMA, SNOMED CT and NCI are still beyond their reach.

Logical inconsistencies. OWL ontologies have well-defined semantics based on first-
order logic, and mappings are commonly represented as OWL class axioms. Many ex-
isting tools, however, disregard the semantics of the input ontologies; thus, they are
unable to detect and repair inconsistencies that logically follow from the union of the
input ontologies and the computed mappings. Although there is a growing interesting
in applying reasoning techniques to ontology matching, reasoning is known to severely
aggravate the scalability problem.

1.2 Technical Approach
LogMap is a highly scalable ontology matching system with ‘built-in’ reasoning and
diagnosis capabilities, which aims at addressing the aforementioned challenges.

We next present a brief overview of LogMap and refer the reader to [7] for a com-
prehensive description. The main steps performed by LogMap are shown in Figure 1.

1 http://www.cs.ox.ac.uk/isg/projects/LogMap/

163

O1

O2

Lexical and

Structural

Indexation

Compute

Initial

Anchors

Mapping

Repair
Expand?

Mapping

Discovery

Compute

Overlapping O′
2

O′
1

MNo

Yes

Fig. 1. LogMap in a nutshell.

Inverted index for NCI Anatomy labels Index for NCI Anatomy class URIs
Entry Cls ids Cls id URI
external,ear 1 1 NCI C12292 (external ear)
atrial,auricle 1,392 392 NCI C32165 (auricle)
auricle 1,392; 529 529 NCI C12394 (ear)
ear 529
Inverted index for Mouse Anatomy labels Index for Mouse Anatomy class URIs
Entry Cls ids Cls id URI
auricle 214 214 MA 0000259 (auricle)
atrial,auricle 214 216 MA 0000258 (outer ear)
ear,external 216
outer,ear 216

Table 1. Fragment of the lexical indices for NCI and Mouse anatomy ontologies

Lexical indexation. The first step after parsing the input ontologies is their lexical
indexation. LogMap indexes the labels of the classes in each ontology as well as their
lexical variations, and allows for the possibility of enriching these indices by using
external sources (e.g., WordNet or UMLS-lexicon). LogMap constructs an ‘inverted’
lexical index (see Table 1) for each input ontology. In general, an entry in the index can
be mapped to several classes (e.g., see ‘auricle’ in Table 1). This type of index, which
is commonly used in information retrieval applications, will be exploited by LogMap
to efficiently compute an initial set of candidate mappings, called anchors.

Structural indexation. LogMap exploits the information in the (extended) class hier-
archy of the input ontologies in different steps of the matching process. Efficient access
to the information in these hierarchies is critical to LogMap’s scalability.

LogMap classifies the input ontologies using either incomplete structural heuristics,
or an off-the-shelf complete DL reasoner. Then, the classified hierarchies are indexed
using an interval labelling schema—an optimised data structure for storing DAGs and
trees [1], which has been shown to significantly reduce the cost of computing typical
queries over large class hierarchies [3, 14].

The class hierarchies computed by LogMap are extended since, apart from the typ-
ical classification output of DL reasoners, they also include those explicit axioms in

164

Entry NCI ids Mouse ids Mappings
external,ear 1 216 NCI C12292 ≡ MA 0000258

atrial,auricle 1,392 214
NCI C12292 ≡ MA 0000259
NCI C32165 ≡ MA 0000259

auricle 1,392; 529 214
NCI C12292 ≡ MA 0000259
NCI C32165 ≡ MA 0000259
NCI C12394 ≡ MA 0000259

Table 2. Fragment of the intersection between the inverted indices for NCI and Mouse ontologies

the input ontologies that can be directly encoded in Horn propositional logic (e.g., class
disjointness axioms, subsumption axioms between an intersection of named classes and
a named class).

Computation of ‘anchor mappings’. LogMap computes an initial set of anchor map-
pings by intersecting the inverted indices of the input ontologies (i.e., by checking
whether two lexical entries in those indices contain exactly the same strings). Anchor
computation can hence be implemented very efficiently. Table 2 shows the intersection
of the inverted indices of Table 1, which yields four anchors.

Given an anchor m = (C1 ≡ C2), LogMap uses the string matching tool ISUB
[16] to match the neighbours of C1 in the hierarchy of O1 to the neighbours of C2

in the hierarchy of O2. LogMap then assigns a confidence value to m by computing
the proportion of matching neighbours weighted by the ISUB similarity values. This
technique is based on a principle of locality: if classes C1 and C2 are correctly mapped,
then the classes semantically related to C1 in O1 are likely to be mapped to those
semantically related to C2 in O2. Thus, if the hierarchy neighbours of the classes in an
anchor mapping match with low confidence, then the anchor may be incorrect.

Mapping repair and discovery. The core of LogMap is an iterative process that alter-
nates mapping repair and mapping discovery steps (see Figure 1).

Unsatisfiability checking and repair. LogMap uses a Horn propositional logic repre-
sentation of the extended hierarchy of each ontology together with all existing map-
pings. Although such propositional Horn encoding is possibly incomplete, it is key to
LogMap’s scalability. Provably complete DL reasoners do not scale well when inte-
grating large ontologies via mappings; the scalability problem is exacerbated by the
number of unsatisfiable classes (more than 10,000 found by LogMap when integrating
SNOMED and NCI using only anchors) and the large number of additional reasoner
calls required for repairing each unsatisfiability.

For unsatisfiability checking, LogMap implements the highly scalable Dowling-
Gallier algorithm [5] for propositional Horn satisfiability, and calls the Dowling-Gallier
module once (in each repair step) for each class. Our implementation takes as input a
class C (represented as a propositional variable) and determines the satisfiability of the
propositional theory PC consisting of

– the rule (true → C);

165

– the propositional representations P1 and P2 of the extended hierarchies of the input
ontologies O1 and O2; and

– the propositional representation PM of the mappings computed thus far.

LogMap computes a repair for each unsatisfiable class in the input ontologies.
Given an unsatisfiable class C and the propositional theory PC , a repair R of PC is a
minimal subset of the mappings in PM such that PC \ R is satisfiable.

LogMap extends Dowling-Gallier’s algorithm to record all active mappings (Pact)
that may be involved in each unsatisfiability. To improve scalability, repair computation
is based on a ‘greedy’ algorithm. Given each unsatisfiable class C and the relevant
active mappings Pact computed using Dowling-Gallier, the algorithm identifies subsets
of Pact of increasing size until a repair is found. Thus, our algorithm is guaranteed to
compute all repairs of smallest size. If more than one repair is found, LogMap selects
the one with involving mappings with the lowest confidence values.

Mapping discovery. In order to discover new mappings, LogMap maintains two con-
texts (sets of ‘semantically related’ classes) for each anchor. Contexts for the same
anchor are expanded in parallel using the class hierarchies of the input ontologies. New
mappings can then be found by matching classes in the relevant contexts using ISUB.
Matches with a similarity value exceeding a given confidence threshold are considered
as candidate mappings.

LogMap continues the iteration of repair and discovery steps until no context is
expanded. The output of this process is a set of mappings that is likely to be ‘clean’,
in the sense that it will not lead to unsatisfiable classes when merged with the input
ontologies.

Ontology overlapping estimation. In addition to the mappings, LogMap also returns
two (hopefully small) fragments O′

1 and O′
2 of O1 and O2, respectively. Intuitively, O′

1

and O′
2 represent the ‘overlapping’ between O1 and O2, in the sense that each ‘correct’

mapping not found by LogMap is likely to involve only classes in these fragments. The
computation of O′

1 and O′
2 is performed in two steps.

1. Computation of ‘weak’ anchors. LogMap computed the initial anchor mappings
by checking whether two entries in the inverted index of O1 and O2 contained ex-
actly the same set of strings. For the purpose of overlapping estimation, LogMap
also computes new anchor mappings that are ‘weak’ in the sense that relevant in-
dex entries are only required to contain some common string. Thus, weak anchors
represent correspondences between classes with a common lexical component.

2. Module extraction. The sets Si of classes in Oi involved in either a weak anchor
or a mapping computed by LogMap are then used as ‘seed’ signatures for module
extraction. In particular, O′

1 (resp. O′
2) are computed by extracting a locality-based

module [4] for S1 in O1 (resp. for S2 in O2).

1.3 Adaptations made for the evaluation

To participate in the OAEI 2011, LogMap has been extended with a property matching
facility as well as with the ability to consider ‘weak’ anchors as candidate mappings.

166

Extended inverted index for NCI Anatomy Index for NCI Anatomy class URIs
Lexical entry Cls ids Cls id Cls name
gallbladder,smooth,tissue,muscle 2061 2061 NCI C49483 (gallbladder smooth muscle tissue)
smooth,muscle 2061; 3214,. . . 3214 NCI C49306 (trachea smooth muscle tissue)
Extended inverted index for Mouse Anatomy Index for Mouse Anatomy class URIs

Lexical entry Cls ids Cls id Cls name
gall,bladder,smooth,muscle 600 600 MA 0001635 (gall bladder smooth muscle)
smooth,muscle 600; 2629; . . . 2629 MA 0001741 (prostate gland smooth muscle)

Entry NCI ids Mouse ids Mappings

smooth,muscle 2061; 3214; . . . 600; 2629; . . .

NCI C49483 ≡ MA 0001635
NCI C49483 ≡ MA 0001741
NCI C49306 ≡ MA 0001635
NCI C49306 ≡ MA 0001741
. . .

Table 3. Extend inverted indices an their intersection for NCI and Mouse Anatomy ontologies

Computation of property anchors. Similarly to the case of anchor mappings between
classes, the computation of anchor mappings between (object or data) properties also
relies on the intersection of inverted lexical indexes. These mappings, however, are
currently not taken into account by LogMap’s repair module.

In the current version of LogMap, a mapping between properties p1 and p2 is re-
turned as output only if both their respective domains D1, D2 and ranges R1, R2 are
‘compatible’— that is, if LogMap’s repair module does not find inconsistencies when
extending the final output class mappings with the mappings D1 ≡ D2 and R1 ≡ R2.

For example, in the OAEI conference track, LogMap identified an equivalence map-
ping between the properties cmt:writtenBy and confOf:writtenBy. This mapping, how-
ever, was discarded since the extension of LogMap’s output class mappings with the
mappings cmt:Reviewer ≡ confOf:Author and cmt:Review ≡ confOf:Contribution
between the respective domains and ranges of these properties led to an inconsistency.

Inclusion of ‘weak’ anchors. Weak anchor mappings are well-suited for overlapping
estimation purposes (see Section 1.2); however, it is dangerous to treat them as candi-
date output mappings since they are likely to introduce unmanageable levels of ‘noise’
during mapping repair.

The upper part of Table 3 shows an excerpt of the inverted indices for NCI and
Mouse Anatomy ontologies extended with partial lexical entries. The intersection of
these inverted indices includes the entry ‘smooth,muscle’, which appears in 19 concepts
in Mouse Anatomy and in 9 concepts in NCI Anatomy; as a result, 171 weak anchor
mappings can be obtained (see lower part of Table 3). Most of these mapping are ob-
viously incorrect (e.g. NCI C49483 ≡ MA 0001741 or NCI C49306 ≡ MA 0001741),
however valid mappings can still be discovered (e.g. NCI C49483 ≡ MA 0001635).

The current version of LogMap considers a weak anchor as a candidate output map-
ping (hence taking it into account for mapping repair) only if exceeds a given ISUB
confidence threshold.

167

System Precision Recall F-score Time (s)
AgrMaker 0.943 0.892 0.917 634
LogMap 0.948 0.846 0.894 24
CODI 0.965 0.825 0.889 1890
Lily 0.814 0.734 0.772 563
AROMA 0.742 0.625 0.679 39
CSA 0.465 0.757 0.576 4685

Table 4. Comparing LogMap with the top 6 tools in the Anatomy Track of the OAEI 2011

2 Results

In this section, we present the official results obtained by LogMap in the OAEI 2011.

2.1 Anatomy 2011 Track

This track involves two biomedical ontologies: the Adult Mouse Anatomy ontology
(2,744 classes) and a fragment of the NCI ontology describing human anatomy (3,304
classes). The reference alignment [2] has been manually curated, and it contains a sig-
nificant number of non-trivial mappings.

Table 4 compares LogMap’s results with the tools providing meaningful results
in the Anatomy 2011 track. LogMap obtained the second best results; furthermore,
LogMap was faster than the other tools: while LogMap matched these ontologies in 24
seconds, the best tool (AgrMaker) required more than 10 minutes. We also verified, us-
ing an off-the-shelf DL reasoner, that the integration of these ontologies with LogMap’s
output mappings did not lead to unsatisfiable classes. According to official results only
LogMap and CODI provided mappings without incoherence [13].

2.2 Conference 2011 Track

The Conference 2011 Track contains 16 ontologies describing the domain of conference
organisation.

Table 5 compares LogMap’s results with the official results obtained by the top 6
tools. LogMap obtained the third best results in terms of F-score; furthermore, reason-
ing with the union of the input ontologies and LogMap’s output mappings did not lead
to unsatisfiable classes in the most of the cases. Only in the tests including the ontology
Cocus we could not provided a clean output since the logical errors involved universal
quantifications.

2.3 Benchmark 2011 Track

The goal of this track is to evaluate the tools’ behaviour when the input ontologies are
lacking important information. The test ontologies for this track have been obtained by
performing certain synthetic transformations on realistic ontologies (e.g., suppressing
entity labels, flattening the class hierarchy).

168

System Precision Recall F-score Incoherence
YAM++ 0.78 0.56 0.65 0.07
CODI 0.74 0.57 0.64 0.00
LogMap 0.84 0.5 0.63 0.02
AgrMaker 0.65 0.59 0.62 0.12
MassMatch 0.83 0.42 0.56 0.04
CSA 0.5 0.6 0.55 0.29

Table 5. Comparing LogMap with the top 6 tools in the Conference Track of the OAEI 2011.

The computation of candidate mappings in LogMap heavily relies on the similarities
between the lexicons of the input ontologies; hence, replacing entity names by random
strings has a direct negative impact in the number of discovered mappings.

When taking into account only those tests for which LogMap was able to compute
at least one mapping, we obtained an average precision of 0.992 and an average recall
of 0.605. In 17 (out of 112) test cases, however, LogMap found no mappings. When
taking into account also these cases, we obtained average precision and recall values of
0.827 and 0.504, respectively.

3 General Comments and Conclusions

Comments on the results. We find LogMap’s results quite promising.

– In the most of cases, LogMap was able to compute a clean set of output mappings
(i.e., not leading to unsatisfiable classes when merged with the input ontologies).

– LogMap was the fastest of all tools in the the Anatomy 2011 Track (computation-
ally, the most challenging of all tracks).

– LogMap obtained very good results in terms of F-score for both the Anatomy 2011
and Conference 2011 tracks.

LogMap’s main weakness is that the computation of candidate mappings relies on
the similarities between the lexicons of the input ontologies. As already mentioned,
LogMap could not find any mappings for 17 of the test cases in the Benchmark 2011
track, since class names were substituted by random strings.

Comments on the OAEI 2011 test cases. Ontology matching tools have significantly
improved in the last few years, and there is a need for more challenging and realis-
tic matching problems [15, 6]. To address this need, in [10, 8] we proposed the use of
(clean subsets of) UMLS mappings as reference alignments between the large-scale
biomedical ontologies FMA, SNOMED CT and NCI. The use in an OAEI track of
these ontologies represents a significant leap in complexity w.r.t. the existing anatomy
track; however, we take our positive experiences with LogMap as an indication that a
new track based on these ontologies and their UMLS alignments would be feasible.

Future developments. We aim at creating a more scalable and robust LogMap; fur-
thermore we also plan to develop the necessary infrastructure for domain experts to
interactively contribute to the matching process [12].

169

Acknowledgements.

We would like to acknowledge the funding support of the Royal Society and the EPSRC
project LogMap, and also thank the organizers of the OAEI campaign for providing test
data and infrastructure.

References

1. Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient management of transitive relationships in
large data and knowledge bases. SIGMOD Rec. 18, 253–262 (1989)

2. Bodenreider, O., Hayamizu, T.F., et al.: Of mice and men: Aligning mouse and human
anatomies. In: AMIA Annu Symp Proc. pp. 61–65 (2005)

3. Christophides, V., Plexousakis, D., Scholl, M., Tourtounis, S.: On labeling schemes for the
Semantic Web. In: Proc. of WWW. pp. 544–555. ACM (2003)

4. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Just the right amount: extracting
modules from ontologies. In: Proc. of WWW. pp. 717–726 (2007)

5. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability of proposi-
tional Horn formulae. J. Log. Program. pp. 267–284 (1984)

6. Euzenat, J., Meilicke, C., Stuckenschmidt, H., Shvaiko, P., Trojahn, C.: Ontology Alignment
Evaluation Initiative: six years of experience. J Data Semantics (2011)

7. Jimenez-Ruiz, E., Cuenca Grau, B.: LogMap: Logic-based and Scalable Ontology Matching.
In: et al., L.A. (ed.) The 10th International Semantic Web Conference (ISWC). LNCS, vol.
7031, pp. 273–288. Springer (2011)

8. Jimenez-Ruiz, E., Cuenca Grau, B.: Towards more challenging problems for ontology match-
ing tools. In: Proc. of the 3th International Workshop on Ontology Matching (OM) (2011)

9. Jimenez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga, R.: Ontology integration using
mappings: Towards getting the right logical consequences. In: Proc. of European Semantic
Web Conference (ESWC). pp. 173–187 (2009)

10. Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga, R.: Towards a UMLS-based sil-
ver standard for matching biomedical ontologies. In: Proc. of the 5th International Workshop
on Ontology Matching (2010)

11. Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga, R.: Logic-based assessment of
the compatibility of UMLS ontology sources. J Biomed. Sem. 2 (2011)

12. Jimenez-Ruiz, E., Cuenca Grau, B., Zhou, Y.: Logmap 2.0: towards logic-based, scalable and
interactive ontology matching. In: Proc. of the 4th International Workshop on Semantic Web
Applications and Tools for Life Sciences (SWAT4LS) (2011)

13. Meilicke, C., Stuckenschmidt, H.: Incoherence as a basis for measuring the quality of ontol-
ogy mappings. In: Proc. of the 3rd International Workshop on Ontology Matching (2008)

14. Nebot, V., Berlanga, R.: Efficient retrieval of ontology fragments using an interval labeling
scheme. Inf. Sci. 179(24), 4151–4173 (2009)

15. Shvaiko, P., Euzenat, J.: Ten challenges for ontology matching. In: On the Move to Mean-
ingful Internet Systems (OTM Conferences) (2008)

16. Stoilos, G., Stamou, G.B., Kollias, S.D.: A string metric for ontology alignment. In: Proc. of
the International Semantic Web Conference (ISWC). pp. 624–637 (2005)

170

MaasMatch results for OAEI 2011

Frederik C. Schadd, Nico Roos

Maastricht University, The Netherlands
{frederik.schadd, roos}@maastrichtuniversity.nl

Abstract. This paper summarizes the results of the first participation of Maas-
Match in the Ontology Alignment Evaluation Initiative (OAEI) of 2011. We pro-
vide a brief description of the techniques that have been applied, with the em-
phasis being on the application of virtual documents and information retrieval
techniques in order effectively utilize linguistic ontologies. Also, we discuss the
results achieved in the tracks provided under the SEALS modality: benchmark,
conference and anatomy.

1 Presentation of the system

1.1 State, purpose, general statement

Sharing and reusing knowledge is an important aspect in modern information sys-
tems. Since multiple decades, researchers have been investigating methods that facil-
itate knowledge sharing in the corporate domain, allowing for instance the integration
of external data into a company’s own knowledge system. Ontologies are at the center
of this research, allowing the explicit definition of a knowledge domain. With the steady
development of ontology languages, such as the current OWL language [3], knowledge
domains can be modeled with an increasing amount of detail.

Unfortunately, since ontologies of the same knowledge domain are commonly de-
veloped separately or for different purposes, transferring information across different
sources becomes challenging as the heterogeneities between the ontologies need to be
resolved. Several types of heterogeneities can emerge between two ontologies, com-
monly divided into syntactic, terminological, semantic and semiotic heterogeneities [1].

MaasMatch is an ontology matching tool with a focus on resolving terminological
heterogeneities, such that entities with the same meaning but differing names and en-
tities with the same name but different meanings are identified as such and matched
accordingly. Given this focus, the tool has been primarily tested using the conference
data set, since the ontologies of this data set are more likely to contain these hetero-
geneities.

1.2 Specific techniques used

In this section we will present the techniques applied in MaasMatch. The overall struc-
ture of MaasMatch is simple, being a combination of a string similarity measure and
our WordNet similarity, and using the combination of the two similarity matrices to ex-
tract the final alignments. However, most of our research so far has been invested into
advancing the effectiveness of WordNet similarities.

171

WordNet makes it possible identify concepts that have the same meaning but differ-
ent names, since synonyms are grouped into sets, called synsets. However, a more chal-
lenging task is the identification of concepts have similar names, but different meanings.
As an example, if an ontology contains a concept ’house’, then WordNet contains 14
different meanings for this word, and hence 14 different synsets that can be described by
this name. One is thus faced with the challenge of automatically identifying the synset
that denotes the correct meaning of the ontology entity. To do this, we applied a combi-
nation of information retrieval techniques and the creation of virtual documents in order
to determine which synset most likely denotes the correct meaning of an entity. That
way, only synsets which resulted in a high document similarity with their corresponding
concept are subsequently used for the calculation of the WordNet similarity.

The approach can be separated into 5 distinct steps as follows: Given two on-
tologies O1 and O2 that are to be matched, where O1 contains the sets of entities
E1

x = {e11, e12, ..., e1m}, where x distinguishes between the set of classes, properties
or instances, and O2 contains the sets of entities E2

y = {e21, e22, ..., e2n}, and where C(e)
denotes a collection of synsets representing entity e, the main steps of our approach,
performed separately for classes, properties and instances, can be described as follows:

1. Synset Gathering: For every entity e in Ei
x, assemble the set C(e) with synsets

that might denote the meaning of entity e.
2. Virtual Document Creation: For every entity e in Ei

x, create a virtual document
of e, and a virtual document for every synset in C(e).

3. Document Similarity: For every entity e in Ei
x, calculate the document similari-

ties between the virtual document denoting e and the different virtual documents
originating from C(e).

4. Synset Selection: For every collection C(e), discard all synsets from C(e) that re-
sulted in a low similarity score with the virtual document of e, using some selection
procedure.

5. WordNet Similarity: Compute the WordNet similarity for all combinations of
e1 ∈ E1

x and e2 ∈ E2
x using the processed collections C(e1) and C(e2).

The first step of the procedure is fairly straightforward, where all corresponding
synsets are collected if the complete name of an entity is present in WordNet and string
processing techniques such as word stemming or finding legal sub-strings in the name
are applied if the complete name is not present in WordNet. Figure 1 illustrates steps 2
- 5 of our approach for two arbitrary ontology entities e1 and e2:

Once the similarity matrix, meaning all pairwise similarities between the entities
of both ontologies, are computed, the final alignment of the matching process can be
extracted or the matrix can be combined with similarity matrices stemming from other
approaches.

Virtual Documents The second step of the approach consists of the creation of virtual
documents for an ontology entity and several synsets that might denote the actual mean-
ing of the entity. When constructing the virtual document, one must collect information
from the ontology, or WordNet if a virtual document of a synset is constructed, in such
a way that the resulting document adequately describes the meaning of the entity. An

172

Fig. 1. Visualization of step 2-5 of the proposed approach for any entity e1 from ontol-
ogy O1 and any entity e2 from ontology 2.

expressive ontology such as OWL allows for the collection from various sources of
information. In addition to its own name, an entity can also contain comments, which
usually are written descriptions of the entity, and multiple labels. Providing context in-
formation is also beneficial. To do this, the names of the parent and child entities are
also added to the document. Different details are added given the different types of en-
tities. For virtual documents of classes, the names of all its properties are added and for
properties the names of all the classes inside their range and domain are added.

Once all the information for a virtual document is collected, several post-processing
techniques such as word-stemming and stop-word removal are applied, before the doc-
ument is transformed into the vector-space model. Using the document vectors, the
similarity between the entity document and the different synset documents is then com-
puted using the cosine similarity.

Synset Selection Based on the document similarities between an entity and the po-
tential synsets, some of the synsets are then discarded based on their similarity value.
Several selection procedures have been tested, for instance using a cut-off value by
computing the arithmetic or geometric mean of the similarities. Another tested method
consisted of retaining only synsets whose document similarity had a higher value than
the sum of the mean and standard deviation of the similarity value, which had the in-
triguing property that only few synsets remained if their similarity values were distinctly
higher than the others, and more if this wasn’t the case and thus it was uncertain which
synset was actually appropriate. Experimentation revealed that stricter selection meth-
ods performed better than lenient methods, with the simple method of using only the
synset with the highest document similarity to compute the WordNet distance resulting
in the highest scoring alignments [4].

173

1.3 Adaptations made for the evaluation

For experiments unrelated to the actual OAEI competition, but using some of the OAEI
datasets, a cut-off confidence value of 0.7 has been used for the alignments, since this
is one of the standard values that has previously been used for OAEI evaluations. For
the purpose of OAEI participation, however, this value was altered to 0.95 to improve
the final F-Measures achieved by the system, especially for the conference data set.

1.4 Link to the system and parameters file

MaasMatch and its corresponding parameter file is available on the SEALS platform
and can be downloaded at http://www.seals-project.eu/tool-services/browse-tools.

1.5 Link to the set of provided alignments (in align format)

The computed alignments for the preliminary evaluation can be found at
http://www.personeel.unimaas.nl/frederik-schadd/MaasMatchOAEI2011results.zip.

2 Results

This section presents the evaluation of the OAEI2011 results achieved by MaasMatch
using the benchmark, anatomy and conference data sets.

2.1 Benchmark

The results of the benchmark data set are grouped into several categories, such that
benchmarks that test similar aspects of the matching process are grouped together.
These can be viewed in table 1.

Ontologies Precision Recall F-Measure
101 1.00 0.98 0.99

201-202 0.8 0.34 0.48
221-247 0.97 0.93 0.95
248-266 0.8 0.33 0.47

total 0.99 0.44 0.60

Table 1. Results of the benchmark data set.

Initially, we can see that MaasMatch produces very good results for the groups 101
and 221-247. These groups have in common that they generally test alterations of as-
pects such as the ontology structure, instances or properties. While these alterations
can have some effects on the construction of the virtual document, as for instance the
descriptions of parent classes will not be included if the hierarchy is flattened, the over-
all performance decreases only marginally. The groups 201-202 and 248-266, however,

174

test alterations of the entity names and comments, resulting in a poorer performance
and especially impacting the recall of the alignments. The suppression of the entity
comments causes the quality of the virtual documents to drop considerably, making it
harder to locate appropriate synsets in WordNet. However, most importantly, the Word-
Net matcher relies on applying string analysis techniques on the entity names to locate
potential synsets in WordNet. If these names are altered severely, scrambled or even
completely omitted, then it becomes exceedingly difficult to locate potential synsets in
WordNet, which would require more sophisticated approaches than currently applied.
Overall, one can conclude that MaasMatch achieved a fairly high precision and a mod-
erate recall value across the entire benchmark data set.

2.2 Anatomy

The anatomy data set consists of two large real-world ontologies from the biomedical
domain, with one ontology describing the anatomy of a mouse and the other being the
NCI Thesaurus, which describes the human anatomy. Since the alignment of two on-
tologies that both contain more than 1000 entities each required MaasMatch to use more
time than the competition made available, only the results of the preliminary evaluation
are presented here. The results of this data set can be seen in table 2.

Ontologies Precision Recall F-Measure
mouse-human 0.988 0.284 0.442

Table 2. Results of the anatomy data set.

We can see that MaasMatch achieved a high precision and low recall value. The low
recall value can be explained by the fact that WordNet does not contain definitions of
highly technical medical terms, resulting in the system being unable to match entities
which are not located in the WordNet database. Using a different linguistic ontology
should alleviate this problem, or ideally the system should automatically select the most
appropriate linguistic ontology for this task.

2.3 Conferences

The conference data set, which so far has been the focus during the development of
MaasMatch, consists of 7 real-world ontologies that all describe the domain of or-
ganizing conferences. Here, all possible combinations of ontologies are matched and
evaluated. The results of each combination can be seen in table 3.

The results of the evaluations vary. Most alignments exhibit a similar trend as in the
previous two data sets, being a high precision and moderate recall. However, there are
a few exceptions. A few alignments, such as cmt-iasted or iasted-sigkdd, have a higher
than moderate recall. Conversely, alignments such as confOf-edas or edas-ekaw have
a lower than usual precision. Overall, we can see that the aggregated performance is
competitive when compared against the results of the OAEI 2010 participants [2].

175

Ontologies Precision Recall F-Measure
cmt-confOf 0.800 0.250 0.380

cmt-conference 0.800 0.250 0.380
cmt-edas 0.888 0.615 0.727
cmt-ekaw 0.833 0.454 0.588
cmt-iasted 0.800 1.000 0.888
cmt-sigkdd 0.800 0.666 0.727
confOf-edas 0.538 0.368 0.437
confOf-ekaw 0.888 0.400 0.551
confOf-iasted 0.800 0.444 0.571
confOf-sigkdd 1.000 0.428 0.599

conference-confOf 0.750 0.400 0.521
conference-edas 0.857 0.352 0.499
conference-ekaw 0.727 0.320 0.444
conference-iasted 0.800 0.285 0.421
conference-sigkdd 0.875 0.466 0.608

edas-ekaw 0.666 0.260 0.374
edas-iasted 0.857 0.315 0.461
edas-sigkdd 1.000 0.466 0.636
ekaw-iasted 0.857 0.600 0.705
ekaw-sigkdd 1.000 0.636 0.777
iasted-sigkdd 0.785 0.733 0.758

h-mean 0.83 0.42 0.56

Table 3. Results of the conference data set.

3 General comments

3.1 Comments on the results

The first entrance of MaasMatch has shown a promising performance over the several
data sets, most notably due to high precision values under various scenarios. With the
focus being on the conference data set, the overall f-measure of MaasMatch has been
established at a solid 0.56.

3.2 Discussions on the way to improve the proposed system

Several opportunities present themselves for further improvements. First, as observed
during the benchmark experiments, the current approach suffers when ontologies use
entity names where potentially appropriate synsets cannot be located in WordNet, due to
severely altered or scrambled names. So far, processing techniques such as tokenization,
word stemming and stop word removal have been deployed to alleviate this problem,
however in severe cases this problem still persists. Hence, it would be beneficial to
look into further techniques that enables the matcher to locate synsets even if the entity
names are scrambled.

176

Also, as evident in the anatomy results, if the domain to be modeled contains con-
cepts that are not defined in WordNet, the system is unable to match it correctly. Switch-
ing WordNet with a more appropriate linguistic ontology can alleviate this problem.
However, this would require the existence of such an ontology for that specific domain.
Another predicament is that the system either ceases to be fully automatic, as one would
need to manually define an appropriate linguistic ontology for each matching process,
or would require the ability to automatically identify an appropriate linguistic ontology
each time before the matching is performed.

Given the focus on resolving terminological heterogeneities, one obvious improve-
ment would be the addition of other techniques such that other types of heterogeneities
are also identified and resolved, such that the overall recall of the system is improved.

3.3 Comments on the SEALS platform

The SEALS platform is a promising project for researchers to share, test and evaluate
their tools. It is fairly easy to integrate a tool into the platform and provides a neutral
common ground for a comparison of systems. Unfortunately, two still absent functional-
ities prevent the platform of becoming the central pivot of ontology matching research.
One would be the functionality for the tool developers to independently initiate the test-
ing and evaluation of a tool using the platform, allowing a more speedy development of
the tool. Secondly, the standard automatic evaluation function only computes precision
and recall for the separate matching tasks. However, previous OAEI competitions also
aggregated the results of different matching tasks using a form of the harmonic mean.
Since the harmonic mean is not defined for values of 0, which can occur when comput-
ing the precision, recall or f-measure of an alignment, a few tweaks are necessary such
that this measure can still be applied. Having the results of the separate tasks aggregated
automatically by the SEALS platform would eliminate discrepancies that could arise by
slightly differing implementations of such aggregation measures, so that it is ensured
that the overall performances of the different tools can legitimately be compared. Over-
all, we are looking forward to the future developments of this platform and possibly
utilizing it for further research.

4 Conclusion

This paper presented the results of the first participation of MaasMatch in the Ontology
Alignment Evaluation Initiative competition. We described the techniques that are ap-
plied in the system and presented the achieved results in the benchmark, anatomy and
conference data sets, with emphasis on the conference data set which has been the focus
for the development of the system. We note encouraging results and discuss strengths,
weaknesses and possible improvements of the system.

References

1. J . Euzenat. Towards a principled approach to semantic interoperability. In A. Gómez Pérez,
M. Gruninger, H. Stuckenschmidt, and M. Uschold, editors, Proceedings of the IJCAI-01
Workshop on Ontologies and Information Sharing, pages 19–25, 2001.

177

2. J. Euzenat, A. Ferrara, C. Meilicke, J. Pane, F. Scharffe, P. Shvaiko, H. Stuckenschmidt,
O. Svab-Zamazal, V. Svatek, and C. Trojahn. First results of the ontology alignment eval-
uation initiative 2010. In Proceedings of ISWC Workshop on OM, 2010.

3. D. L. McGuinness and F. van Harmelen. OWL web ontology language overview. W3C
recommendation, W3C, February 2004.

4. F. C. Schadd and N. Roos. Improving ontology matchers utilizing linguistic ontologies: an
information retrieval approach. In Proceedings of the 23rd Belgian-Dutch Conference on
Artificial Intelligence (BNAIC 2011), 2011.

178

MapPSO and MapEVO Results for OAEI 2011

Jürgen Bock, Carsten Dänschel and Matthias Stumpp

FZI Forschungszentrum Informatik, Karlsruhe, Germany
{surname}@fzi.de

Abstract. This paper presents and discusses the results produced by
the alignment systems MapPSO and MapEVO for the 2011 Ontology
Alignment Evaluation Initiative (OAEI). The two systems implement
two variants of population-based optimisation algorithms applied to the
ontology alignment problem. MapPSO is based on discrete particle swarm
optimisation, while MapEVO is based on evolutionary programming.
Both systems optimise the same objective function, i.e. a function re-
flecting the quality of an alignment. Firstly, specific characteristics of
the systems and their relation to the results obtained in the OAEI are
discussed. Secondly, the results for the single tracks are presented and
discussed.

1 Presentation of the system

With the 2008 OAEI campaign the MapPSO system (Ontology Mapping by
Particle Swarm Optimisation) was introduced [1] as a novel approach to tackle
the ontology alignment problem by applying the technique of particle swarm op-
timisation (PSO). This year, a similar approach is introduced with the MapEVO
system, following the same priciple of ontology alignment by population-based
optimisation. MapEVO, however, utilises Evoluationary Programming instead
of PSO.

1.1 State, purpose, general statement

The development of the presented systems is motivated by the following obser-
vations:

1. Ontologies are becoming numerous in number and large in size.
2. Ontologies evolve gradually.
3. Ontologies differ in key characteristics that can be exploited in order to

compute alignments.
4. High ontology alignment quality often cannot be maximised by only assessing

it on a correspondence level, but requires global quality metrics.

Solving the ontology alignment problem using a population-based optimistaion
approach, addresses these observations as follows:

1. Population-based methods work inherently parallel, such that large ontolo-
gies can be aligned on a parallel computation infrastructure.

179

2. Population-based methods work incrementally, which allows the algorithm
to start with an initial or partial configuration (i.e. for instance an alignment
of previous ontology versions) and refine it as the ontologies evolve.

3. Population-based methods work as a meta-heuristic, i.e. independently of the
objective function to be optimised. In the case of ontology alignment this
means that the objective function can be adjusted according the particular
alignment scenario at hand.

4. Population-based methods consider the quality of a complete solution, which,
in the case of ontology alignment allows for the assessment of complete align-
ments, not only on the correspondence level.

The idea of the MapPSO and MapEVO approaches is to provide algorithms
that fulfil the aforementioned characteristics. Particularly the focus is not to
provide a universal library of similarity measures (base matchers) to form that
specific objective function to be optimised, but rather to provide a scalable
mechanism that can used with various objective functions depending on the
alignment scenario at hand.

Both presented systems are still in the status of a research prototype, where
recent work has been done exploiting the parallel nature of MapPSO in a cloud-
based infrastructure [2].

1.2 Specific techniques used

MapPSO and MapEVO treat the ontology alignment problem as an optimisa-
tion problem and solve it by applying a discrete particle swarm optimisation
(DPSO) algorithm in the case of MapPSO [3], and evolutionary programming
in the case of MapEVO, respectively. To this end, both algorithms maintain a
population of individuals, each representing a valid candidate alignment, which
is updated in an iterative fashion in order to converge towards the best align-
ment. In the case of MapPSO such an individual is a swarm particle, whereas in
the case of MapEVO individuals represent evolving species. The difference be-
tween MapPSO and MapEVO is as follows. In the evoluationary programming
approach some individuals (species) can become extinct and others are allowed
to reproduce themselves. In the PSO-based approach, the population is constant
throughout the iterations but positions in the search space change according to
a particles memory and communication between particles.

The opjective function in both system is the same. It composes of local com-
ponents, i.e. assessments of the single correspondences in a candidate alignment,
as well as global components that assess the alignment as a whole.

1.3 Adaptations made for the evaluation

The modalities of the OAEI force the developer to provide a fixed configuration
for each system that is applied for all tracks. Thus the provided tool bundles
contain a tradeoff configuration between the best configurations for the three
tracks executed over the SEALS platform.

180

1.4 Link to the system and parameters file

The releases of MapPSO and MapEVO together with the parameter files used
for the OAEI 2011 campaign are available in the SEALS Tool Respotiry accessi-
ble via the SEALS Portal (http://www.seals-project.eu/). Additionally, the
systems and parameter files are provided for download at http://sourceforge.
net/projects/mappso/files/ in the folder oaei2011.

1.5 Link to the set of provided alignments (in align format)

The alignments were created via the SEALS platform and are available in
the SEALS Results Repository accessible via the SEALS Portal (http://www.
seals-project.eu/).

2 Results

Both MapPSO and MapEVO participated solely in the benchmarks, anatomy,
and conference tracks that are run via the SEALS platform.

2.1 benchmark

Notes follow after release of final results.

2.2 anatomy

In order to identify all correspondences for the anatomy track correctly, it is
necessary to utilise an external biomedical thesaurus. As stated by the organisers
it is possible to find about half of the correspondences without using such a
thresaurus.

The objective function used by MapPSO and MapEVO for this campaign
does not utilise a biomedical thesaurus. However, this domain-specfic adjustment
could be integrated for both systems without touching the actual search heuris-
tics. However, including such a feature without proper self-adaptation mecha-
nisms would significantly drop the performance in other OAEI tracks. Thus there
were no efforts undertaken in including this feature in the anatomy track.

Notes follow after release of final results.

2.3 conference

Notes follow after release of final results.

3 General comments

In the following some general statements about the OAEI procedure, modalities,
and results obtained are given.

181

3.1 Comments on the results

Notes follow after release of final results.

3.2 Discussions on the way to improve the proposed system

MapPSO and MapEVO are currently being worked on in order to incorporate
a guided local search component for fine-tuning results found by the search
heuristics. Additionally, it seems necessary for any system to provide some sort
of self-adaptation of alignment quality criteria in order to perform well in all
SEALS tracks of the OAEI, since different configurations for different tracks are
not possible.

3.3 Comments on the OAEI 2011 procedure

The OAEI modalities require participating systems to use the same parameter
configuration for each track and each test case. According to assumption 3 stated
in Sect. 1.1 different alignment scenarios will most likely require different means
of determining a good alignment. Assuming that an alignment tool will not used
in an out-of-the-box configuration in any real-world alignment task, makes this
requirement of a single (and thus compromised) parameter configuration rather
artificial.

While the argument that systems should be compared with a tradeoff con-
figuration for comparability reasons is acceptable for the benchmarks track, it is
clearly not reasonable to use the same configuration for anatomy and conference.
Here the obvious focus is to find the best possible alignment. What is currently
evaluated, however, is the ability of self-adadaptation of the alignment systems,
which can be another track modality, but should not distract from the goal of
finding high-quality alignments in a particular domain.

3.4 Comments on the OAEI test cases

Since this year the benchmarks dataset is synthetically generated and previously
unknown, the following comments refer to the sample data provided prior to the
campaign for testing purposes1.

One comment addresses the best possible alignment any tool could possibly
achieve (a.k.a. reference alignment) from an information theoretic point of view.
In general the reference alignments provided for the benchmarks dataset should
not contain any correspondences that are information theoretically impossible
to be detected, neither by automatic tools, nor manually. In other words, in
a systematically generated test suite, the golden standard should not contain
entries that cannot be detected because all information content was removed
from the respective data set.

1 http://oaei.ontologymatching.org/2011/benchmarks2/index.html

182

Suggestions to improve the golden standard would be either to remove cor-
respondences from the reference alignment that have no justification, or to set
the confidence values as low as the probability of simply guessing the respective
correpsondence.

For instance in test case #201 the correspondences

/2011/benchmarks2/101/onto.owl#Conference_Trip

/2011/benchmarks2/201/onto.owl#GBCFRTQEDNXEZMVRUWLFXTDFKC

and

/2011/benchmarks2/101/onto.owl#Conference_Banquet

/2011/benchmarks2/201/onto.owl#KKRDJIPEEQFBQKOWPOPJWENCPL

both are denoted 100% confident in the reference alignment. Even though
there is evidence that the two classes from 201 correspond to the two classes
from 101, there is no evidence for the precise assignment given by the reference
alignment. Thus any tool (or human) could guess the assignment with a proba-
bility of 50% which should be reflected in the confidence values of the reference
correspondences.

4 Conclusion

The alignment systems MapPSO and MapEVO were described briefly with re-
spect to the idea behind their population-based approaches. The results obtained
by the two systems for the OAEI 2011 tracks benchmarks, anatomy, and confer-
ence were discussed.

Future development of MapPSO and MapEVO will be targeted towards user
interaction, improved reasoning support, and guided local search in order to
refine the results currently obtained by the heuristic approach.

References

1. Bock, J., Hettenhausen, J.: MapPSO Results for OAEI 2008. In Shvaiko, P., Eu-
zenat, J., Giunchiglia, F., Stuckenschmidt, H., eds.: Proceedings of the 3rd Inter-
national Workshop on Ontology Matching (OM-2008). Volume 431., http://ceur-
ws.org, CEUR Workshop Proceedings (2008)

2. Bock, J., Lenk, A., Dänschel, C.: Ontology Alignment in the Cloud. In Shvaiko, P.,
Euzenat, J., Giunchiglia, F., Stuckenschmidt, H., Mao, M., Cruz, I., eds.: Proceed-
ings of the 5th International Workshop on Ontology Matching (OM-2010). Volume
689., http://ceur-ws.org, CEUR Workshop Proceedings (November 2010) 73–84

3. Bock, J., Hettenhausen, J.: Discrete Particle Swarm Optimisation for Ontology
Alignment. Information Sciences (2010) Article in Press.

183

MapSSS Results for OAEI 2011

Michelle Cheatham

1 Wright State University, Dayton, OH, USA
michelle.cheatham@gmail.com

Abstract. MapSSS is very preliminary work on the feasibility of matching
OWL -based ontologies in a manner that involves using only limited reasoning
over the ontologies. This is the first year MapSSS has been a part of the OAEI
competition, and it is hoped that these results will serve as a baseline for
comparison with a more mature version of the algorithm a year from now.

1 Presentation of the system

MapSSS is an OWL ontology alignment algorithm designed to explore what can be
accomplished using very simple similarity metrics rather than (or at least before)
resorting to complex reasoning algorithms. OWL ontologies are treated as simple
directed graphs with edges representing OWL relations and nodes representing
classes, properties, and individuals. The basic algorithm consists of a syntactic,
structural, and semantic metric. The metrics are conservative in the sense that a node
that may match more than one node is ignored rather than risking making an error.
These metrics are applied one after the other, and a positive result from any one of
them is treated as a match. When a match is found, MapSSS attempts to capitalize on
this by immediately recursing to look for matches among the immediate neighbors of
the newly matched nodes.

1.1 State, purpose, general statement

MapSSS is meant to provided automated alignments of OWL-based ontologies. The
basic algorithm is only two-thirds complete but still produces surprisingly good
results on several OAEI test sets. All mappings found by MapSSS are currently
considered to have a confidence level of 1.0. It would be relatively straightforward to
adapt the metrics to use thresholds instead of requiring exact matches. MapSSS
currently only supports finding equivalence relations – finding subsumption and other
types of relations is a goal of future work.

1.2 Specific techniques used

The three 'S'es in MapSSS correspond to the three types of metrics the algorithm will
eventually use: syntactic, structural, and semantic. The syntactic metric is a simple
lexical comparison. The structural metric is a graph-based metric based on the direct
neighbors of an entity and the edges that connect the entity to those neighbors. The
semantic metric has not yet been implemented. We plan to use a Google Research
account (http://research.google.com/university/search/) to determine whether or not a
pair of entity labels are synonyms.

184

The main processing loop of MapSSS compares each entity in the first ontology to
each entity in the second, first based on the syntactic metric, then the semantic, and
finally the semantic metric. Whenever a match is found, the algorithm pauses its
main loop execution and instead recurses on the newly matched nodes. At this point
the metric treats the direct neighborhoods of the newly matched nodes as if they were
the entire ontology. This improves recall because while there may be several matches
for a given node within the entire opposing ontology, the one that is closest to an
already-matched neighbor is most likely to be correct. The main loop repeats until no
new mappings are added by any of the metrics.

Syntactic Metric

Levenstein distance is generally used for the syntactic mapping, though for the OAEI
contest only exact matches are considered valid (i.e. the threshold is 1.0). Some
minor pre-processing is done on the entity labels prior to running this metric. All
labels are converted to lower case and camel case and underscores are converted to
spaced words. For instance “oneTwo” and “one_two” are both converted to “one
two”.

Structural Metric

As mentioned previously, MapSSS treats OWL ontologies as simple graphs. The
structural metric acts on the direct neighborhood of the nodes in a candidate match.
The metric only adds the candidate nodes to the mapping if they are the ONLY
possible matches within the graph of subgraph being considered. The metric has the
following constraints:

� The entities must be the same type to be considered possible matches (i.e.
classes are only matched with classes, properties with properties, etc).

� Edge labels (e.g. subclass, domain, range, instance, allValuesFrom,
someValuesFrom, minCardinality, maxCardinality, cardinality) must match
exactly for the entities to be considered possible matches, and the
corresponding neighbors at the end of those edges must be of the same type.

� If an entity in one ontology has a neighbor that is already part of the
mapping, then the node that neighbor is mapped to must be a neighbor of any
prospective match for this entity. This is similar to how the VF2 graph
matching algorithm works. This constraint helps to ensure that the generated
mapping is internally consistent and coherent.

Semantic Metric

We plan to use the Google Research API to query Google based on the potentially
matching entity labels together with configurable search terms such as “synonym” and
“translation” and consider the number and quality of the results that are returned.
This has several benefits over using WordNet or a domain-specific dictionary:

� It will work with jargon, slang, and other words not likely to be in WordNet.

� It will work with non-English labels.

185

� It will always be up-to-date with the way words are currently being used by
real people.

1.3 Adaptations made for the evaluation

Because the OAEI competition does not consider instance matches in the results,
these types of matches are removed from alignment after the algorithm has completed
(so that they can still be used by the metrics) but before the final results are stored.

Due to the nature of the OAEI test sets (particularly the benchmark test set), the
syntactic (lexical) metric is set to only consider exact lexical matches rather than a
Levenstein distance greater than some threshold.

1.4 Link to the system and parameters file

The source code for MapSSS can be downloaded at
https://github.com/mcheatham/MapSSS. No parameters file is required.

1.5 Link to the set of provided alignments

The results produced by the system are also available at
https://github.com/mcheatham/MapSSS.

2 Results

MapSSS has only been tested extensively on the benchmark test set, but it can
produce results for the conference set as well. There are currently problems related
to the memory requirements of some methods within Jena (a Java library used to read
in and manipulate owl files) that prevent the algorithm from providing results for the
anatomy test.

2.1 benchmark

Using the same results format as the ASMOV authors last year, the MapSSS results
on the 12 different difficulty levels within the benchmark test set are shown in the
table below.

Difficulty Precision Recall F1

0 1.00 1.00 1.00

1 .74 .75 .74

2 .74 .73 .74

3 .89 .84 .86

186

4 .99 .95 .97

5 .99 .87 .93

6 .99 .74 .85

7 .98 .63 .77

8 .97 .42 .58

9 .70 .13 .22

10 .28 .02 .04

3xx .93 .69 .80

It is encouraging that MapSSS has high precision on many of the difficulty levels. It
should be straightforward to improve the precision on levels 1 and 2 by adding a
semantic metric capable of understanding language translations. The algorithm's
recall is not nearly so good currently. Plans to improve this are discussed in Section
3.2.

2.2 conferences

During the development of this preliminary version of MapSSS, testing was done
primarily using the benchmarks test set. However, the system is also capable of
producing results for the conferences test set. The f-measures for each possible pair
of ontologies in the test set are shown in the table below. Performance varies widely
among the different ontology pairs. Future work on MapSSS will involve analyzing
these results in detail to understand and mitigate this variability.

confOf conf. edas ekaw iasted sigkdd

cmt .29 .36 .72 .50 .57 .76

confOf .50 .55 .48 .57 .47

conf. .53 .44 .36 .48

edas .35 .42 .67

ekaw .42 .70

iasted .69

3 General comments

3.1 Comments on the results

The precision of MapSSS is very reasonable in most cases, but the recall leaves
something to be desired in many of the test cases. The next section outlines several
possible improvements to the algorithm that are likely to increase its recall. We hope

187

to compare the baseline results presented here with those from an improved version of
the algorithm next year.

3.2 Discussions on the way to improve the proposed system

We have several thoughts on improving the performance of MapSSS:

� The semantic metric needs to be implemented. This should improve the
algorithm's recall in several cases, particularly when there is not much class
hierarchy or there are few relationships between classes.

� After the current algorithm has found all of the matches it can, a second pass
can be made that will relax some of the exactness constraints of the metrics,
particularly the structural metric. For instance, instead of requiring exact
edge matches, a category-oriented approach could be used that would treat
e.g. all cardinality restrictions as equivalent. While it is not likely this will
improve results on the synthetic OAEI benchmarks, it may improve the
recall on the real-world test sets.

� Again after the current algorithm has found all of the matches it can, the
structural metric can be run again but rather than looking for exact graph
matches, if one graph is a subgraph of the other, ontology reasoning
algorithms can be employed in a directed manner to see if the missing links
can be inferred.

� The memory and computation requirements of the algorithm can be
improved by more careful implementation of the metrics and by spawning
off new processes when recursing on a newly discovered match and then
merging the results back into the main processing thread.

3.3 Comments on the OAEI 2011 procedure

The SEALS platform is very helpful because it allows testing of algorithms from any
computer, without the need to copy the test files to each system. Participants can also
always be assured of having the most up-to-date test files.

The two biggest issues were:

� It was not clear from the tutorial that the source files need to be in a
subdirectory named after the package name.

� Validation consistently fails because the build file does not seem to properly
put the names of the libraries into the descriptor template.

3.4 Comments on the OAEI 2011 test cases

The OAEI test cases are invaluable in allowing ontology alignment algorithms to be
compared against one another (and previous versions of the algorithm) on a consistent
set of problems.

188

It would be helpful if there was a SEALS test set that used more of the OWL
vocabulary, in order to fully test algorithms that consider that.

As a minor note, Jena, which is a Java library commonly used to read in and
manipulate ontologies, does not consider some of the benchmark files (the
benchmarksI set that was used in 2010) to be valid. This is because the xml
namespace of some entities is an empty string (xmlns = “”).

4 Conclusion

MapSSS is very preliminary work towards an OWL alignment algorithm that uses
expensive reasoning techniques sparingly to achieve quality alignments. The
algorithm uses a syntactic, structural, and (in the future) semantic metric to determine
matching nodes, and takes advantage of the locality present in most ontologies by
recursing whenever it finds a match. The current version has reasonable precision but
low recall, which the future work outlined here will hopefully improve.

189

OACAS: results for OAEI 2011

Sami ZGHAL1, Marouen KACHROUDI1, Sadok BEN YAHIA1, and Engelbert MEPHU
NGUIFO2

1 University of Tunis El Manar
Computer Science Department, Faculty of Sciences of Tunis, Tunisia

Campus Universitaire, 1060 Tunis, Tunisia
{sadok.benyahia, marouen.kachroudi}@fst.rnu.tn

sami.zghal@planet.tn
2 LIMOS CNRS UMR 6158, Complexe scientifique des Cézeaux

BP 125, 63173 Aubiere Cedex, France
mephu@isima.fr

Abstract. Ontologies are the kernel of semantic Web. They allow the explicita-
tion of the semantic purpose for structuring different fields of interest. In order
to harmonize them and to guarantee the interoperability between these resources,
the topic of alignment of ontologies has emerged as an important process to re-
duce their heterogeneity and improve their exploitation. The paper introduces a
new method of alignment of OWL-DL ontologies, using a combination and ag-
gregation of similarity measures. Both ontologies are transformed into a graph
which describes their information. The proposed method operates in two steps:
local (linguistic similarity composition and neighborhood similarity) step and the
aggregation one.

1 Presentation of the system

The method, OACAS [1] (Ontologies Alignment using Composition and Aggregation of
Similarities), introduces an alignment algorithm of OWL-DL (Ontology Web Language
Description Logic) ontologies. The main thrust of this method is the application of the
most suitable similarity measure depending of the category of the node in the ontology.
In addition, the OACAS method explores a wider neighborhood than do the pioneering
methods of the literature. Carried out experiments showed that OACAS presents very
encouraging values of the commonly used evaluation metrics for the assessment of
ontologies alignment.

1.1 Specific techniques used

The proposed method, OACAS, alignes two ontologies. Both ontologies are described in
the OWL-DL language [2]. Both ontologies are transformed in two graphs O-GRAPHS.
The obtained graphs are parsed in order to produce the alignment process out.

190

Mapping of an OWL-DL Ontology to an O-GRAPH. The process of building the
graphs allows to faithfully map the considered ontologies to be aligned in two graphs,
called O-GRAPHS. An O-GRAPH describes all the information categories included in
an OWL-DL ontology: classes, relations and instances. Both classes and instances rep-
resent the nodes of the graph. The relations between these different entities are induced
by the links of an O-GRAPH. Each entity of the ontology is formalized through an
associated notion to the RDF formalism [3]. OWL-DL ontology entities are described
thanks to OWL language constructors. These constructors are represented through RDF
triplets: <subject, predicate, object>. In an OWL-DL ontology, a class or a relation de-
scription is an RDF triplet. The subject corresponds to the class or to the relation. Pred-
icates are OWL primitives, which are OWL and RDF properties. Each property, used
in a triplet, sketches a knowledge of the described entity. The arrangement of those
nuggets of knowledge constitues the entity definition. The representation of an OWL-
DL ontology through an O-GRAPH permits to load the ontology in main memory only
once. An O-GRAPH, stored in main memory, statistically reduces the time required to
access initial OWL-DL ontology disk resident file.

The alignment method. The introduced OACAS method lays on a composition and
an aggregation of similarity computation based model. The method starts by explor-
ing the O-GRAPH structure. It determines the nodes of both ontologies to be aligned
and gets out the similarity measures. For each node of the same category (or cluster),
the alignment model computes similarity mesures between descriptors by using appro-
priate functions. Thus, this function considers all the descriptive information of this
couple (name, comment and label) as well as its neighborhood structure. An aggrega-
tion function combines the similarity measures and the node’s structures of the nodes to
be aligned. The algorithm implementing the OACAS method takes as input two OWL-
DL ontologies to be aligned and produces an RDF file containing the aligned nodes as
well as their similarity measures. The alignment method operates into two successive
steps. The first one computes the local similarity, whereas the second one computes the
aggregation similarity.

First step: Local similarity

The local similarity computation is performed into two successive stages. The first
one computes many linguistic similarity measuresand aggregates them for each couple
of nodes belonging to the same category (or type). The second one computes neighbor-
hood similarities by exploiting the structures of the nodes to be aligned.

The linguistic similarity computation is carried out once for each node of the same
cluster (node of the same type) in the beginning of the alignment process. The linguistic
similarity measures of couples of entities of the same type (class, property and instance)
are computed. The names of properties and instances are used to compute linguistic
similarities. For class category, the computation of the linguistic similarity considers
both the comments and labels. The computation of linguistic similarities uses differ-
ent similarity measures. Those measures are adapted to different descriptors (names,
comments and labels) of the entities to be aligned. Different similarity values obtained,
for the descriptors, are composed. This composition assigns weights to each similarity

191

measure of descriptors. The sum of the assigned weights to different similarity val-
ues is equal to 1. This unit sum guarantees that the composition of the similarity pro-
duces a normalized value (between 0 and 1). The LEVENSHTEIN similarity measure
[4] is used to compute the similarity value between the names of ontological entities.
The Q-GRAM similarity measure [5] computes the similarity value between the com-
ments of the ontological entities. The JARO-WINKLER similarity measure [6] computes
the similarity value between the labels of ontological entities. The LINGUISTIC func-
tion computes composed linguistic similarity of couples of nodes of both ontologies
to be aligned, i.e., O1 and O2. It takes as input (i) both ontologies sketched by two
corresponding O-GRAPHS; (ii) linguistics similarity functions (i.e., Funct); and (iii)
weighted attributed to the descriptors nodes (i.e., ΠD). As a result, it produces a com-
posed linguistic similarity vector, VCLS , for each couple of n nodes. The similarity
function Funct considers two nodes, N1 and N2, and returns the linguistic similar-
ity value of the descriptor, SimLD. LEVENSHTEIN or Q-GRAM or JARO-WINKLER
implements the similarity function, Funct, depending of the type of the nodes. Com-
posed linguistic similarity, SimCL, is computed depending of the descriptors of nodes
to be aligned and associate weights to each descriptor, ΠD. Both nodes (N1 and N2)
and the associated composed linguistic similarity (SimCL) are added to the composed
linguistic similarity vector (VCLS). The composed linguistic similarity of different cou-
ples of entities will be used to compute the neighborhood similarity as sketched in the
following.

The neighborhood similarity considers both ontologies to be aligned (i.e., O1 and
O2), the composed similarity vector (VCLS), the weights assigned to each category
(ΠC) and the weights associated to the neighbor level (ΠL). Therefore, it produces the
neighborhood similarity vector, VNS . The neighborhood similarity computation needs
composed linguistic similarity of the couple of nodes to be aligned and the nodes struc-
tures. Neighborhood nodes are organized by category, node having the same type. The
neighborhood similarity computation propagates similarity into two successive neigh-
borhood levels. The first level (level 1) includes direct neighbors of the nodes to be
aligned whereas second one (level 2) contains indirect neighbors. Direct neighbors of
the first level represent nodes having direct relationship with the node under considera-
tion. Neighbors of the second level represent nodes having relationship with the nodes
of the first one. The neighbors entities of the first level are clustered into three categories
(classes, instances or properties). Each category (or cluster) includes ontological enti-
ties having the same type. After the step of clustering, the neighborhood similarity is
computed between those categories. The neighborhood nodes of the level 2 are treated
in the same manner as the neighbors of the first one. The neighborhood similarity by
group MSim takes nodes from vectors V N1 and V N2 regrouped by category (where
V N1 and V N2 denote a vector nodes of O1 and O2). The process computation uses the
”Match-Based similarity” [7] as follows:

MSim(E,E′) =

∑
(i,i′)∈Pairs(E,E′) SimCLS(i, i

′)

Ma (|E|, |E′|) . (1)

192

Both sets E and E′ represent nodes of the same cluster belonging respectively to
vectors V N1 and V N2. The neighborhood similarity, SimN , is computed using Equa-
tion 2:

SimN =
∑

i∈(1,2)

(ΠV i(
∑

(E,E′)

Π(E,E′)MSim(E,E′))), (2)

where i stands for the level (i.e., 1 or 2). The neighborhood similarity, SimN is a
normalized value, since the sum of weights assigned to different neighbors is equal to
1, (ΠV 1+ΠV 2 = 1). Direct neighbors (level 1) have more important relationships than
those of indirect one (level 2). Thus, nodes of level 1 have an important impact on the
produced alignment. For this reason, the weight assigned to the first level, ΠV 1 = 0.8,
is more important than the one assigned to the second level, ΠV 2 = 0.2. In addition, the
sum of weights assigned to the category of nodes is equal to 1 (

∑
(ΠC) = 1). Those

weights are uniformly assigned between the different categories. The neighborhood
similarity is computed thanks to an iterative process, level by level. The obtained values
of the composed linguistic similarity, i.e. VCLS , and neighbors similarity, i.e. VNS , are
combined in order to compute aggregation similarity.

Second step: Aggregation similarity

The aggregation similarity is a combined similarity between the local similarities
(the composed linguistic similarity and the neighborhood similarity). Function AG-
GREGATION needs to have in input both ontologies to be aligned, O1 and O2, the two
similarity vectors, VCLS and VNS , and the weights attributed to the both kind of similar-
ities, ΠCL and ΠN . It produces the aggregated similarity vector, VAS . For each couple
of entities, N1 and N2, of the same category of the both ontologies to be aligned, O1

and O2, the aggregated similarity is computed as follows:

SimA(e1, e2) = ΠCLSimCL(e1, e2) +ΠNSimN (e1, e2). (3)

Note that the sum of the weights, attributed to each kind of similarity, is equal to 1
in order to have a normalized aggregation (between 0 and 1). In addition, the sum of
weights is equal to 1 (ΠCL+ΠN = 1). In the next section, we focus on the experimental
evaluation of OACAS.

1.2 Adaptations made for the evaluation

The main objective of the adaptations with the OACAS method is to find the best com-
bination of linguistic measures. In the experimental study, various measures have been
used. The goal is to experiment different measures in order to find the more appropri-
ate measure associated to the node descriptors. In order to achieve the objective, 27
arrangements of tests have been experimented. Each test uses a particular combination
of similarity measures to compute linguistic similarities between the descriptors of en-
tities to be aligned. During the process of the carried out tests, different weights were
assigned to the descriptors (names, comments and labels). The nodes to be aligned
can have different descriptors. Depending on the descriptors of the nodes, different

193

weights are attributed. In the case where the nodes are described by three descriptors,
the weights are 0.8, 0.1 and 0.1 associated respectively to the names, comments and
labels. Whereas the nodes contain only names and comments descriptors, the weights
are respectively 0.85 and 0.15. The weights 0.85 and 0.15 are assigned to the names and
labels where those the entities are described by them. The experimental results obtained
are developed in the next subsection.

The combination using three different linguistic similarities (LEVENSHTEIN, Q-
GRAM and JARO-WINKLER) is the best one. In fact, the LEVENSHTEIN measure is
more appropriate for computing linguistic similarity between the names of entities to
be aligned. Whereas, the Q-GRAM measure is more indicated to compute linguistic
similarity between comments of ontological entities. JARO-WINKLER measure is more
appropriated for computing linguistic similarity between the labels of entities to be
aligned. Indeed, names and labels of ontological entities are short strings. For this type
of strings, LEVENSHTEIN and JARO-WINKLER measures are more adapted to compute
the linguistic similarity. Comments are strings composed with many words. For this
type strings, the Q-GRAM measure gives the best linguistic similarity values.

2 Results

In this section we present the results obtained by OACAS method. Our method produces
result for the benchmark tests sets and conference track.

2.1 Benchmark

The benchmark tests sets can be divided into eight groups: 10x, 20x, 22x, 23x, 24x,
25x, 26x and 30x. For each group the mean values of precision and recall are computed.
Table 1 shows the values of the evaluation metrics.

Test Precision Recall
10x 0.71 1.00
20x 0.44 0.48
22x 0.64 1.00
23x 0.57 1.00
24x 0.40 0.50
25x 0.34 0.46
26x 0.17 0.40
30x 0.47 0.61

Table 1. Mean values of precision and recall for each group of tests

For the group of tests 10x, OACAS achieves precision and recall values of 71%
and 100% respectively. Since the ontologies in those tests have complete information,
which can used for alignment. The precision mean value can be explained by the fact
that OACAS produces alignment containing individuals correspondences. Those corre-
spondences are not included in the reference alignments.

194

The OACAS method obtains degraded mean values of precision and recall for the
family of tests 20x. This degradation can be interpreted by the fact that the ontologies
to be aligned contain translated or synonyms descriptor of entities. Our method relies
on syntactical treatment of ontological entities.

For the groups of tests 22x and 23x, OACAS obtains 64% and 57% of precision
mean values respectively and 100% of recall. The origin of those results is the absence
of proprieties, individuals and a flattened hierarchy.

For the tests 25x and 26x combine linguistic and structural problems. For this reason
OACAS method provides low mean values of precision and recall.

The problem of individuals absence is still the main handicaps in the real case tests
30x.

2.2 Conference

Table 2 shows the precision and recall values obtained for each test of Conference track.

Test Precision Recall
cmt-confOf 0.07 0.40
cmt-conference 0.04 0.29
cmt-edas 0.08 0.67
cmt-ekaw 0.04 0.42
cmt-iasted 0.03 0.95
cmt-sigkdd 0.10 0.79
confOf-edas 0.10 0.55
confOf-ekaw 0.12 0.50
confOf-iasted 0.04 0.44
confOf-sigkdd 0.05 0.52
conference-confOf 0.06 0.46
conference-edas 0.06 0.52
conference-ekaw 0.14 0.68
conference-iasted 0.03 0.33
conference-sigkdd 0.08 0.53
edas-ekaw 0.08 0.52
edas-iasted 0.05 0.52
edas-sigkdd 0.08 0.57
ekaw-iasted 0.04 0.57
ekaw-sigkdd 0.07 0.60
iasted-sigkdd 0.10 0.81

Table 2. Values of precision and recall for Conference track

195

3 General comments

We participate this year for the first time in OAEI and see the result obtained by our
method. The evaluation and comparison of ontology alignment and schema matching
components as OAEI is very useful for the development of such technologies.

4 Conclusion

In this paper, we introduced an alignment method of OWL-DL ontologies. The new
proposed method OACAS, allows to exploit at most the informative present within in
an ontology described in OWL-DL. The process of alignement in the OACAS method,
contains two phases: a local phase and a phase of aggregation. The local phase allows to
calculate the linguistic similarity consisted as well as the neighborhood similarity. This
two similarities are combined during the second phase to determine the aggregation
similarity.

References

1. Zghal, S., Kachroudi, M., Ben Yahia, S., Mephu Nguifo, E.: OACAS: Ontologies alignment
using composition and aggregation of similarities. In: Proceedings of the 1st International
Conference on Knowledge Engineering and Ontology Development (KEOD 2009), Madeira,
Portugal (2009) 233–238

2. Smith, M.K., Welty, C., Mcguinness, D.L.: OWL: Ontology Web Language Guide. Technical
report, W3C: World Wide Web Consortium, http://www.w3.org/TR/2004/REC-owl-guide-
20040210/ (February 2004)

3. Klyne, G., Carroll, J.J.: Resource Description Framework (RDF): Concepts
and Abstract Syntax. Technical report, W3C: World Wide Web Consortium,
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/ (February 2004)

4. Levenshtein, I.V.: Binary codes capables of corrections, deletions, insertions and reversals.
Soviet Physics-Doklady 10(8) (1966) 707–710

5. Ukkonen, E.: Approximate string-matching with q-grams and maximal matches. Theoretical
Computer Science 92(1) (1992) 191–211

6. Winkler, W.: The state of record linkage and current research problems. Technical Report
99/04, Statiscs of Income Division, Internal Revenue Service Publication (1999)

7. Valtchev, P.: Construction automatique de taxonomies pour l’aide la représentation de con-
naissance par objets. Thèse de doctorat, Université de Grenoble 1, France (1999)

196

OMReasoner: Using Reasoner for Ontology Matching :
results for OAEI 2011

Guohua Shen, Lantao Jin, Ziyue Zhao, Zhe Jia, Wenmin He, Zhiqiu Huang

Nanjing University of Aeronautics and Astronautics, Nanjing, China
{ghshen,ltjin,zyzhao,zjia,wmhe,zqhuang}@nuaa.edu.cn

Abstract. Ontology matching produces correspondences between entities of two
ontologies. The OMReasoner is unique in that it creates an extensible framework
for combination of multiple individual matchers, and reasons about ontology
matching by using description logic reasoner. It handles ontology matching in
semantic level and makes full use of the semantic part of OWL-DL instead of
structure. This paper describes the result of OMReasoner in the 2011 OAEI
competition in two tracks: benchmark and conference.

1 Presentation of the system

Ontology matching finds correspondences between semantically related entities of the
ontologies. It plays a key role in many application domains.

Many approaches to ontology matching have been proposed: The implementation
of match may use multiple match algorithms or matchers, and the following largely-
orthogonal classification criteria are considered [1-3]: schema-level and instance-
level, element-level and structure-level, syntactic and semantic, language-based and
constraint-based.

Most approaches focus on syntactic aspects instead of semantic ones. OMReasoner
achieves the matching by means of reasoning techniques. Still, this approach includes
strategy of combination of (mainly syntactical) multi-matchers (e.g., EditDistance
matcher, Prefix/Suffix matcher, WordNet matcher) before match reasoning.

1.1 State, purpose, general statement

The matching process can be viewed as a function f (see Fig.1).

 A’=f(O1, O2, A, p, r)

197

Matching A’

p

r

A

O1

O2

Fig. 1 The ontology matching process

Where O1 and O2 are a pair of ontologies as input to match, A is the input align-
ment between these ontologies and A’ is new alignment returned, p is a set of parame-
ters (e.g., weight w and threshold�) and r is a set of oracles and resources.

literal corresp. reasoned corresp.A A’
C2≡C2’
C2�C3’
R2�R2’

C1≡C1’
R1�R1’

O1 O2
WordNet

1parsing

C1,C2,
R1,R2…

C1’,C2’,
R1’,R2’

p (w,�) r

OMReasoner

3 reasoningmatcher-1

matcher-n

combi-
nation...

2 multi-matchers

4 evaluation

reference corresp.
C2≡C2’
C2≡C3’
R2≡R2’

results

Fig 2. Ontology matching in OMReasoner
The OMReasoner achieved ontology alignment as following four steps (see Fig.2):

1. Parsing: we can achieve the classes and properties of ontologies by using ontology
API: Jena.

2. Combination of multiple individual matchers: the literal correspondences (e.g.
equivalence) can be produced by using multiple match algorithms or matchers, for
example, string similarity measure (prefix, suffix, edit distance) by string-based,
constrained-based techniques. Also, some semantic correspondences can be
achieved by using some external dictionary: WordNet. Then the multiple match re-
sults can be combined by weighted summarizing method. The framework of multi-
matchers combination is supported, which facilitates inclusion of new individual
matchers.

3. Reasoning: the further semantic correspondences can be deduced by using DL rea-
soner, which uses literal correspondences produced in step 2 as input.

4. Result evaluation: the evaluation measures will be precision and recall computed
against the reference alignments.

198

1.2 Specific techniques used

OMReasoner includes summarizing algorithm to combine the multiple match results.
The combination can be summarized over the n weighted similarity methods (see
formula 1), where wk is the weight for a specific method, and simk(e1,e2) is the simi-
larity evaluation by the method.

)2,1()2,1(
1

eesimweesim k
n

k k∑ −
= (1)

OMReasoner uses semantic matching methods like WordNet matcher and descrip-
tion logic (DL) reasoning.

WordNet1 is an electronic lexical database for English, where various senses (pos-
sible meanings of a word or expression) of words are put together into sets of syno-
nyms. Relations between ontology entities can be computed in terms of bindings be-
tween WordNet senses. This individual matcher uses an external dictionary: WordNet
to achieve semantic correspondences.

Another important matcher uses edit distance, which is a measure of the similarity
between two words. Based on this value, we calculate the morphology analogous
degree by using some math formula.

All the results of each individual matcher will be normalized before combination.
OMReasoner employs DL reasoner provided by Jena. OMReasoner includes exter-

nal rules to reason about the ontology matching.

2 Results: a comment for each dataset performed

There are 21 alignment tasks in benchmark data set and 21 alignment tasks in confer-
ence data set. We test the data sets with OMReasoner and present the results in Table
1, Table 2, Fig 3 and Fig 4. The average measures (precision, recall and F-measure) of
Benchmark are 0.359, 0.754 and 0.473 respectively. The average measures of Confer-
ence are 0.136, 0.801 and 0.220 respectively. In conclusion, the precision, recall and
F-measure are not satisfying, however, it is our first endeavor for ontology matching
and we will improve it in the future.

2.1 Benchmark

We evaluated the results against reference alignments, and obtained precision var-ies
from 0.071 to 0.636, and recall varies from 0.254 to 1.0, F-measure varies from 0.121
to 0.745.

Label Dataset Prec. Rec f-Measure
B1 101-101 0.299 0.361 0.327
B2 101-103 0.308 0.722 0.431
B3 101-104 0.369 0.732 0.491
B4 101-224 0.338 0.907 0.493

1 http://wordnet.princeton.edu/

199

B5 101-225 0.288 0.887 0.435
B6 101-228 0.308 0.970 0.467
B7 101-230 0.442 0.972 0.608
B8 101-232 0.420 0.918 0.576
B9 101-233 0.438 0.970 0.603
B10 101-236 0.338 1.000 0.506
B11 101-237 0.204 0.591 0.304
B12 101-238 0.186 0.732 0.296
B13 101-239 0.621 0.931 0.745
B14 101-240 0.636 0.758 0.692
B15 101-241 0.606 0.848 0.707
B16 101-246 0.586 0.931 0.719
B17 101-247 0.636 0.848 0.727
B18 101-301 0.085 0.254 0.127
B19 101-302 0.071 0.405 0.121
B20 101-303 0.146 0.417 0.216
B21 101-304 0.224 0.671 0.336

Table.1. Match results in the Benchmark track

Fig.3. Comparison of match results in Benchmark

2.2 Conference

We evaluated the results against reference alignments, and obtained precision varies
from 0.030 to 0.409, and recall varies from 0.526 to 1.0, F-measure varies from 0.058
to 0.495.

Label Dataset Prec Rec f-Measure
C1 iasted-sigkdd 0.072 0.800 0.132

200

C2 ekaw-iasted 0.030 0.800 0.058
C3 ekaw-sigkdd 0.033 0.933 0.064
C4 edas-ekaw 0.119 0.652 0.201
C5 edas-iasted 0.088 0.706 0.156
C6 edas-sigkdd 0.120 0.800 0.209
C7 confOf-edas 0.189 0.526 0.278
C8 confOf-ekaw 0.125 0.947 0.221
C9 confOf-iasted 0.071 0.800 0.131
C10 confOf-sigkdd 0.114 0.857 0.202
C11 cmt-Conference 0.158 0.667 0.255
C12 cmt-confOf 0.409 0.625 0.495
C13 cmt-edas 0.162 0.692 0.263
C14 cmt-ekaw 0.159 0.667 0.257
C15 cmt-iasted 0.069 1.000 0.129
C16 cmt-sigkdd 0.297 0.917 0.449
C17 conference-confOf 0.182 0.933 0.304
C18 conference-edas 0.126 0.706 0.215
C19 conference-ekaw 0.142 1.000 0.249
C20 conference-iasted 0.056 0.929 0.106
C21 conference-sigkdd 0.143 0.867 0.245

Table.2. Match results in the Conference track

Fig.4. Comparison of match results in Conference

201

3 General comments

3.1 Comments on the results

The precision of results is not good enough, because only a few individual matchers
are included.

The measures in Benchmark are better than those in Conference. The major reason
is that the structure similarity of ontology is not considered in our tool.

3.2 Discussions on the way to improve the proposed system

The performance of inference relies on the literal correspondences heavily, so the
more accurate results which are exported from multi-matchers will greatly enhance
the results of our tool.

Some probable approaches to improve our tool are listed as follow:

1. Adopt more flexible strategies in multi-matchers combination instead of just
weighed sum.

2. Add some pre-processes, such as separating compound words, before words are
imported into matchers.

3. Take comments and label information of ontology into account, especially when
the name of concept is meaningless.

4. Improve the algorithm of some matchers.
5. More different matchers can be included.

Another problem in our tool is that we ignore structure information among ontol-
ogy at the present stage. And we will improve in the future.

3.3 Comments on the OAEI procedure

OAEI procedure arranged everything in good order, furthermore SEALS platform
provides a uniform and convenient way to standardize and evaluate our tool.

4 Conclusions

In this paper, we presented the results of the OMReasoner system for aligning onl-
tologies in the OAEI 2011 competition in two tracks: benchmark and conference. The
combination strategy of multiple individual matchers and DL reasonor are included in
our approach. This is the first time we participate the OAEI, so it is not sophisticated
and the results need to be improved.

202

References

1. Rahm, E. and Bernstein, P.: A survey of approaches to automatic schema matching. The
VLDB Journal, ,10(4): 334--350(2001).

2. Shvaiko, P. and Euzenat, J.: A survey of schema-based matching approaches. Journal on
Data Semantics (JoDS) IV, 146--171(2005).

3. Kalfoglou, Y. and Schorlemmer, M.: Ontology mapping: the state of the art. The Knowl-
edge Engineering Review Journal, 18(1):1--31, (2003).

4. Shvaiko, P.: Iterative Schema-based Semantic Matching. PhD, University of Trento,
(2006)

5. Jian, N., Hu, W., Cheng, G. et al: Falcon-AO: Aligning Ontologies with Falcon. In: Pro-
ceedings of the K-CAP Workshop on Integrating Ontologies (2005)

6. Do, H. and Rahm, E.: COMA- a system for flexible combination of schema matching ap-
proaches. In: Proceedings of the International Conference on Very Large Databases, 610--
621.(2002)

7. Giunchiglia, F., Shvaiko, P., and Yatskevich, M.: S-Match: an algorithm and an implemen-
tation of semantic matching. In: Proceedings of the European Semantic Web Symposium,
61--75.(2004)

8. Kalfoglou, Y. and Schorlemmert, M.: If-map: an ontology mapping method based on in-
formation flow theory. In: Proceedings of ISWC’03, Workshop on Semantic Integration,
(2003)

9. Bouquet, P., Serafini, L., and Zanobini, S.: Semantic coordination: A new approach and an
application. In: Proceedings of the International Semantic Web Conference, 130--
145.(2003)

10. Baader, F., Calvanese, D., McGuinness, D., et al.: The description logic handbook: theory,
implementations and applications. Cambridge University Press, (2003)

11. Ehrig, M., Sure, Y.: Ontology mapping - an integrated approach. In Proceedings of the
European Semantic Web Symposium (ESWS), 76--91, (2004)

12. RacerPro User Guide. http://www.racer -systems. com, 2005
13. Do, H., Melnik, S., Rahm, E.: Comparison of Schema Matching Evaluations. In: Proceed-

ings of the 2nd Intl. Workshop on Web Databases, Erfurt, Germany:,221--237(2002)

203

Optima Results for OAEI 2011

Uthayasanker Thayasivam and Prashant Doshi

THINC Lab, Department of Computer Science, University of Georgia, Athens, Georgia 30602
uthayasa,pdoshi@cs.uga.edu

Abstract. In this report, we present the results of Optima in the Ontology Align-
ment Evaluation Initiative (OAEI) 2011. We participate in three tracks of the
campaign offered in SEALS platform: Benchmark, Conference and Anatomy.
We review the iterative ontology alignment approach adopted by Optima and its
results for the Benchmark and Conference tracks.

1 Presentation of the system

The increasing usefulness of the semantic Web is in part, due to an increase in the num-
ber of ontologies on the Web. Applications such as Web service compositions and se-
mantic Web search, which utilizes these ontologies demand a way to align these ontolo-
gies. Nowadays numerous ontology alignment tools exist. They can be broadly identi-
fied using, 1) the level of human intervention needed; 2) the amount of prior training
data needed; and 3) the facets of ontologies used and the way they are utilized. We
present a fully automatic, general purpose ontology alignment tool called Optima [2],
which does not need any prior training. Like many other tools, Optima utilizes both
lexical and structural facets of ontologies to arrive at an alignment. However, it primar-
ily differs in a different aspect – being iterative – from most other alignment tools that
presently exists. Common approaches build an alignment in a single pass using a vari-
ety of heuristics and similarity measures. In contrast to single pass approaches Optima
continues to improve an alignment in an iterative fashion. Optima formulates the prob-
lem of inferring a match between two ontologies as a maximum likelihood problem, and
solves it using the technique of expectation-maximization (EM). Specifically, it adopts
directed graphs as its model for ontology schemas and uses a generalized version of
EM to arrive at a map between the nodes of the graphs. At the end of each iteration,
Optima derives a possibly inexact match. Inexact matching is the process of finding a
best possible match between the two graphs when exact matching is not possible or is
computationally difficult.

We describe briefly the formal model of an ontology as utilized by Optima and the
EM-based algorithm adopted by Optima in the next two subsections.

1.1 Ontology Model

Optima adopts the common directed labeled graph model for ontology schemas where
the nodes of the graphs are the concepts (named classes in RDFS and OWL) and the
labeled edges are the relationships (properties) between the classes. Contemporary lan-
guages for describing ontologies such as RDFS and OWL also allow the ontologies

204

to be modeled as directed labeled graphs [3]. Because Optima focuses on identify-
ing a many-one map, let the graph with the larger number of nodes be labeled as
the data graph while the other as the model. Formally, the data graph is modeled as:
Od = 〈Vd, Ed, Ld〉, where Vd is the set of labeled vertices representing the concepts,
Ed is the set of edges representing the relations which is a set of ordered two subsets of
Vd, and Ld : Ed → Δ where Δ is a set of labels, gives the edge labels. Analogously,
Om = 〈Vm, Em, Lm〉 is the model graph against which the data graph is matched. Let
M be the standard |Vd|× |Vm| matrix that represents the match between the two graphs:

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

m11 m12 · · · m1|Vm|

m21 m22 · · · m2|Vm|

. . · · · .

. . · · · .

. . · · · .
m|Vd|1 m|Vd|2 · · · m|Vd||Vm|

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

Each assignment variable in M is,

maα =

{
1 if f(xa) = yα : xa ∈ Vd, yα ∈ Vm

0 otherwise

where f(·) represents the correspondence between the two ontology graphs. Conse-
quently, M is a binary matrix representing the match.

1.2 EM-based Algorithm

Optima views the mapping between two ontologies as the problem of, the concepts of
source ontology (data graph) emitting the concepts of target ontology (model graph)
with an underlying Bernoulli distribution. It formulates this model as a maximum like-
lihood problem and solves it using the popular expectation maximization algorithm
(EM) developed by Dempster et al. [1] to find the maximum likelihood estimate of
the alignment from observed data instances in the presence of missing correspondence.
It iteratively searches for the match matrix, M∗ , that gives the maximum conditional
probability of the data graph, Od, given the model graph, Om, and the match assign-
ments. Formally,

M∗ = argmax
M∈M

Pr(Od|Om,M)

where M is the set of all match matrices. While there may be as many as 2|Vd||Vm|

possible alignments, Optima shrinks this space by considering many-one maps only.
In the equation above, Optima uses heuristics to guide its search space. Section 1.4
explains the heuristics used in Optima.

Pr (Od|Om,M) =
∏

xa∈Vd

∑
yα∈Vm

Pr(xa|yα,M)πα (2)

205

where πα = Pr(yα|M) is the prior probability of the model graph vertex, yα, given
the match matrix, M . The correspondence, f , is hidden from us. The matrix M may be
seen as a mixture model by viewing each assignment variable, maα, as a model.

This modeling does not have an inherent way of finding mapping between edges.
Though it is viable for Optima to map the bipartition transformation of the provided
graph it avoids it for the excessive complexity involved. Hence, Optima additionally
allows matching the concept graph and labeled relationships as separate but dependent
tasks.

E Step Optima formulates a conditional expectation of the log likelihood with respect
to the hidden variables given the data graph and a guess of the match matrix, Mn at
some iteration n, in order to find the most likely match matrix:

Q(Mn+1|Mn) = E
[
logPr(xa|yα,M

n+1)πn+1
α |xa,M

n
]

=
∑|Vd|

a=1

∑|Vm|

α=1 Pr(yα|xa,M
n) logPr(xa|yα,M

n+1)πn+1
α

(3)

Optima derives the probability that the data graph node, xa, is in correspondence
with the model graph node, yα, under the match matrix of iteration n , Mn as ,

Pr(xa|yα,M
n) =

[
1

Pr(xa|yα)

]|Vd||Vm|−1 ∏|Vd|

b=1

∏|Vm|

β=1 Pr(xa|yα,m
n
bβ) (4)

Here, it is assumed that the individual models, mn
bβ , are independent of each other.

Optima extends the structural graph matching initially proposed by Luo and Han-
cock [5] with label similarity measures to derive the probability that xa is in correspon-
dence with yα given the assignment model, mbβ .

Pr
(
xa|yα,m

n
bβ

)
= (1− Pε(xa, yα))

EC
Pε(xa, yα)

1−EC (5)

where the correspondence error, Pε : Vd × Vm → [0, 1], is defined as,

Pε(xa, yα) = Pe(|Vd|, |Vm|)− δ × Ps(xa, yα) (6)

EC denotes the edge consistency between the two graphs, which is defined as,

EC =

{
1 〈xa, xb〉 ∈ Ed ∧ 〈yα, yβ〉 ∈ Em ∧mbβ = 1
0 otherwise

The correspondence error, Pε, is based on the structural error, Pe (|Vd|, |Vm|) , a func-
tion based on the sizes of the graphs, and the similarity of the node labels, Ps(xa, yα).
Parameter δ ∈ [0, 1] controls how much weight is given to the similarity between entity
labels. The structural error is defined as,

Pe(|Vd|, |Vm|) = 2

∣∣∣∣ |Vd| − |Vm|

|Vd|+ |Vm|

∣∣∣∣
Optima employs the integrated similarity mentioned in Section 1.3 to evaluate the

lexical similarity Ps(xa, yα).

206

M Step The maximization step chooses the match matrix, Mn+1
∗ , that maximizes

Q(Mn+1|Mn), as shown in Eq. 3. This mapping matrix becomes the input for the
expectation step of the next iteration. Optima adopts the generalized EM, which re-
laxes maximization by settling for a mixture model, Mn+1

∗ , that simply improves the Q
values.

Mn+1
∗ = Mn+1 ∈ M : Q(Mn+1|Mn) ≥ Q(Mn|Mn) (7)

The prior, πn+1
α , for each model graph node, α, is updated as:

πn+1
α =

1

|Vd|

|Vd|∑
α=1

Pr (yα|xa,M
n) (8)

The updated πn+1
α will be used in the next iteration of the EM.

1.3 Specific Techniques Used

We configured Optima slightly different for OAEI from its default configuration.

Integrated Similarity Measure Concept or word similarity measures may be broadly
categorized into syntactic and semantic. Syntactic similarity between concepts is en-
tirely based on the string similarity between the concepts’ names, labels and other as-
sociated text. Semantic similarity measures attempt to utilize the meaning behind the
concept names to ascertain the similarity of the concepts. Optima utilizes both syntactic
and semantic similarities.

0 0.2 0.4 0.6 0.8 1
00.20.40.60.81

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

Syntactic SimilaritySemantic Similarity

In
te

g
ra

te
d

 S
im

ila
ri

ty

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

Fig. 1. Integrated similarity - 3D sigmoid

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Syntactic Similarity

S
e

m
a

n
ti

c
 S

im
il

a
ri

ty

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

Fig. 2. Integrated similarity - Top angle

Fig. 3. Our integrated similarity measure as a function of the WN-based semantic similarity
(Sem) and Smith-Waterman based syntactic similarity (Syn). Notice that the value is lower if
semantic similarity is low but syntactic is high compared to vice versa.

There is no standard way of integrating WN-based similarity with syntactic mea-
sures. We employs a technique from our previous work in [8] to integrate similarity

207

measures. We define a normalized 3D function that maps a given pair of semantic and
syntactic similarity to an integrated value. In order to generate this function, we observe
that labels that are syntactically similar (such as cat and bat) may have different mean-
ings. Because we wish to meaningfully map entities, semantic similarity takes prece-
dence over syntactic. Consequently, high syntactic but low semantic similarity results
in a lower integrated similarity value in comparison to low syntactic but high seman-
tic similarity. We model such an integrated similarity measure as shown in Fig. 3 and
give the function in Eq. 9. Our integrated similarity function is similar to a 3D sigmoid
restricted to the quadrant where the semantic and syntactic similarities range from 0 to
1. One difference from the exact sigmoid is due to the specific property it must have
because semantic similarity takes precedence over syntactic. We used Lin [4] similarity
measure and gloss-based cosine similarity measure to evaluate the semantic similarity.
On the other hand we used Smith-Waterman [7] technique for ascertaining the syntactic
similarity between concept and relationship names.

Int(xa, yα) = γ
1

1 + et·r−c(Sem)
(9)

Here, γ is a normalization constant; r =
√
Syn2 + Sem2, which produces the 3D sig-

moid about the origin; t is a scaling factor and c(Sem) is a function of the semantic

similarity as shown below: c(Sem) =
2

1 + et′·Sem(xa,yα)−c′
where t′ is the scaling fac-

tor and c′ is the translation factor, if needed. The specific function in Fig. 3 is obtained
when t = 4, t′ = 3.5, and c′ = 2.

1.4 Adaptations made for the evaluation

The iterative alignment algorithm requires a seed map. This is an initial list of mappings
between concepts often provided to iterative algorithms. While the seed map could
be generated manually, Optima additionally utilizes a simple technique of mapping
nodes across the ontologies whose labels are syntactically similar. Candidate alignments
are generated using simple but intuitive heuristics. For example, given each previously
mapped node pair, their parents are considered for a match. Additionally, their sibling
nodes could be considered. Analogous to the seed map, node pairs among the parents
that are sufficiently similar are matched. Different potential alignments are generated
based on how many parent nodes are matched and whether siblings are matched as
well. These candidate alignments are considered during each iteration of Optima. More
details about Optima are available in [2].

We also relaxed the Optima ’s many-to-one constrain in candidate alignment gen-
eration to generate many-to-many alignments for OAEI.

1.5 Link to the system and parameters file

The Optima can be found at http://thinc.cs.uga.edu/thinclabwiki/
index.php/Automated_Alignment_of_Ontologies.

208

1.6 Link to the set of provided alignments (in align format)

The OAEI 2011 results can be found at http://thinc.cs.uga.edu/thinclabwiki/
index.php/OAEI_2011.

2 Results

As stated above, Optima participated in three tracks in OAEI 2011. However for this
report preliminary results of two tracks are presented and the related analysis are re-
ported.

2.1 Benchmark

The average precision and recall of Optima are depicted in 1.

Precision Recall
100 0.90 1.0
200 0.79 0.73
300 0.74 0.79

Table 1. Recall and Precision of Optima on benchmark track

2.2 Conferences

Optima attains an average recall of 0.60 and an average precision of 0.26 in conference
track. See Appendix A for details.

2.3 Anatomy

We could not produce the results for anatomy track using Optima within the provided
time. Since Optima utilizes an iterative algorithm and anatomy track has very large
ontologies, we were unable to complete aligning these ontologies.

3 General comments

The primary challenge for Optima is to align very large ontologies. Due to its iterative
nature and inherent computational complexity of evaluating the Equation 3, Optima
takes considerably longer time to align larger ontologies. However it is able to align
small to medium ontologies competitively.

We also found that computing semantic similarity measures for word phrases and
compound words is difficult. Tokenizing these correctly and locating individual glosses
in WN is often challenging1 but crucial for a better performance.

1 The concept Meta-Review should be tokenized into two words (Meta, Review) while Regis-
tration Non–Member needs to be tokenized into two words (Registration, NonMember) but

209

4 Conclusion

In this report we present the results of Optima in OAEI 2011 campaign. We participate
in three tracks including Benchmark, Conference and Anatomy. We reviewed the iter-
ative algorithm Optima adopts to arrive at an inexact match between two ontologies.
Though we have been using OAEI datasets for various experiments and fine tuning of
Optima , this is the first time we participate officially in an OAEI campaign. Due to its
iterative nature Optima takes substantially longer time to align large ontologies. As a
result we are unable to provide our preliminary results of anatomy track for this report.
In future, we would like to participate in more tracks. Especially we hope to leverage
Optima to be able to efficiently solve instance matching and large ontology matching
challenges.

References

1. Dempster, A.P.; Laird N.M. and Rubin, D.B. 1977. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, Series B (Methodological)
39:1 – 38.

2. Doshi, P.; Kolli, R.; and Thomas, C. 2009. Inexact matching of ontology graphs using
expectation-maximization. Web Semantics 7(2):90 – 106.

3. Hayes, J. and Gutierrez, C. 2004. Bipartite graphs as intermediate models for RDF graphs.
Proceedings of the International Semantic Web Conference (ISWC) :47 – 61.

4. Lin, D. 1998. An information-theoretic definition of similarity. In ICML, 296–304.

5. Luo, B. and Hancock, E. 2001. Structural graph matching using the EM algorithm and
singular value decomposition. Graph Algorithms and Computer Vision 23 10:1120 – 1136.

6. McGuinness, D., and Harmelen, F. 2004. Owl web ontology language overview. Recommen-
dation, World Wide Web Consortium (W3C).

7. Smith, T. F., and Waterman, M. S. 1981. Identification of common molecular subsequences.
Journal of molecular biology 147(1):195–197.

8. Uthayasanker, T., and Doshi, P. 2011. On the Utility of WordNet for Ontology Alignment: Is
it Really Worth It?. IEEE ICSC :268–274.

should not be tokenized into three words (Registration, Non, Member). The hyphen (–) is a de-
limiter in the former concept but should be just ignored in the later concept. This tokenization
is demanded by WN matchers since MetaReview does not exist in WN but the word NonMem-
ber exists in WN.

210

A Optima ’s performance in conference track

The precision and recall for individual test cases in conference track is shown tn the
table 2 below.

Ontology pair Precision Recall
cmt-confOf 0.35 0.50
cmt-conference 0.18 0.44
cmt-edas 0.24 0.69
cmt-ekaw 0.15 0.45
cmt-iasted 0.33 1.00
cmt-sigkdd 0.39 0.75
confOf-edas 0.27 0.68
confOf-ekaw 0.30 0.55
confOf-iasted 0.33 0.67
confOf-sigkdd 0.26 0.71
conference-confOf 0.32 0.67
conference-edas 0.17 0.53
conference-ekaw 0.16 0.40
conference-iasted 0.15 0.29
conference-sigkdd 0.34 0.67
edas-ekaw 0.21 0.52
edas-iasted 0.35 0.47
edas-sigkdd 0.26 0.60
ekaw-iasted 0.20 0.60
ekaw-sigkdd 0.27 0.64
iasted-sigkdd 0.31 0.73

average 0.26 0.60

Table 2. Optima ’s performance in conference track of OAEI 2011

211

SERIMI Results for OAEI 2011

Samur Araujo1, Arjen de Vries1, and Daniel Schwabe2

1 Delft University of Technology, PO Box 5031, 2600 GA Delft, the Netherlands
{S.F.CardosodeAraujo, A.P.deVries}@tudelft.nl

2Informatics Department, PUC-Rio Rua Marques de Sao Vicente, 225, Rio de Janeiro,
Brazil

dschwabe@inf.puc-rio.br

Abstract. This paper presents the results of SERIMI in the Ontology Alignment
Evaluation Initiative (OAEI) 2011. We participate in the track IM@OAEI2011
(IMEI) of the campaign. We first describe the basic interlinking process and
interlinking strategies in SERIMI, and then we present specific techniques used
in this track. We conclude with a discussion of our results, and possible
directions to improve SERIMI in future work.

Keywords: data integration, RDF interlinking, instance matching, linked data,
entity recognition, entity search.

1 Presentation of the System

The interlinking of datasets published in the Linked Data Cloud (LDC) [1] is a
challenging problem and a key factor for the success of the Semantic Web. Given the
heterogeneity of the LDC, techniques aimed at supporting interlinking should ideally
operate agnostic of a specific domain or schema.

In this context, ontology matching [2, 3, 4, 5, 6] and instance matching [9] are the
two most-studied sub-problems of interlinking. The former refers to the process of
determining correspondences between ontological concepts. The latter often refers to
the process of determining whether two descriptions refer to the same real-world
entity in a given domain. In this paper we focus on the problem of instance matching.

1.1. State, purpose, general statement

Our solution for the instance-matching problem is composed of two phases: the
selection phase and the disambiguation phase. In the selection phase we apply
traditional information retrieval strategies to generate a set of candidate resources for
interlinking. For each instance r in a source dataset A, we extract its label (its
identifier) and we search for instances in a target dataset B that may have a similar
label. The problem that multiple distinct instances in B may share the same label is
addressed in the second, disambiguation phase. Here, we attempt to filter among the
instances found in B, those that actually refer to the same entity in the real world as r.

SERIMI uses existing traditional information retrieval and string matching
algorithms for solving the selection phase; our contribution is the novel similarity

212

measure used in the disambiguation phase. This function is designed to operate even
when there is no direct ontology alignment between the source and target datasets
being interlinked. For example, SERIMI is able to interlink a dataset A that describes
social aspects of countries with a dataset B that describes geographical aspects of
countries. The SERIMI software is available for download as an interlinking tool at
GitHub1. Fig. 1 and Fig. 2 show an overview of SERIMI’s architecture.

Fig. 1 – Overview of SERIMI’s architecture.

Fig. 2 – Overview of SERIMI’s information flow.

1.2. Specific Technique Used

Fig.3 shows an overview of the SERIMI interlinking process.

1 https://github.com/samuraraujo/SERIMI-RDF-Interlinking

213

Fig. 3 – Overview of SERIMI interlinking process. (A) Given a source and target dataset
and a set of source resources (instance of a class), (B) SERIMI obtains the label of these source
resources and retrieves candidate resources from the target dataset that share a similar label. (C)
For each source resource, SERIMI retrieves a set of candidate resources. (D) In order to
disambiguate a set of candidate, SERIMI applies a novel function of similarity that selects the
resources that are the most similar between all candidate sets (E). These selected resources are
the solutions for the interlinking (F). The determination of this optimal cross section is a
sophisticated process based on an underlying assumption that the source resources belong to a
homogeneous class of interest (e.g. musician, drugs, country, etc.)

1.2.1. Selection Phase

In SERIMI’s selection phase we first select the class of resources in the source dataset
that we want to interlink. For each class (an rdfs:type object) found in the source
dataset, SERIMI selects its instances and applies the approach below to select
candidate resources in the target dataset.

Entity label property selection: in order to select resources in the target dataset that
can match a specific source resource, we first select the labels that represent these
source resources. We call entity label properties, the properties where these labels
occur. We consider as entity label properties, all RDF predicates that have a literal,
including numbers, but we eliminate long text values. We assume that we do not
know the entity label properties in advance, and apply an automatic approach to select
those. Considering that predicates with higher entropy are more discriminative than
predicates with lower entropy, we select predicates with entropy � � �threshold, where
�threshold is obtained by averaging the entropy of all predicates of the resources that we
want to interlink. Those selected predicates compose the list of entity label properties.
The procedure above is applied over the set of source instances selected for
interlinking.

Pseudo-homonym resource selection: once we have determined the entity label
properties in the source, we can use their labels for searching for resources in the
target dataset that share the same or similar labels. We refer to the set of target
candidate resources that share a similar label as the pseudo-homonym set. For each

214

resource to be interlinked, we use this source entity label for searching for candidate
resources in the target dataset. We apply the same step described in the previous
paragraph over the target dataset, to obtain the set of entity label properties in the
target dataset. Then we search for the source entity label only on triples that contain
such selected properties. For each source entity label, we normalize the string (by
removing non alphanumeric characters), tokenize it, and then we apply a set of
conjunctive Boolean queries (expressed in SPARQL) for retrieving target candidate
resources. Afterwards, we select from the retrieved resources those with a maximum
string similarity with respect to the searched source entity label. If the maximum
score is below 70% we discard it. As a string matching algorithm, we used a variation
of the RWSA[7] algorithm. By selecting only those resources with maximum relative
similarity measure, we reduce the number of resources in the pseudo-homonym set,
thereby improving the chance of true positive matches. If no resource is retrieved,
then we select the next entity label property with the highest entropy and repeat the
same procedure. This process ends forming a set of pseudo-homonym resources for
each source resource. Then the task is to select from each set the resource(s) that one
which is (are) more similar to the source resources. We do this selection during the
disambiguation phase.

1.2.2. Disambiguation Phase

Pseudo-homonyms resource disambiguation: in some cases, a pseudo-homonym set
may have instances of different classes or instances of the same classes that share the
same label. As we do not know the class of the resources that we are looking for in
the target dataset, we try to leverage this class of interest from the pseudo-homonym
resources. Once the class of interest in determined, we can disambiguate the pseudo-
homonym resources, by selecting the resources that belong to the class of interest.
Notice that the concept of class of interest is understood as a set of attributes that
instances may share in common. To solve this ambiguity problem, we propose an
innovative model called Resource Description Similarity, or RDS. RDS uses the
intuition that if we select two or more resources that are similar in the source dataset,
and for each of them there is a set of pseudo-homonym resources in the target dataset,
then the solutions for each pseudo-homonym set should be similar among themselves.
In other words, the solution to the problem is the set of resources that are the most
similar among pseudo-homonym sets, which implicitly defines the class of interest.
The main requirement to apply this method is that we have to have at least two sets of
pseudo-homonyms. Fig.3d and Fig. 4 illustrate this intuition.

215

Fig. 3 – A simple example of pseudo-homonym sets for three labels that represent countries.

Disambiguating candidate resources: Given S as a set of all sets of pseudo-
homonyms and R � S, for each resource r in R, we generate a score � = CRDS(r, R,
S). As solution for a pseudo-homonym set R, we select all resources with a score � �
�threshold. Details about the function CRDS is given in [8].

1.3. Adaptations made for the evaluation

SERIMI operates directly over SPARQL Endpoints. For that reason, we have loaded
the RDF version of the datasets Geonames, Freebase and NYTimes into an open-
source instance of Virtuoso Universal server2 installed on a local workstation,
summing up millions of RDF triples. An exception was the DBPedia dataset, which
we accessed online via its SPARQL endpoint. Then we run our method over these
endpoints.

1.4. Link to the system and parameters file

SERIMI can be found at: https://github.com/samuraraujo/SERIMI-RDF-Interlinking

1.5. Link to the set of provided alignments (in align format)

The alignments for OAEI2011 campaign should be available at the official web-site:
http://www.instancematching.org/oaei/imei2011.html. Alternatively, these can also be
found at: https://github.com/samuraraujo/SERIMI-RDF-Interlinking.

2 Results

We now provide an analysis of the results obtained with SERIMI on the Instance
Matching track (IM), on the subtask of data integration (Interlinking New-York
Times Data) of the OAEI 2011 campaign. We use SERIMI to resolve RDF instance
interlinking between the pairs of datasets, namely NYT-People vs. DBpedia, NYT-
Locations vs. DBpedia, NYT-Organization vs. DBpedia, NYT-People vs. Freebase,
NYT-Locations vs. Freebase, NYT-Organization vs. Freebase, NYT-Location vs.
Geonames. Table 1 shows the results for each pair of dataset above.

2 http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/

216

Table 1. SERIMI’s precision and recall.

Dataset Pairs Precision Recall F1

NYT-People vs. DBpedia 0.943 0.942 0.943
NYT-Locations vs. DBpedia 0.693 0.670 0.681

NYT-Organizations vs. DBpedia 0.887 0.870 0.878

NYT-People vs. Freebase 0.923 0.911 0.920

NYT-Locations vs. Freebase 0.922 0.904 0.913

NYT-Organizations vs. Freebase 0.921 0.895 0.908

NYT-Locations vs. Geonames 0.787 0.807 0.797

As we can see in Table 1, SERIMI performed quite well in all cases.
Although SERIMI was designed to perform over RDF datasets where the

instances are organized in fine-grained homogenous classes, it performed quite well
in average in the NYT scenario, where the instances are grouped in four
heterogeneous classes (organization, locations, people, and, descriptors). This
heterogeneity on the data was the main reason that we obtained a poor performance in
the pair NYT-Locations vs. DBpedia. The NYT-Locations instances are very
ambiguous and the class is too heterogeneous, representing cities, countries, lakes,
etc. For instance, this class does not distinguish a city from a neighborhood, and for
that reason SERIMI’s disambiguation phase could not work properly. Even if the
results are far from perfect, in this specific case of NYT-Locations vs. DBpedia, the
results show that the proposed disambiguation phase leads to an approximated gain of
64% over the accuracy of the selection phase on its own (which produced a F1 of
44%).

Regarding SERIMI’s selection phase, the set of boolean queries used in SERIMI
failed in selecting resources where the label of the source resource was an
abbreviation or acronym of the target resource, or vice-versa (e.g. source: “Minnesota
Mining & Manufacturing Co”, target: “3M Company”). SERIMI has also failed due
to distinct string formatting between the source and target datasets labels. For
instance, SERIMI selected the resource labeled “Jackson Michael” for the searched
label “Jackson, Michael”, instead of the resource labeled “Michael Jackson”, which
was the correct answer. These two problems are known issues in the literature, and we
intent to investigate them as future work.

We noticed that the use of ontological knowledge could have improved the
precision in the Geonames case, since the instances of the class NYT-Location have
the properties longitude and latitude that also occur in the Geonames, with exactly the
same values. For instance, the use of both label and longitude in the search process of
the selection phase would have improved the precision for this case. Nevertheless, as
we aim to provide a fully automated approach agnostic of ontology, we did not
consider the use of ontological knowledge as a solution. However, the use of two
attributes in the search process will be investigated as future work.

We observed that the fully automatic approach for detecting the entity labels using
entropy performed satisfactorily in all dataset pair compared. No wrong label was
selected in our evaluation.

217

We noticed that the accuracy of the NYTimes alignment is quite good, since it
was manually curated, but it is not perfect. We encountered a few inconsistencies, and
evidences of incorrect alignment in almost all pair of datasets. This fact led SERIMI
to reach a non-optimal performance in this challenge. Below we show some examples
of the inconsistence, incorrect and arbitrary judgment found in the reference
alignment.

Label: Expedia Inc
•http://rdf.freebase.com/ns/en.expedia (reference alignment)
•http://rdf.freebase.com/ns/en.expedia_inc (SERIMI)
Label: USG Corporation
•http://dbpedia.org/resource/United_States_Gypsum (reference alignment)
•http://dbpedia.org/resource/USG_Corporation (SERIMI)
Label: Kirov Ballet
•http://rdf.freebase.com/ns/en.mariinsky_ballet (reference alignment)
•http://rdf.freebase.com/ns/en.kirov_ballet (SERIMI)

SERIMI took 40 minutes in average to compute the interlinking of an individual
pair of dataset when it was performed under a controlled environment. In the case of
DBPedia, its performance varied a lot due to the remote server avaiability.

3 General Comments

RDF instance matching is a challenging problem and the community has only
recently started to develop a systematic framework to evaluate approaches to tackle
this problem: the IMEI track of the OAEI initiative. We have however also
encountered some problems in applying this framework to understand our results.

1. The accuracy of the reference alignment is critical point for the participants.
Its quality prevents participants try to improve their precision, in cases where
the reference alignment lacks in accuracy, or can be considered quite
arbitrary, since there are dual interpretation in the alignment. We wasted a
plenty of time to realize that the reference alignment was not 100% accurate,
since we trusted on it beforehand. Therefore, we propose the organizers to
warn the participants of lack of accuracy in the reference alignment, or
whether possible, to publish some statistics about its accuracy.

2. Since DBPedia and Freebase contain a lot of duplicate entities associated to
different URIs (e.g. http://rdf.freebase.com/ns/en.expedia_inc and
http://rdf.freebase.com/ns/en.expedia), we propose the organizers to take this
into consideration while computing the precision and recall of the participant
results. Two participants may send distinct alignment results that are both
correct.

Finally, we see an opportunity to ease the participation in the track. The
preparation of the datasets is a non-trivial task, especially because they are large and
available in different formats. Since all participants face the same problem here, it
would be huge improvement whether the OAEI initiative could provide a SPARQL
endpoint for all datasets mentioned in the challenge. All participants would work

218

exactly over the same datasets, consequently increasing the credibility of the results.
RDF database engines exist that allow text search via SPARQL endpoint with a quite
high performance; and when used properly can support a large amount of requests, as
demanded by a challenge of this scale.

4 Conclusion

In this paper, we present the results of SERIMI in OAEI 2011 Campaign’s IMEI-DI
track. We have presented the architecture of SERIMI system and described specific
techniques used in this campaign. SERIMI matches instances between a source and
target datasets, without prior knowledge of the data, domain or schema of these
datasets. SERIMI solves the instance-matching problem in two phases. In the
selection phase, it uses traditional information retrieval and string matching
algorithms to select candidate resources for interlinking. In the disambiguation phase,
it uses a novel approach to measure similarity between RDF resources and
disambiguate the resources. The results illustrates that SERIMI can achieve good
accuracy in instance matching track.

References

1. Bizer, C., Heath, T. and Berners-Lee, T. (2009) Linked Data - The Story So Far. Int. J.
Semantic Web Inf. Syst., 5 (3). pp. 1-22.

2. Tejada, S.; Knoblock, C. A.; and Minton, S. (2001). Learning object identification rules
for information integration. Information Systems 26(8): 607–633.

3. L. A. P. P. Leme, M. A. Casanova, K. K. Breitman, and A. L. Furtado. (2008). Evaluation
of similarity measures and heuristics for simple RDF schema matching. Technical Report
44/08, Dept. Informatics, PUC-Rio.

4. Isaac A., Meij L. V. D., Schlobach S., and Wang S. (2007). An empirical study of
instance-based ontology matching. In Proceedings of the 6th international semantic web
and 2nd Asian conference on Asian semantic web conference (ISWC'07/ASWC'07),
Springer-Verlag, Berlin, Heidelberg, 253-266.

5. K. K. Breitman, D. Brauner, M. A. Casanova, R. Milidi, A. Gazola, and M. Perazolo.
(2008). Instance-Based Ontology Mapping. In Fifth IEEE Workshop on Engineering of
Autonomic and Autonomous Systems (ease 2008), Belfast, Northern Ireland, pp. 67-74.

6. N. Choi, I.-Y. Song, and H. Han,. (2006). A survey on ontology mapping,” ACM
SIGMOD Record, vol. 35, no. 3, pp. 34-41.

7. Branting, L. K. (2003) A Comparative Evaluation of Name-Matching Algorithms. ICAIL
’03, June 24-28, 2003, Edinburgh, Scotland, UK.

8. Araújo S., Hidders J., Schwabe S., and Vries A. P. de. (2011). SERIMI - Resource
Description Similarity, RDF Instance Matching and Interlinking. CoRR, vol.
abs/1107.1104.

9. Kopcke H., Thor A., and Rahm E. (2010). Evaluation of entity resolution approaches on
real-world match problems. In Proceedings of the 3rd VLDB Endowment. Pp. 484-493.

219

Zhishi.links Results for OAEI 2011

Xing Niu, Shu Rong, Yunlong Zhang, and Haofen Wang

APEX Data & Knowledge Management Lab
Shanghai Jiao Tong University

{xingniu, rongshu, zhangyunlong, whfcarter}@apex.sjtu.edu.cn

Abstract. This report presents the results of Zhishi.links, a distributed instance
matching system, for this year’s Ontology Alignment Evaluation Initiative (OAEI)
campaign. We participate in Data Interlinking track (DI) of IM@OAEI2011.
In this report, we briefly describe the architecture and matching strategies of
Zhishi.links, followed by an analysis of the results.

1 Presentation of the system

Ontology matching is a positive effort to reduce heterogeneity of semantic data. Both
schema-level matching and instance-level matching aim at finding matches between
semantically related entities of different ontologies. With the development of Linked
Data[1], the needs of finding high quality <owl:sameAs> links are increasing. Thus,
more and more people are engaged in research of identifying URIs referred to the same
real-world object by using instance matching techniques.

Zhishi.links we proposed here is an efficient and flexible instance matching system,
which utilizes distributed framework to index and process semantic resources, and uses
scalable matching strategies for calculating similarities between two resources.

1.1 State, purpose, general statement

Zhishi.links is used for participating in Data Interlinking track (DI) of IM@OAEI2011.
Its architecture is shown in Figure 1.

All the dumps (DBpedia, Freebase and GeoNames) are downloaded beforehand and
the interconnection is done locally, even the datasets are very large. Admittedly, using
keyword search or lookup services provided by these three chosen online database can
help to obtain high quality match candidates, but this strategy relies too much on the
retrieval performance. Moreover, a large quantity of datasets in Linked Data do not
provide such kind of services.

In order to dramatically reduce the time complexity of matching procedures on large
datasets, resources are indexed before a pipe of similarity calculations are performed.
This principle is also adopted by Silk[6], a well-known links discovery framework.
Resources are usually indexed by terms of their names and aliases. In other words,
resource pairs sharing more than one term are treated as match candidates and wait for
further checking.

220

Dumps Indexing Comparison

Final Matches

Candidates Match Name
Similarity

Calculation

Geographical
Similarity

Calculation

Semantic
Similarity

Calculation

Default
Label

Comparison

Pre-processing Sorting Outputting

Map Reduce

Similarity
>=

Threshold Sorting

Fig. 1. Architecture of Zhishi.links

The comparison between two resources begins from the string similarity calcula-
tion. The more terms two resources’ names share, the more similar they are. If a re-
source has more than one name (i.e. it has aliases), all names take part in similarity
calculations and the highest similarity value is chosen. String similarities are used to
filter out the least likely match candidates by setting a proper threshold.

Afterwards, semantic similarities are calculated. Generally speaking, similarity s-
cores computed in the previous step increases if two resources have some sematic re-
semblances (e.g. the same property-value pairs), otherwise penalties are paid. Specif-
ically, functional properties (owl:FunctionalProperty) and inverse-functional
properties (owl:InverseFunctionalProperty) have higher weights than ordi-
nary properties.

Finally, match candidates are sorted by their similarity scores. In some cases, two
or more match candidates may have the same highest similarity scores. Zhishi.links
compares their default labels again and chooses the closest matching pair.

1.2 Specific techniques used

Since these three datasets are huge, even though we adopt index-based pre-matching,
we still suffer from high time and space complexities. We utilize distributed MapReduce[3]
framework to accomplish this work. The map function produces a list of key-value pairs,
where the keys are the index terms and the values are complete semantic descriptions of
resources. After sorting, resources with the same index term (match candidates) gather
together and further comparisons are made by reduce function in one computing node.

Properties unique to an object, such as inverse-functional properties, can be used
to determine its identity[4]. Values of this kind of properties can also be used to filter
or generate match candidates. Here we cite an example of using geographical coordi-
nate to filter candidates before semantic similarity calculation. Most of the time, the
geographical coordinate is unique to a location, but unfortunately, the data type of co-

221

ordinates is a pair of floating point numbers and they can not be used as index terms. So
as shown in Figure 1, we can calculate geographical similarity by computing distance
between two coordinate. Intuitively, if two locations are wide apart, the corresponding
match candidate should be filtered out.

1.3 Adaptations made for the evaluation

In Data Interlinking track, participates are asked to retrieve New York Times interlinks
with DBpedia, Freebase and GeoMames. Structured data provided by New York Times
is relatively scant. Usually, New York Times just provides a resource’s name using
skos:prefLabel property1. In some cases, a short definition (skos:definition)
and a topic page’s URL (nyt:topicPage) can be obtained. Thus, Virtual Documents
are constructed for resources from other three data sources by splicing values of char-
acteristic properties. Similarity between a Virtual Document and a topic page (abstract,
articles’ titles and snippets are included) is calculated in semantic similarity calculation
phase.

Nearly all default names and aliases in these four data sources are well-designed.
Many of them are appended disambiguation information (e.g. “Michael Mann (direc-
tor)”) or supplements (e.g. “University of California, Los Angeles”). Such phrases are
isolated because 1. they can be treated as values of characteristic properties and used to
calculate semantic similarities, and 2. they may bring about noise when the complete
labels are used for string similarity calculation.

Beside these appended phrases, several special words in names are extracted for
producing unified values of characteristic properties. For resources which are instances
of “People”, “Jr.” and “Sr.” are detected due to the reason that these words have good
discriminability. For instances of “Locations” and “Organizations”, more keywords are
concerned and the full lists of these keywords are shown in Appendix section.

The “name” and “alias” we mentioned above refer to different properties in different
data sources. Table 1 shows the exact properties that are used as “name” and “alias”.

Table 1. Properties Used as “Name” and “Alias”

Data Source Name Alias

New York Times skos:prefLabel —
DBpedia rdfs:label dbpedia-owl:wikiPageRedirects
Freebase rdfs:label fb:common.topic.alias
GeoNames gn:name gn:alternateName

1.4 Link to the system and parameters file

The homepage of Zhishi.links is http://apex.sjtu.edu.cn/apex_wiki/Zhishi.
links. More information about our instance matching system can be found here.

1 Results of using nyt:search api query are unreachable for us.

222

1.5 Link to the set of provided alignments (in align format)

The results of Zhishi.links for IM@OAEI2011 can be found at http://apex.sjtu.
edu.cn/apex_wiki/Zhishi.links.

2 Results

In this section, we will present the result of Zhishi.links for DI track in detail and give
related analysis. Tests were carried out on a Hadoop computer cluster. Each node has a
quad-core Intel Core 2 processor (4M Cache, 2.66 GHz), 8GB memory. The number of
reduce tasks was set to 50.

2.1 DI-nyt-geonames

The version of GeoNames dump we used is May 4th.
The final results are shown in Table 2, where precision, recall and f-measure are

provided. After filtering, 128,795 match candidates were sent to semantic similarity
calculation component and approximately 98.9% (H Recall) expected matches were
include.

One reason for the notable decrease of recall is that URI aliases exist in this dataset:
different URIs are used to identify the same location. For example, gn:18639672

and gn:18639613 refer to the same place in Japan: their names are both “Fukuoka”
and their geographical coordinates are very close. We can hardly resolve this problem
off-line except some official rules are provided.

Table 2. Performance of Zhishi.links (NYT-GeoNames)

Type Precision Recall F-measure Candidates Expected H Recall

Locations 0.938 0.883 0.910 128,795 1,789 0.989

2.2 DI-nyt-dbpedia

The version of DBpedia dump we used is 3.6.
Zhishi.links performs best on DBpedia, as shown in Table 3. Wikipedia’s strict and

advanced naming conventions4 and abundant aliases guarantee the quality and quantity
of resources’ names separately, which help a lot in similarity calculation phase.

However, precisions here are not satisfactory. We have investigated the causes and
found that many incorrect matches occurred when ambiguities were existing. As ex-
plained in Section 1.3, New York Times does not provide sufficient structured descrip-
tive data, hence more sophisticated matching methods should be applied.

2 http://sws.geonames.org/1863967/
3 http://sws.geonames.org/1863961/
4 http://en.wikipedia.org/wiki/Wikipedia:Naming_conventions

223

Table 3. Performance of Zhishi.links (NYT-DBpedia)

Type Precision Recall F-measure Candidates Expected H Recall

People 0.971 0.970 0.970 16,787 4,977 0.992
Organizations 0.896 0.932 0.913 10,679 1,965 0.957
Locations 0.910 0.914 0.912 47,490 1,920 0.983

2.3 DI-nyt-freebase

The version of Freebase dump we used is July 7th.
URI aliases also exist in Freebase. RDF dump built by RDFizer5 does not contain

URIs for resource. They should be generated by using values of fb:type.object.key.
Unfortunately, this procedure produces more than one URI for a single resource. For ex-
ample, http://rdf.freebase.com/ns/en.amanda hesser,
http://rdf.freebase.com/ns/user.jamie.nytdataid.63892856178165632613,
http://rdf.freebase.com/ns/wikipedia.en.Amanda Hesser, etc. all
refer to a person named “Amanda Hesser”.

Unlike GeoNames, only one URI for a resource is chosen in pre-processing phase.
That is why the highest recalls (H Recalls), as shown in Table 4, are also unsatisfactory.
The priority list we used is:

1. http://rdf.freebase.com/ns/en.*
2. http://rdf.freebase.com/ns/user.jamie.nytdataid.*
3. http://rdf.freebase.com/ns/authority.us.gov.loc.na.n*
4. http://rdf.freebase.com/ns/authority.iso.*
5. http://rdf.freebase.com/ns/business.cik.*

If the URIs in reference alignments do not follow this priority list, mistakes would
be unavoidable.

Table 4. Performance of Zhishi.links (NYT-Freebase)

Type Precision Recall F-measure Candidates Expected H Recall

People 0.929 0.924 0.926 26,382 4,979 0.964
Organizations 0.887 0.853 0.870 12,664 3,044 0.889
Locations 0.902 0.865 0.883 14,705 1,920 0.932

3 General comments

In this section, we will give some additional comments on Zhishi.links results and pro-
vide some suggestions to OAEI organizers.

5 http://code.google.com/p/freebase-quad-rdfize/

224

3.1 Discussions on the way to improve the proposed system

Several shortcomings of Zhishi.links can be seen and need to be overcome in the future:

– When it comes with the problem of homonyms, instance matching systems should
exploit as much information as possible to enhance the discriminability of their
matchers. Currently, subject to the fact that most descriptions given by New York
Times are written in natural language, the performance of our semantic similarity
calculator are constrained. We are considering more tests carrying out on datasets
in different styles and designing a more robust system.

– In DI track, only three types of resources are involved. The special words in names,
which are extracted as values of characteristic properties, are chosen manually.
Some smarter strategies should be applied to accomplish this mission.

3.2 Comments on the OAEI 2011 test cases

We are very interested in testing our matching system on large-scale real-world data. It
can help validating the robustness and applicability of the proposed methods. However,
crude raw data may have some defects. The URI aliases problem, for example, is what
we have met. We hope that these issues are resolved in the future or considered in the
evaluation.

3.3 Proposed new measures

�

� �

� � �
� � � � � � � � �

�

� �

� � �

�

� �
� � �

�

� �
� � � � � � � � � �

� � �

� �
� � �

� � �

�

� �
� � � � � � � � � � � �

0.2 0.4 0.6 0.8 1.0
CT

0.85

0.90

0.95

1.00

F�measure

Fig. 2. F-measures on Different Confidence Thresholds

225

Our goal is to design a general instance matching system. It should not sensitive to
what type of resources should be matched and what data source resources come from.
So what we need is a matching method with high stability.

As Shown in Figure 2, we choose match candidates above continuously varying
confidence thresholds (CT) and plot the corresponding F-measures on the chart. The
six curves in this chart indicate the results for matching tasks carried out on DBpedia
and Freebase. We can determined a fixed CT value to filter final match candidates. For
instance, we can choose CT = 0.76 here. Then the performances are not the best, but
are relative acceptable (other matching systems are not taken into consideration).

Here we just mentioned the concept of stability. The complete descriptions for
evaluating the stability of matching systems are elaborate in [5].

4 Conclusion

In this report, we have presented a brief description of Zhishi.links, an instance match-
ing system. We have introduced the architecture of our system and specific techniques
we used. Also, the results have been analyzed in detail and several guides for improve-
ments have been proposed. We look forwards to build an instance matching system with
better performance and higher stability in the future.

References

1. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. Int. J. Semantic Web
Inf. Syst. 5(3), 1–22 (2009)

2. Bouquet, P., Stoermer, H., Tummarello, G., Halpin, H. (eds.): Proceedings of the WWW2007
Workshop I3: Identity, Identifiers, Identification, Entity-Centric Approaches to Information
and Knowledge Management on the Web, Banff, Canada, May 8, 2007, CEUR Workshop
Proceedings, vol. 249. CEUR-WS.org (2007)

3. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In: OSDI.
pp. 137–150 (2004)

4. Hogan, A., Harth, A., Decker, S.: Performing object consolidation on the semantic web data
graph. In: Bouquet et al. [2]

5. Niu, X., Wang, H., Wu, G., Qi, G., Yu, Y.: Evaluating the stability and credibility of ontology
matching methods. In: Antoniou, G., Grobelnik, M., Simperl, E.P.B., Parsia, B., Plexousakis,
D., Leenheer, P.D., Pan, J.Z. (eds.) ESWC (1). Lecture Notes in Computer Science, vol. 6643,
pp. 275–289. Springer (2011)

6. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Discovering and Maintaining Links on the Web
of Data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E.,
Thirunarayan, K. (eds.) International Semantic Web Conference. Lecture Notes in Computer
Science, vol. 5823, pp. 650–665. Springer (2009)

226

Appendix

Table 5. Unified Values for Organizations

Keywords Unified Values

Co, Company Co.
Corp, Corporation Corp.
Inc, Incorporated Inc.
Ltd, Limited Ltd.

Table 6. Unified Values for Locations

Keywords Unified Values

North Carolina NC
New Hampshire NH
New Jersey NJ
New York NY
Bronx, Brooklyn, Manhattan, Queens NYC
Rhode Island RI
Florida Fla
Georgia Ga
Louisiana La
Maine Me
Mississippi Miss
Missouri Mo
Pennsylvania Pa
Virginia Va
Vermont Vt

227

YAM++ – Results for OAEI 2011�

DuyHoa Ngo, Zohra Bellahsene, Remi Coletta

University Montpellier 2, France
{firstname.lastname@lirmm.fr}

Abstract. The YAM++ system is a self configuration, flexible and extensible
ontology matching system. The key idea behind YAM++ system is based on
machine learning and similarity flooding approaches. In this paper, we briefly
present the YAM++ and its results on Benchmark and Conference tracks on OAEI
2011 campaign.

1 Presentation of the system

Ontology matching is needed in many application domains, especially in the emergent
semantic web field. It is considered as the most promising approach to solve the in-
teroperability problems across heterogeneous data sources. Due to the various types of
heterogeneity of ontologies, a matching system, generally, exploits many features of
elements in ontology and combine several similarity metrics in order to improve its per-
formance. However, finding a good combination is very difficult and time consuming
even for experts. Therefore, we propose YAM++ - a (not) Yet Another Matcher ap-
proach, which firstly uses a machine learning technique to combine similarity metrics.
We then apply a similarity propagation algorithm [5] to discover more semantic map-
pings. The advantages of using machine learning and similarity flooding techniques will
make our system flexible and extensible.

1.1 State, purpose, general statement

The current implemented version YAM++ is an extension of our former schema match-
ing system YAM [1]. However, the YAM++ aims to work with ontology matching,
which is semantically richer than XML schema, so new features were added in the
extension version. The main components of the new system are depicted in Figure 1.

The fully automated mapping process is performed as follows. Firstly, two to-be-
matched ontologies are passed to the Parsing & Processing module. We use OWLAPI 1

and Pellet 2 to load ontology files into our specified data structure which contains all el-
ements with their annotation and relationships in ontology. Next, the loaded ontologies
are passed into Element-level matcher. The aim of this module is discovering as many as
possible mappings and as high as possible the accuracy of these mappings by analyzing
elements in isolation and ignoring their relations with others. This module consists of
� Supported by ANR DataRing ANR-08-VERSO-007-04.
1 http://owlapi.sourceforge.net/
2 http://clarkparsia.com/pellet

228

Fig. 1. YAM++ system architecture

two sub-modules: Terminological matcher and Extensional matcher. The Terminologi-
cal matcher exploits annotation information of elements by various similarity metrics,
and then combine them by a machine learning model. Whereas, the Extensional matcher
exploits information from external data (instances) accompanying with ontologies.

Mappings discovered from Element-level matcher are passed into the Structure-
level matcher module in order to discover new mappings by analyzing the positions
of elements on the hierarchy structure of ontologies. The main intuition of this part is
that if two elements from two ontologies are similar, their neighbors (in the same rela-
tions) might also be somehow similar [2]. In our current system, we have implemented
a popular graph based technique - Similarity Flooding in the Structure-level matcher
module.

Finally, the results of Element-level and Structure-level matchers are combined and
passed to the Constraint & Selection module. Here, we define some semantic patterns
to recognize and remove inconsistent mappings. Then, we apply assignment methods
(Greedy and Hungarian algorithms) [4] to select the most appropriate mappings. Cur-
rently, our system works with 1:1 matching cardinality.

1.2 Specific techniques used

In this section, we will briefly describe four main modules: Terminological matcher,
Extensional matcher, Similarity Flooding and Constraint & Selection.

Terminological matcher In this module, we exploit various features of text informa-
tion used to annotate elements in ontologies. The corresponding similarity metrics have
been also implemented in order to calculate the similarity score between elements from
two to-be-matched ontologies. The combination and the matching process in this mod-
ule are illustrated in Figure 2.

We treat the matching task as a binary classification problem. Each pair of elements
from two input ontologies are considered as a machine learning object; its attributes are
similarity scores calculated by a set of selected similarity metrics on these elements.

229

Fig. 2. Terminological matcher

In the learning phase, we use some gold standard datasets to generate training data.
A gold standard is a pairs of ontologies with expert mappings between their elements
provided by domain experts. In current version, the gold standard datasets are taken
from Benchmark dataset published in OAEI 2009. According to our study [6] 3 , we
adopt J48 - a decision tree [9] as the classification model in our system. In classifying
phase, each pair of elements from two to-be-matched ontologies is predicted as matched
or not according to its attributes.

In order to extract attribute values for each pair of elements, we use various similar-
ity metrics described in [6]. They are divided into three main groups: (i) name metrics -
which compare entities by their URI names; (ii) label metrics - which compare entities
by their labels; and (iii) context metrics - which compare entities by their descriptive
and context information.

Name and label metrics belong to Terminological category [2]. Most of String-based
metrics (Levenstein, SmithWaterman, Jaro, JaroWinkler, MongeEklan,etc.) are taken
from open source libraries SecondString 4 and SimMetrics 5. We also have implemented
popular metrics such as Prefix, Suffix, LCS [2], SubString - Stoilos [8]. In term of
Language-based metrics, we developed three well-known metrics corresponding to Lin,
JingConrath and WuPalmer algorithms [3]. These metrics use Wordnet 6 as an auxiliary
local thesaurus. Additionally, we proposed a hybrid approach to combine string-based
and language-based metrics. The detail of algorithms can be found in our paper [7].

Context metrics used in YAM++ belong to the both Structural and Extensional cat-
egories [2]. The main idea behind these metrics is described as follows. We build three
types of context profile (i.e. IndividualProfile, SemanticProfile and ExternalProfile) for
each element. Whereas IndividualProfile describes annotation information of individ-
ual element, SemanticProfile and ExternalProfile describe the context information of an

3 http://www2.lirmm.fr/∼dngo/publications/A Flexible System for Ontology Matching full.pdf
4 http://secondstring.sourceforge.net/
5 http://sourceforge.net/projects/simmetrics
6 http://wordnet.princeton.edu

230

element among the others. These context profiles then can be used to compare entities
by some information retrieval techniques. See [7] for more detail.

Extensional matcher In many situation, to-be-matched ontologies provide data (in-
stances), therefore, the aim of Extensional module is to discover new mappings which
are complement to the result obtained from Terminological module. There are two is-
sues we should consider here: (i) how to find similar instances from two ontologies; and
(ii) given a list of matched instances, how to discover new concept/property mappings.

For the first issue, we propose two methods for discovering instance mappings as
follows:

– If two instances belong to two matched classes and they have highly similar labels
then they will be considered as similar. Here, the list of concept mappings is taken
from the result of Terminological module. Similarity score between instance labels
is computed by our metric named SentenceSimilarity.

– If two instances have high similar text in description then they will be considered as
similar too. Here, a description text is taken from values of all properties described
in an instance. The intuition behind is that even though a real instance were assigned
by different name of IDs, properties and concepts (classes), but the values of its
properties are generally not changed. Based on this idea, we use an information
retrieval technique to compute the similarity of instances by their description text.

For the second issue, we apply two methods for discovering concept/property map-
pings as follows:

– For each pair of matched instances from two ontologies, if the text values of two
properties are highly similar, then these properties are considered as similar.

– For each pair of concepts (classes) from two ontologies, if most of their instances
are matched, then these classes are matched.

The discovered mappings by Element-level module are the union of discovered
mappings from Terminological and Extensional modules.

SimilarityFlooding The Similarity Flooding algorithm is well-known and were de-
scribed in detail in the popular schema matching system - SimilarityFlooding [5]. In this
section, instead of explaining this algorithm again, we will present some main points
of using it in our system. For this aim, we are going to answer two questions: (i) why
do we select Similarity Flooding method; and (ii) how can we apply this method in
ontology matching task.

Firstly, according to [2], there are many methods can be used to analyze the struc-
tural information of ontologies to find mappings. They are mainly based on the idea
that two elements of two different ontologies are similar if all or most of their elements
in the same view are already similar. The term view here maybe understood as a list of
elements which can be seen from the ongoing examined element. For example, they can
be direct super/sub elements, sibling elements or list of elements in the path from the
root to the current element on the ontology’s hierarchy, etc. However, two big problems

231

have arisen. One as the authors commented in [2] is that these methods face problems
when the viewpoint of two ontologies is highly different. The second is that if some
pre-defined mappings are incorrect and these methods are run only one time to pro-
duce new mappings, then the accuracy of new results will be unconfident. Therefore,
we believe that the idea of propagating a portion of similarity from one matched pair
of elements to their neighbors is more flexible and applicable. Additionally, by running
many iterations until the similarity scores between elements become stable, we believe
that incorrect mappings (pre-defined) will be removed.

In order to apply Similarity Flooding in our system, we construct a graph from an
ontology, whose nodes are concepts, properties or primitive XML Schema DataTypes
and edges have types and label have been divided into 5 groups corresponding to re-
lationships between elements in ontology, such as subClass, subProperty, domain,
range and onRestrictedProperty. Notice that we use Pellet library as a reasoner to
infer the relations between elements in ontology. It will help us to overcome the prob-
lem of different viewpoint of ontologies. Then, a pairwise connectivity graph is built
in the same way that were described in the SimilarityFlooding system. We use inverse
product formula to computing the propagation coefficient and fixpoint formula C [5]
in the similarity propagation process.

Constraint and Selection The mappings discovered from Element-level and Structure-
level are joined and passed to this module in order to remove inconsistent mappings. We
combine results of Element and Structure level by a dynamic weighted aggregation
method. The idea is as follows:

– After Similarity Flooding stop, we run Double-Hungarian assignment method in
order to find the two most similar elements from the target ontology for each el-
ement in the source ontology. We call the result of this step by SMap - a list of
possible mappings.

– From the list mappings obtained from Element-level matcher (we call it EMap), we
find a mapping which also exists in the SMap but with the lowest score. We call it a
Threshold value. This threshold will be used as weight for all mappings in EMap.
The weight for all mappings in the SMap is equal to (1− Threshold).

– The final mappings are produced by weighted aggregation of EMap and SMap.
After that, we use Greedy Selection algorithm to extract the most stable mappings
whose similarity score higher than the Threshold found above.

Next, in order to perform Semantic verification, in the current version of our system,
we define two simple patterns to recognize the inconsistent mappings as follows:

– If two properties are discovered as similar but none of the classes in their domain
are mapped and none of the classes in their range are mapped neither, then the
mapping of these two properties are inconsistent and will be removed.

– If classes (A,B), (A,B1), (A1, B) are matched and A1 and B1 are subsumed of A
and B respectively, then (A,B1), (A1, B) are removed.

232

1.3 Adaptations made for the evaluation

There are two factors that directly impact to the our system’s performance. The first
relates to matching by machine learning model. The training data and selected similarity
metrics as learning attributes are important. We proposed a simple solution for this issue
by selecting the most appropriate similarity metrics and training data according to their
correlation with experts assessment. For more detail, see our paper [7]. The second issue
relates to the threshold used as a filter in the selection module. Different tests require
different thresholds. Our experiments show that if we set low threshold, we need to
use strict semantic constraint to remove inconsistent mappings. In the current version
of system, we propose a simple heuristic method (i.e., dynamic threshold and dynamic
weighted aggregation) to deal with this problem. Besides, it satisfies the rules of the
contests that all alignments should be run by the same configuration.

1.4 Link to the system and parameters file

The YAM++ system and parameter files can be download at:http://www2.lirmm.fr /∼dngo/
YAMplusplus.zip. See the instructions from SEALS platform 7 to test our system.

1.5 Link to the set of provided alignments (in align format)

The results on Benchmark and Conference tracks can be downloaded at: http://www2.lirmm.fr
/∼dngo/ YAMplusplus oaei2011.zip.

2 Results

In order to see the performance of our system, we will show the effectiveness and the
impact of the listed modules above by comparing the results obtained from running
system with three configurations. The basic configuration is the Terminological matcher
only, which is based on a machine learning (ML) approach. Next, we extend it with the
Extensional module, which is an Instance based matcher (IB), in order to have a full
Element-level matcher. Finally, we add the Similarity Flooding (SF) module to the third
configuration. All experiments are executed with JRE 6.0 on Intel 3.0 Pentium, 3Gb of
RAM, Window XP SP3.

2.1 Benchmark

The Benchmark 2010 track includes 111 tests. Each test consists of source (reference)
ontology and a test ontology, which is created by altering some information from the
reference. The reference ontology contains 33 named classes, 24 object properties, 40
data properties, 56 named individuals and 20 anonymous individuals. The evaluation of
our system’s performance on this track with 3 configurations is shown in the Table 1.

The observation from this track is as follows. By using only machine learning (ML)
approach, YAM++ achieved good result with very high precision (0.99) and F-Measure

7 http://oaei.ontologymatching.org/2011/seals-eval.html

233

Configuration Precision Recall F-Measure
ML 0.99 0.72 0.84
ML + IB 0.99 0.74 0.85
ML + IB + SF 0.98 0.84 0.90

Table 1. H-mean values on Benchmark 2010 track

(0.84). After adding Instance based (IB) matcher, both Recall and F-Measure increased
with 2% and 1% respectively. These improvements were happened because many on-
tologies have common extensional data (instances). Finally, thanks to the process of
propagation of similarity, both Recall and F-Measure increased with 10% and 5% re-
spectively.

The Benchmark 2011 track includes 103 tests. Similar to Benchmark 2010, in this
track, a source (original) ontology is compared to target ontologies which were obtained
by altering some features from the original. The reference ontology contains 74 named
classes, 33 object properties without extensional data (instances). The evaluation of our
system’s performance on this track with 3 configurations is shown in the Table 2.

Configuration Precision Recall F-Measure
ML 0.98 0.51 0.67
ML + IB 0.98 0.51 0.67
ML + IB + SF 0.97 0.60 0.74

Table 2. H-mean values on Benchmark 2011 track

Similar to the Benchmark 2010 track, using Similarity Flooding method increases
both Recall and F-Measure values with 9% and 7% respectively. The Instance based
matcher did not improve the performance because in this track, ontologies don’t support
extensional data. That is why the matching results of running the first and the second
configurations are the same.

2.2 Conferences

Conference track now contains 16 ontologies from the same domain (conference orga-
nization) and each ontology must be matched against every other ontology. YAM++ is
able to produce all 120 alignments from those ontologies. Due to the heterogeneity of
those ontologies, finding mappings between them is more difficult than that in Bench-
mark tracks. Besides, this track is an open+blind test because there are no reference
alignments for most of those tests. In the Table 3, we can only report our results with
respect to the available reference alignments. The observation on this track is similar to
the Benchmark2011 track. Here, thanks to Similarity Flooding method, all of Precision,
Recall and F-Measure values are improved.

3 General comments

This is the first time we participate to the OAEI campaign. We found that SEALS plat-
form is a very valuable tool to compare the performance of our system with the others.

234

Configuration Precision Recall F-Measure
ML 0.75 0.50 0.60
ML + IB 0.75 0.50 0.60
ML + IB + SF 0.78 0.56 0.65

Table 3. H-mean values on Conference 2011 track

Besides, we also found that OAEI tracks covers a wide range of heterogeneity in ontol-
ogy matching task. They are are very useful to help developers/researchers to develop
their semantic matching system.

3.1 Comments on the results

Generally, according to the results published in last competition OAEI 2010, our system
is acceptable and comparable with other participants. However, there are still some
weaknesses in our current system such as (i) semantic verification/constraint issue; (ii)
problem of dealing with large scale ontology matching task and time performance. In
the current version, we provided some simple solutions for these issues above. The
preliminary results were quite good to encourage us to continue seeking better solutions.

4 Conclusion

In this paper, we present the overview of the YAM++ system and our results on Bench-
mark and Conference tracks. Our experiments prove that the combination of machine
learning and similarity flooding approaches bring good results. Additionally, YAM++
system is fully automate, flexible and extensible.

References
1. Fabien Duchateau, Remi Coletta, Zohra Bellahsene, and Renée J. Miller. Yam: a schema

matcher factory. In CIKM Conference, pages 2079–2080, 2009.
2. Jérôme Euzenat and Pavel Shvaiko. Ontology matching. Springer-Verlag, Heidelberg (DE),

2007.
3. Feiyu Lin and Kurt Sandkuhl. A survey of exploiting wordnet in ontology matching. In IFIP

AI, pages 341–350, 2008.
4. C. Meilicke and H. Stuckenschmidt. Analyzing mapping extraction approaches. In In Proc.

of the ISWC 2007 Workshop on Ontology Matching, Busan, Korea, 2007.
5. Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity flooding: A versatile

graph matching algorithm and its application to schema matching. In ICDE, pages 117–128,
2002.

6. DuyHoa Ngo, Zohra Bellahsene, and Remi Coletta. A flexible system for ontology matching.
In Caise 2011 Forum, 2011.

7. DuyHoa Ngo, Zohra Bellasene, and Remi Coletta. A generic approach for combining linguis-
tic and context profile metrics in ontology matching. In ODBASE Conference, 2011.

8. Giorgos Stoilos, Giorgos B. Stamou, and Stefanos D. Kollias. A string metric for ontology
alignment. In ISWC Conference, pages 624–637, 2005.

9. Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools and Tech-
niques with Java Implementations. Morgan Kaufmann, October 1999.

235

Towards more Challenging Problems for
Ontology Matching Tools

Ernesto Jiménez-Ruiz� and Bernardo Cuenca Grau

Department of Computer Science, University of Oxford, UK
{ernesto,berg}@cs.ox.ac.uk

Abstract. We motivate the need for challenging problems in the eval-
uation of ontology matching tools. To address this need, we propose
mapping sets between well-known biomedical ontologies that are based
on the UMLS Metathesaurus. These mappings could be used as a basis
for a new track in future OAEI campaigns.

1 Motivation and Background

The 2011 OAEI campaign consists of six different tracks. The so-called Anatomy
track involves the largest test ontologies (containing between 2000-3000 classes).

Ontology matching tools have significantly improved in the last few years
and there is a need for more challenging and realistic matching problems [1, 2]
for which suitable “gold standards” exist.

There has been a long-standing interest within the bio-informatics research
community in integrating thesauri, taxonomies and (more recently) also ontolo-
gies. The development of the UMLS-Metathesaurus (UMLS), which is currently
the most comprehensive effort for integrating medical thesauri and ontologies,
has been a very complex process combining automated techniques, expert as-
sessment, and sophisticated auditing protocols [3–5].

2 Our Proposal

Although the standard UMLS distribution does not directly provide sets of
“mappings” (in the OAEI sense) between the integrated ontologies, it is rel-
atively straightforward to extract mapping sets from the information provided
in the distribution files (e.g., see [6] for details).

Since UMLS-Meta integrates many widely used large-scale ontologies, such
as FMA, NCI, SNOMED CT, or MeSH, we believe that the UMLS mappings
between these ontologies could be used as a basis for a new track within the OAEI
initiative. It has been noticed, however, that although these mappings have been
manually curated by domain experts, they lead to a significant number of logical
inconsistencies when integrated with the corresponding source ontologies (e.g.,
the integration of SNOMED CT and NCI via UMLS mappings leads to more
than 20,000 unsatisfiable classes, as shown in Table 1).

� Ernesto Jimenez-Ruiz is supported by the EPSRC project LogMap

236

Ontologies Original Mappings Inconsistencies Clean Mappings

FMA-NCI 3,024 655 2,898

FMA-SNOMED 9,072 6,179 8,111

SNOMED-NCI 19,622 20,944 18,322

Table 1. Repairing UMLS mappings (see [7])

To address this problem, we have presented in [6] and [7] several refinements
of the UMLS mappings that do not lead to such inconsistencies. The mappings
in [7] represent a larger subset of the UMLS-mappings than those in [6] as they
were generated using “less aggressive” ontology repair techniques (see Table 1).

These “clean” subsets of UMLS mappings are readily available and could be
used as reference alignments for a new, more challenging track within the OAEI
(see http://www.cs.ox.ac.uk/isg/projects/LogMap/). In order to turn these
reference alignments into a agreed-upon gold standard, some additional effort
would be needed (e.g., manual curation). Another possibility would be to con-
struct a “silver standard” by “harmonising” the UMLS mappings with the out-
puts of different matching tools over the relevant ontologies; similar silver stan-
dards have been developed for named entity recognition problems [8].

Although the use in an OAEI track of ontologies such as SNOMED CT,
FMA and NCI represents a significant leap in complexity w.r.t. the existing
anatomy track (from several million candidate mappings to several billion), we
have recently developed a new matching tool, called LogMap [7], that is able to
efficiently match these ontologies. We take our positive experiences with LogMap
as an indication that a new track based on large-scale realistic ontologies and
UMLS-mappings is not only feasible, but also potentially of great value, both for
the developers of matching tools and the bio-informatics research community.

References

1. Shvaiko, P., Euzenat, J.: Ten challenges for ontology matching. In: On the Move to
Meaningful Internet Systems (OTM Conferences). (2008)

2. Euzenat, J., Meilicke, C., Stuckenschmidt, H., Shvaiko, P., Trojahn, C.: Ontology
Alignment Evaluation Initiative: six years of experience. J Data Semantics (2011)

3. Bodenreider, O.: The Unified Medical Language System (UMLS): integrating
biomedical terminology. Nucleic acids research 32 (2004)

4. Cimino, J.J., Min, H., Perl, Y.: Consistency across the hierarchies of the UMLS
semantic network and metathesaurus. J of Biomedical Informatics 36(6) (2003)

5. Geller, J., Perl, Y., Halper, M., Cornet, R.: Special issue on auditing of terminologies.
Journal of Biomedical Informatics 42(3) (2009) 407–411

6. Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga, R.: Logic-based assess-
ment of the compatibility of UMLS ontology sources. J Biomed. Sem. 2 (2011)

7. Jiménez-Ruiz, E., Cuenca Grau, B.: Logmap: Logic-based and scalable ontology
matching. In: 10th International Semantic Web Conference. (2011) 273–288

8. Rebholz-Schuhmann, D., et al.: CALBC Silver Standard Corpus. J Bioinform
Comput Biol. (2010) 163–179

237

A Framework for Session-based Ontology Alignment

Patrick Lambrix

Department of Computer and Information Science
Linköping University, 581 83 Linköping, Sweden

In this abstract we tackle the problem of aligning large ontologies where the map-
pings suggested by the ontology alignment system need to be validated. Although we
focus on an ontology alignment framework, the ideas may be used and extended for
community-based or collaborative ontology alignment.

In contrast to the case of small ontologies, the computation of mapping suggestions
can take a long time and therefore, we would like to be able to start the validation before
every mapping suggestion is computed. Further, it is clear that for large ontologies, in
general, there are too many mapping suggestions to validate in one time. Therefore, we
want a system that allows to partially validate the mapping suggestions and resume the
validation later. However, whenever validation decisions have been made, they increase
our knowledge about the ontologies and mappings and this knowledge can be used to
provide better mapping suggestions. In the remainder of the abstract we propose an
iterative ontology alignment framework that deals with these issues.

Framework. Our framework is presented in figure 1. The input to the system are the
ontologies that need to be aligned, and the output is an alignment between the ontolo-
gies. When starting an alignment process the user starts a computation session. When a
user returns to an alignment process, she can choose to start or continue a computation
session or a validation session.

During the computation sessions mapping suggestions are computed. The compu-
tation may involve preprocessing of the ontologies, matching, and combination and
filtering of matching results. Auxiliary resources such as domain knowledge and dictio-
naries may be used. Users may be involved in the choice of algorithms. This is similar
to what most ontology alignment systems do. However, in this case the algorithms may
also take into account the results of previous validation and recommendation sessions.
The output of a computation session is a set of mapping suggestions. The computation
sessions can be stopped and partial results can be delivered.

During the validation sessions the user validates the mapping suggestions gener-
ated by the computation sessions. The output of a validation session is a set of mapping
decisions (accepted and rejected mapping suggestions). The accepted mapping sugges-
tions form a partial reference alignment (PRA) and are part of the final alignment. The
mapping decisions can be used in future computation sessions (e.g. PRA-based prepro-
cessing and filtering [1]) as well as in recommendation sessions. Validation sessions
can be stopped and resumed at any time. It is therefore not neccesary for a domain ex-
pert to validate all mapping suggestions in one session. The user may also decide not to
resume the validation but start a new computation session, possibly based on the results
of a recommendation session.

The input for the recommendation sessions consists of a database of algorithms
for the preprocessing, matching, combination and filtering in the computation sessions.

238

Fig. 1. Framework.

During the recommendation sessions the system computes recommendations for which
(combination) of those algorithms may perform best for aligning the given ontologies.
When validation results are available these may be used to evaluate the different algo-
rithms, otherwise an oracle may be used. The output of this session is a recommendation
for the settings of a future computation session. These sessions are normally run when
a user is not validating and results are given when the user logs in into the system again.

Current implementation. We have implemented a prototype based on the frame-
work described above. Regarding the computation sessions, when a PRA is available,
the ontologies are preprocessed to partition the ontologies into corresponding map-
pable parts [1]. For the matching we use the linguistic, WordNet-based, structural and
instance-based algorithms from the SAMBO system [2], a weighted sum approach for
the combination, and the single and double threshold filter approaches. When a PRA is
available we also use the filter approaches from [1]. Users can choose which algorithms,
weights and tresholds to use, or use default values. For the validation we use the user
interface of SAMBO where a user can accept, reject or modify mapping suggestions
as well as annotate the decisions. A reasoner is used to detect conflicts in the decisions
and notify the user. Validation sessions can be stopped at any time and resumed later
on (if so desired - the user may also start a new computation session). The recommen-
dation algorithm is based on the algorithm described in [3]. Currently, the performance
of the different alignment algorithms is evaluated based on how well they do on small
pieces of the ontologies already aligned by an oracle. In the future, we will also take the
validation decisions of the user into account and adapt the recommendation.

Acknowledgements. We thank Qiang Liu, Muzammil Zareen Khan and Shahab
Qadeer for their implementation work in this project.

References

1. P Lambrix and Q Liu. Using partial reference alignments to align ontologies. In 6th ESWC,
LNCS 5554, pages 188–202, 2009.

2. P Lambrix and H Tan. SAMBO - a system for aligning and merging biomedical ontologies.
Journal of Web Semantics, 4(3):196–206, 2006.

3. H Tan and P Lambrix. A method for recommending ontology alignment strategies. In 6th
ISWC and 2nd ASWC, LNCS 4825, pages 494–507, 2007.

239

Modeling Matching Systems using Matching Process
Design Patterns

Eric Peukert

SAP Research, 01187 Dresden, Germany
eric.peukert@sap.com

1 Introduction

Many schema- and ontology matching systems were developed to compute
mapping suggestions for a user. Most of these systems are black boxes that often re-
implement basic matching components which are extended by a few domain specific
matchers. We observe that most systems mainly differ in their internal execution
order and combination of matchers.

In this paper, we advertise using a matching process model to unify a broad set of
different matching systems. That allows making the order of execution within a
matching system explicit. Moreover, we identify a set of so called matching process
design patterns that are often used and combined to build strong matching systems.

2 Process Model and Design Patterns

A matching process is represented by a directed matching process graph as was
also proposed by [2]. The vertices represent operations and edges determine the
execution order and data flow. The result of a matching process is a mapping MA
between a source schema S and a target schema T that consists of correspondence
links between schema elements. With a schema we refer to any meta data structure
such as trees, ontologies, or meta models. Mappings are computed with the help of
similarity matrices that contain similarity values between schema source and target
elements. Additionally, we introduce a so called comparison matrix. A comparison
matrix consists of |S| * |T| cells. Each cell contains a boolean value representing
whether a comparison within subsequent matching operations should be performed.
The comparison matrix is crucial for controlling the flow of element comparisons
within a matching process. Our set of operators is based on the operators we
introduced in [1] that are Match, Combine, Select, Filter, Input and Output. Match
computes a similarity matrix using some matching algorithm. Combine aggregates
multiple matrices and Select reduces the matrix to most likely mapping candidates.
Filter is used to reduce the number of comparisons for subsequent operations by
setting boolean values in the comparison matrix. Additionally we introduce a
Condition to allow conditional execution of process parts and Split/Loop to model
processes of systems like Falcon or RiMOM [3, 5]. Based on these operators we are
able to model a variety of matching systems internal matching processes using the
framework and tools described in [1]. Moreover, we were able to identify an initial set
of reusable matching process design patterns that are often used and combined to
build strong matching processes (see Figure 1).

240

Fig. 1. Matching Process Design Patterns

Parallel Composition (a) is often applied to combine a set of matching algorithms and
was introduced in [4]. Refinement Sequence (b) tries to increase precision by refining
the results of a matcher within subsequent matchers in a process. Adaptive Matcher
Selection (c) is often used to select the most appropriate matcher for a given matching
problem based on some pre-computed feature value. The Skimming pattern (d)
extracts the most probable correspondences from every matcher individually. These

a high precision for a domain of mapping problems. Divide and Conquer (e) divides
the set of comparisons based on some property and distributes these comparisons to
the most appropriate, possible different matchers. This pattern is extensively used in
decision tree based matching systems. Finally Blocking&Clustering is applied in
systems that repeatedly execute process parts. A typical application is the
fragmentation of the matching task into smaller blocks that are executed
independently. In addition to the visualized patterns we propose two further patterns
that are Iteration and Matcher Hierarchies. Iteration repeatedly executes process parts
until a given condition is met. Matcher Hierarchies are implicitly used by many
matching systems to build complex structure-based matchers. Within that pattern, the
output of a matcher is directly used as input for a second matcher.

In our evaluation we were able to show that the parallel composition pattern
behaves very robust to solve different matching problems with high quality. However,
by combining the pattern with skimming and refinement parts the quality can further
be improved as was implicitly done in the internal process of Falcon and RiMOM.

References

1. Peukert, E., Eberius, J., Rahm, E.: AMC - A Framework for Modeling and Comparing
Matching Systems as Matching Processes. ICDE (2011)

2. Lee, Y. et. al.; eTuner: Tuning Schema Matching Software Using Synthetic Scenarios. The
VLDB Journal, 16(1), (2007)

3. Li, J. et. al.: RiMOM: A Dynamic Multistrategy Ontology Alignment Framework. IEEE
Transactions on Knowledge and Data Engineering, 21(8), (2009)

4. Do, H. H. and Rahm, E.: COMA - A System for Flexible Combination of Matching
Approaches. VLDB (2002)

5. Hu, W. and Qu. Y.: Falcon-AO: A Practical Ontology Matching System. Web Semant.,
6(3), (2008)

(a) (b) (c) (d) (e) (f)

241

A Visual SOA-based Ontology Alignment Tool

Weng Onn Kow1, Vedran Sabol2, Michael Granitzer2, Wolfgang Kienrich2

and Dickson Lukose1

1 Artificial Intelligence Centre, MIMOS Berhada, Technology Park Malaysia, Kuala
Lumpur, Malaysia, {kwonn, dickson.lukose}@mimos.my

2 Know-Centerb, Graz, Austria, {vsabol, mgrani, wkien}@know-center.at

Abstract. Ontology alignment is the process of matching related concepts from
different ontologies. We propose a semi-automatic, visual approach which
combines two algorithms for finding candidate alignments with visual
navigation and analysis tools. The implementation is based on a Service-
Oriented Architecture (SOA) to achieve scalability.

1. Motivation

A variety of ontology alignment algorithms have been proposed [1]. However, when
algorithms cannot deliver the desired performance, it is necessary to include humans
in the process. Visual semi-automatic alignment tools have been developed for this
purpose, allowing experts to apply their knowledge. A survey of such systems [2]
provides a summary of user requirements which served us as guidelines for designing
our visual Semantic Mediation Tool.

2. Proposed Solution

The Semantic Mediation Tool (SMT) is a client-server tool for semi-automatic,
visually supported alignment of ontologies. Alignment algorithms are executed on the
server built around a service-oriented architecture to provide scalability. Currently
two algorithms are available: the first uses an external taxonomy (WordNet) to
measure the distance between the concepts based on their labels, using the Wu-Palmer
measure [5]; the second is a machine learning-based method consisting of concept
vectorization, hierarchical concept clustering [4] and cluster-local match finding.

The client (Figure 1) displays concept mappings computed by the alignment
algorithms and provides visual tools supporting the user in reviewing the suggested
mappings. Ontology membership of concepts is encoded by color (red vs. green) in all
components of the interface. A table (top-left) lists all computed mappings and allows
the user to accept or reject them. For the mapping selected in the table (blue row),
each concept is visualized in one the two Multimodal Semantic Browsers [3] (on
right). The browsers are graph visualizations showing concepts within their

a MIMOS Berhad is funded by the Malaysian government through the Ministry of Science, Technology

and Innovation (MOSTI).
b The KNOW-CENTER is funded within the Austrian COMET Program—Competence Centers for

Excellent Technologies—under the auspices of the Austrian Ministry of Transport, Innovation and
Technology, the Austrian Ministry of Economics and Labor and by the State of Styria. COMET is
managed by the Austrian Research Promotion Agency (FFG).

242

ontological neighborhood, providing additional, detailed information valuable for
reviewing. An information landscape (bottom-left) offers an overview of all concepts
in a layout where similar concepts are placed close to each other [4]. Landscape
regions are labeled with terms describing underlying concepts, which empowers the
user to identify regions covering topics of interest and regions containing promising
matching candidates (i.e. areas filled with both red and green dots). Concepts from a
region can be selected using a lasso selection tool, which will filter the mappings in
the table so that only mappings containing selected concepts will be shown.

Figure 1 – SMT client mediating 18816 concepts from the Anatomy benchmarks.

3. Future Work

As the next step, we see the evaluation of the alignment algorithms using OAEI
data sets, with preliminary results already revealing issues such as the lack of a string-
based matcher. Usability evaluation of the user interface shall be performed using
controlled experiments to evaluate the impact and usefulness of the visualizations.�

�
References

1. Euzenat, J. and Shvaiko, P., Ontology Matching, Springer 2007.
2. Granitzer, M., Sabol, V., Onn, K.W., Lukose, D. and Tochtermann, K., Ontology Alignment

- A Survey with Focus on Visually Supported Semi-Automatic Techniques, Future Internet,
Volume 2, Issue 3, pages 238-258, 2010.

3. Kow, W. O. and Lukose, D., Visualizing and Navigating Large Multimodal Semantic Webs,
in Proceedings of the I-Know’10 Conference, pages 175-185, 2010.

4. Muhr, M., Sabol. V., Granitzer, M., Scalable Recursive Top-Down Hierarchical Clustering
Approach with implicit Model Selection for Textual Data Sets, in Proc. of DEXA 10, 2010.

5. Wu, Z. and Palmer, M., Verb semantics and lexical selection, Proceedings 32nd Annual
Meeting of the Association for Computational Linguistics (ACL) pages 133-138, 1994.

243

Mapping relational databases through ontology
matching: A case study on information migration

Manuel Rodriguez-Mancha, Hector G. Ceballos, Francisco J. Cantu, and Aldo
Diaz-Prado

Tecnologico de Monterrey, Campus Monterrey
Eugenio Garza Sada 2501, 64789, Monterrey, Mexico

{mjrodriguez,ceballos,fcantu,jadiaz}@itesm.mx

Abstract. In order to aid domain experts during data integration, sev-
eral schema matching techniques have been proposed. Despite the facil-
ities provided by these techniques, mappings between database schemas
are still made manually. We propose a methodology for mapping two
relational databases that uses ontology matching techniques and takes
advantage of tools like D2R Server and AgreementMaker for automating
mapping generation and for enabling unified access to information. We
present the results obtained by some ontology matching algorithms in
this context, demonstrating the feasibility of this approach.

Keywords: Relational DataBases, Ontology matching, Information In-
tegration

1 Introduction

Specifying schema matches is a tedious, time-consuming, error-prone and there-
fore expensive process that requires the participation of one or more database
experts. Current advances on the creation of RDF views of relational data1 has
provided an uniform interface to data that improves information integration
and retrieval, as well as enables applying ontology matching algorithms to the
database schema mapping problem.

2 A database mapping methodology based on ontology
matching techniques

Counting with experts for both databases/systems during data migration is re-
ally exceptional, therefore we propose using training data for guiding this pro-
cess. A domain expert, i.e. a regular user of the original system, is asked to
capture in the new system some examples obtained from the original system
(training data) in order to have equivalent information in both databases.

Next we apply an iterative process divided in three phases. In the first phase
we generate an ontological representation of each database schema using D2R

1 W3C RDB2RDF Working Group. http://www.w3.org/2001/sw/rdb2rdf/

244

2 Rodriguez-Mancha, Ceballos, Cantu and Diaz-Prado

[1]. The resulting D2RQ mapping is used for mounting a SPARQL end-point that
provides unified access to database records as RDF instances and for generating
a plain ontological representation of database schemas [3].

In the second phase we use matcher algorithms of AgreementMaker v.023 [2]
for identifying correspondences between tables (classes) and fields (properties).
In the third phase, the expert verifies mappings’ correctness through the compar-
ison of instances of both databases using the corresponding SPARQL end-point
and schema equivalences.

Expert’s feedback is persisted in a mapping ontology that is used in further
iterations. The next iteration begins in the second phase whereas the entire
process finishes when no new matching is found or the number of incorrect
matches is greater than good ones.

3 First results on information migration

Our methodology was motivated by the migration from an information system
in operation to a new one with analogous functioning. Both systems rely on
normalized relational databases, the first in MySQL and the second in Oracle.
Each database has about 180 tables and 1,400 fields in total.

From all matchers implemented in AgreementMaker, only ASM, DSI and
the combination Anatomy identified correspondences. Resulting matches were
evaluated by an expert, showing an average 22% of recall for class/table and
property/field mappings. On the other hand, precision for class/table mappings
was above 90% for these three matchers, but on property matching Anatomy
obtained an 84% in comparison with 28% and 25% for ASM and DSI.

String matching techniques used by these matchers allowed detecting simi-
larities between mnemonic names of tables and fields in the first place. Addi-
tionally, relations property-class allowed detecting mappings between equivalent
fields across related tables.

In this way, mappings detected in the first iteration reduced in a 62% the
number of comparisons required for mapping both databases. This means that
the expert would have to perform manually only a 38% of the total comparisons.

As future work we will develop an automatic evaluation of mappings by
comparing instances extracted from both databases and incorporating them in
the ontological representation of schemas. This will enable matchers like IISM
that uses mapped individuals for aligning classes as well.

References

1. Bauelos, E., Zrate, J., Almazn, S., Zubia, A.: D2RQ mappings incorporating seman-
tic of domain. Journal of Environmental Studies 18, 59–62 (2009)

2. Cruz, I.F., Antonelli, F.P., Stroe, C.: Agreementmaker: efficient matching for large
real-world schemas and ontologies. Proc. VLDB Endow. 2, 1586–1589 (August 2009)

3. Ghawi, R., Cullot, N.: Database-to-ontology mapping generation for semantic in-
teroperability. In: Third International Workshop on Database Interoperability (In-
terDB 2007) (2007)

245

SERIMI – Resource Description Similarity, RDF
Instance Matching and Interlinking

Samur Araujo1, Jan Hidders1, Daniel Schwabe2, Arjen P. de Vries1

1 Delft University of Technology, PO Box 5031, 2600 GA Delft, the Netherlands
{S.F.CardosodeAraujo, A.J.H.Hidders, A.P.deVries}@tudelft.nl

2Informatics Department, PUC-Rio Rua Marques de Sao Vicente, 225, Rio de Janeiro,
Brazil

dschwabe@inf.puc-rio.br

Abstract. This paper presents SERIMI, an automatic approach for solving the
interlinking problem over RDF data. SERIMI matches instances between a
source and a target datasets, without prior knowledge of the data, domain or
schema of these datasets. Experiments conducted with benchmark collections
demonstrate that our approach considerably outperforms state-of-the-art
automatic approaches for solving the interlinking problem over RDF data.

1 Introduction

The interlinking of datasets published in the Linked Data Cloud (LDC) [1] is a
challenging problem and a key factor for the success of the Semantic Web. Given the
heterogeneity of the LDC, techniques aimed at supporting interlinking at instance
level should ideally operate agnostic of a specific domain or schema.

SERIMI1 focus in the instance-matching problem over RDF data, which refers to
the process of determining whether two RDF resources refer to the same real-world
entity in a given domain. We propose an unsupervised solution for this problem,
which is composed of two phases: the selection phase and the disambiguation phase.
SERIMI uses existing traditional information retrieval and string matching algorithms
for solving the selection phase, and we propose an innovative function of similarity
during the disambiguation phase. This function is designed to operate even when
there is no direct ontology alignment between the source and target datasets being
interlinked. Fig. 1 shows an overview of SERIMI’s instance matching process.

2 Validation

We use the collection proposed in the DI track of the Ontology Alignment Evaluation
Initiative (OAEI 2010) [2] for evaluating SERIMI. We focused our evaluation in the
life science (LS) collection and in the Person-Restaurant (PR) collection proposed by
this initiative. We used two baselines in our experiments: RiMOM [3] and

1 https://github.com/samuraraujo/SERIMI-RDF-Interlinking

246

ObjectCoref [4]. These two systems are representative of the two main types of
solution for the interlinking task and, more importantly, they have used the same set
of datasets and reference alignment as our method, allowing a fair and direct
comparison. On average, SERIMI outperforms RiMOM and ObjectCoref in 70% of
the cases.

Fig. 1 – Overview of SERIMI interlinking process. (A) Given a source and target dataset
and a set of source resources (instance of a class), (B) SERIMI obtains the label of these source
resources and search for candidate resources in the target dataset that share a similar label. (C)
For each source resource, SERIMI retrieves a set of candidate resources. (D) In order to
disambiguate a set of candidate, SERIMI applies a novel function of similarity that selects the
resources that are the most similar between all candidate sets (E). These selected resources are
the solutions for the interlinking (F). The determination of this optimal cross section is a non-
trivial process and it is done in a sophisticated way. This process assumes that the source
resources belong to a homogeneous class of interest (e.g. musician, drugs, country, etc.)

3 Conclusion

SERIMI showed promising results for solving the task of RDF interlinking proposed
by the OAEI 2010. As future work, we intend to evaluate this approach in different
collections aiming to evaluate SERIMI as a domain specific solution and independent
of domain solution for RDF interlinking.

References

1. Bizer, C., Heath, T. and Berners-Lee, T. (2009) Linked Data - The Story So Far. Int. J.
Semantic Web Inf. Syst., 5 (3). pp. 1-22.

2. Ontology Alignment Evaluation Initiative 2010 Campaign -
http://oaei.ontologymatching.org/2010/

3. Wang Z., Zhang X, Hou L., Zhao Y., Li J., Qi Y., Tang J. (2010). RiMOM Results for
OAEI 2010. The Fifth International Workshop on Ontology Matching. Shanghai, China.

4. Hu W., Chen J., Cheng G., and Qu Y. (2010). ObjectCoref & Falcon-AO: Results for
OAEI 2010. The Fifth International Workshop on Ontology Matching. Shanghai, China.

247

Translating expressive ontology mappings into
rewriting rules to implement query rewriting

Gianluca Correndo and Nigel Shadbolt

ECS Department, University of Southampton, SO17 1BJ, Southampton, UK
{gc3,nrs}@ecs.soton.ac.uk,

http://users.ecs.soton.ac.uk/{gc3,nrs}

Abstract. The semantics of ontology alignments, often defined over a
logical framework, implies a reasoning step over huge amounts of data.
This is often hard to implement and rarely scales on Web dimensions.
This paper presents our approach for translating DL-like ontology align-
ments into graph patterns that can be used to implement ontological
mediation in the form of SPARQL query rewriting and generation.

1 Introduction
In spite of the high expressive power of the languages used to define ontologies
(e.g. RDFS, OWL, and SKOS), the wide range of vocabularies within the data
cloud restrains the realisation of a machine-processable Semantic Web. Ontol-
ogy matching is an important task within the data integration work flow and
Semantic Web community provided automated tools for mining and describing
correspondences between data vocabularies [4]. Among other tools, the Align-
ment API [2] provides a rich language to describe ontology alignments called
Expressive and Declarative Ontology Alignment Language or EDOAL for short.

Our approach to implement data integration is based on the rewriting of
SPARQL queries applying syntactic rules that modify their basic graph pattern
in order to rework a given source query to fit a target data set.

2 SPARQL Query Rewriting
The approach adopted here is similar to the one used in peer data management
systems [3] where queries can be rewritten multiple times, depending on where
the query will be executed. The full description of the algorithm that rewrites
SPARQL queries can be retrieved from a previous publication [1] while in this
paper we will focus on how to translate EDOAL expressions into our internal
representation.

An entity alignment EA codifies how to rewrite a triple for fitting a new
ontology, it defines therefore a pattern rewriting and eventually a set of con-
straints over variables present in the alignment itself. The alignments so defined
are directional (i.e. not symmetric). An entity alignment EA is defined as a triple
EA = 〈LHS,RHS, FD〉. LHS is an atomic formula that contains no functional
symbols. RHS is a conjunctive formula that contain no functional symbols. Fi-
nally FD is a set of functional dependencies that must hold in the rewriting
process.

248

3 Support for EDOAL Alignments

The EDOAL language is meant to describe correspondences between entities
of different ontologies and it uses DL-like primitives to describe those entities.
The subset of EDOAL translated in our approach includes only those primitives
which would affect the BGP section of a query leaving out: concepts (or prop-
erties) disjunction that would require an OPTIONAL statement; attributes
value restrictions different from EQUAL that would require a FILTER state-
ment; and attribute occurrence restrictions for similar reasons. The trans-
lation of EDOAL primitives into rewriting rules pattern can be provided as a
denotational semantics over a simplified subset of the grammar that generates
the entities’ description in EDOAL (i.e. the expressions that are the subjects of
the alignments). The semantics will define how rewriting patterns are created
from inspecting the parsing tree of the entity description.

In Figure 1 it is described the minimal annotated grammar for the EDOAL
language primitives (pseudo code) alongside with the translation in terms of
triples patterns used by our approach. Every grammar rule is decorated with its
denotational semantics v and numbered for later reference.

CE ::= class URI v(CE) = (Triple(?s, rdf : type, URI)) (1)

CC ::= CE and CC
′

v(CC) = v(CE) + v(CC
′
) (2)

AEXP ::= pr URI v(AEXP) = (Triple(?s, URI, ?o)) (3)

|pr URI and AEXP
′

v(AEXP) = Triple(?s, URI, ?o) + v(AEXP
′
) (4)

|pr URI comp AEXP
′

v(AEXP) = Triple(?s, URI, ?o) ◦ v(AEXP
′
) (5)

Fig. 1: EDOAL denotational semantics

4 Acknowledgements
This research has been supported by the EnAKTing project funded by the Engineering

and Physical Sciences Research Council (EPSRC) under the contract EP/G008493/1.

The information provided is the sole responsibility of the authors and does not reflect

the Council’s opinion.

References

1. G. Correndo, M. Salvadores, I. Millard, H. Glaser, and N. Shadbolt. SPARQL query
rewriting for implementing data integration over linked data. In 1st International
Workshop on Data Semantics (DataSem 2010), March 2010.

2. J. David, J. Euzenat, F. Scharffe, and C. T. dos Santos. The Alignment API 4.0.
Semantic Web, 2(1):3–10, 2011.

3. A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov. Schema mediation in peer data
management systems. In Proceedings of the 19th International Conference on Data
Engineering, pages 505–516, 2003.

4. Y. Kalfoglou and M. Schorlemmer. Ontology mapping: The state of the art. In
Y. Kalfoglou, M. Schorlemmer, A. Sheth, S. Staab, and M. Uschold, editors, Se-
mantic Interoperability and Integration, number 04391, 2005.

249

EventMedia Live: Reconciliating Events
Descriptions in the Web of Data

Houda Khrouf and Raphaël Troncy

EURECOM, Sophia Antipolis, France
<houda.khrouf@eurecom.fr>

<raphael.troncy@eurecom.fr>

1 Introduction

Many online services provide functionalities for sharing one’s participation and
captured media at real-world events. In a previous work [3], we constructed
the EventMedia dataset aggregating heterogeneous sources of information and
producing linked data. In this work, we carry out an event-oriented data recon-
ciliation experiment in the web of data, and we propose two adapted extensions
to a semi-automatic alignment tool named SILK [2].

2 Events Reconciliation

In this work, we aim at creating high quality owl:sameAs links between similar
events which share an overlap in term of three properties: title, location and
date. Hereafter, we propose two similarity extensions that better comply with
event properties as it will be confirmed by some experimental results.

Temporal Inclusion metric. Intuitively, we consider that two events are sim-
ilar if they share among others the same time or temporal interval. We introduce
a new temporal inclusion metric where we define a parameter θ as the number of
hours that can be tolerated between two dates. Given two events (e1, e2) which
have respectively the couple start date and end date (d1, d

′
1) and (d2, d

′
2) where

d1, d2 �= 0 and d′1, d
′
2 can be null, the temporal inclusion (s) metric is defined by:

s (e1, e2) =

⎧⎪⎪⎨
⎪⎪⎩

1 if |d1 − d2| ≤ θ where (d′1, d
′
2) = 0

1 if d1 ± θ ∈ [d2, d
′
2] where d′1 = 0 (idem for d2)

1 if min(d′1, d
′
2)−max(d1, d2) ≥ 0 where (d′1, d

′
2) �= 0

0 otherwise.

(1)

Token-Wise string similarity. We studied the performance of string similar-
ity functions over the EventMedia dataset that consists of user-generated content
featuring typos and noisy data. We introduce a novel metric called Token-Wise
combining the character-based and token-based string similarity metrics. The
strings s and t are firstly split into a set of tokens s1....sk and t=t1....tp. Given
s′(si, tj) the score of the based-character similarity between two tokens, wsi
and wtj the respectively weights of si and tj , N the number of matched tokens

250

(filtered triples), M the number of unmatched tokens where we set s’ = 0, the
token-wise (tw) metric is defined by:

tw(s, t) =

∑N
i=1 s

′(si, tj)× wsi × wtj∑N+M
i=1 (1− s′(si, tj))× (ws2i + wt2j) +

∑N
i=1 s

′(si, tj)× wsi × wtj
(2)

Experimental Results. The first experiment was applied on agents’ names
to compare the token-wise and Jaro [1] distances based on a ground truth of
150 matched instances between Last.fm and MusicBrainz. The table 1 shows
the recall and precision for different thresholds. In the second experiment, we
evaluate the event alignment approach based on a ground truth containing 68
Eventful events compared with 104 Upcoming events, and 583 Last.fm events
compared with 533 Upcoming events. Table 2 shows the recall and precision
when the parameter θ of temporal inclusion is equal to 0 and 24 hours.

Jaro Token-Wise

μ Recall(%) Precision (%) Recall (%) Precision(%)

0.95 24 100 60 100

0.9 49 98 82 99

0.8 87 93 96 98

0.7 100 45 100 77
Table 1. Precision and Recall for Jaro and Token-Wise similarities

Eventful-Upcoming LastFm-Upcoming

θ = 0 θ = 24 H θ = 0 θ = 24 H

μ > Recall Precision Recall Precision Recall Precision Recall Precision

0.8 43 100 71 100 41 100 87 100

0.75 48 100 74 93 43 100 90 100

0.74 74 25 79 26 74 81 94 85

0.6 100 24 100 26 100 75 100 75
Table 2. Precision and Recall for events alignment

3 Conclusion

We proposed a powerful string similarity metric to cope with noisy titles, and a
temporal inclusion similarity metric detecting a temporal overlap. The evaluation
shows good results consolidating the efficiency of these extensions for SILK.

References

1. Matthew A. Jaro. Advances in Record-Linkage Methodology as Applied to Matching
the 1985 Census of Tampa, Florida. Journal of the American Statistical Association,
84(406):414–420, 1989.

2. A. Jentzsch, R. Isele, and C. Bizer. Silk - Generating RDF Links while publishing or
consuming Linked Data. In 9th International Semantic Web Conference (ISWC’10),
Shanghai, China, 2010.

3. R. Troncy, B. Malocha, and A. Fialho. Linking Events with Media. In 6th In-
ternational Conference on Semantic Systems (I-SEMANTICS’10), Graz, Austria,
2010.

251

Mobile Facetted Browsing LODD Applications
for Supporting Clinicians

Daniel Sonntag, Jochen Setz and Maha Ahmed-Baker

German Research Center for AI (DFKI)
Stuhlsatzenhausweg 3, 66123 Saarbruecken, Germany

Abstract. An LODD application can be used to improve a clinician’s
daily work. Specific requirements of the radiology domain let us aggregate
RDF results from several LODD sources such as DrugBank, Diseasome,
and LinkedCT, as well as links to the web pages of ClinicalTrials and
Pubmed, in a facetted browsing based mobile graphical user interface.

1 Introduction

Linked Data has the potential to provide easy access to related data sets in the
healthcare domain. This should allow medical experts to explore the interrelated
data more conveniently and efficiently without having to switch between many
different applications, data sources, and user interfaces. In discussions and us-
ability studies with clinicians we found that there are basically three different
scenarios where the medical information contained in Linked Data can be use-
ful: (1) the clinical reporting process; (2) the patient follow-up treatment (i.e.,
monitoring the patient’s health condition and the development of the disease);
and (3) the clinical disease staging and patient management. We will explain
how an LODD (http://www.w3.org/wiki/HCLSIG/LODD) application based
on diseases, drugs, and clinical trials can be used in all three scenarios. Such
an application is based on medical disease knowledge as input and provides an
incremental graphical HCI with a facetted browsing functionality to get relevant
trial and drug information related to the disease information in the patient’s
record.

2 Facetted Browsing Application

In order to implement the facetted browsing LODD application, we connected
RadLex, www.radlex.org/, our initial domain reference ontology for anatomy and
radiology, with LODD data, in particular with LinkedCT to get further access
to DrugBank and Diseasome (and the ClinicalTrials and Pubmed webpages, re-
spectively). Figure 1 shows the GUI of the implemented facetted browsing tool.
There are two options for an input, either a RadLex term that a drop-down
menu suggests while the user types the disease name, or the disease name auto-
matically taken from the RadLex image annotation. The backend runs a query

252

2

written in SPARQL to interlink LinkedCT, Diseasome, DrugBank, and Daily-
Med to gain useful information that might help the radiologist to make a deci-
sion about a treatment or in order to suggest alternative medications. Mappings
between Radlex and LinkedCT do not exist; we obtained best results when us-
ing string-based ontology matching approaches while mapping the Radlex term
(verified by the search-as-you-type functionality with access to a Radlex API)
onto individual tokens (words) in the trial description which we indexed for all
90K keywords to get the trial URIs (cf. http://linkedct.org/resource/keyword/).
Links to Diseasesome and DrugBank are largely available but also in a n to n
relationship. Our tool allows a user to filter thousands of results according to
the bast-ranked string matches and linked data relations in a convenient way.
Clinicians can retrieve the trails they might be interested in in just a few seconds.

Fig. 1. LODD Application (iPad), http://digitaleveredelung.dfki.de/MEDICO/

For example, a radiologist types a disease name “carcinoma”. Then he or
she is probably interested in the clinical trails of a specific study type, drug,
and/or drug type which we aggregated into different facets according to the
disease mapping function or the provided links to Diseasome, DrugBank, and
DailyMed. For genetically caused diseases, one can also look at the disease from
the genetic point of view (at least the gene name can help to combine or compare
therapies). Most of the development time has been spent on (1) the access to
non-conformed Linked Data RDF results in the form of conversion programmes
for JSON and XML results; (2) the provision of the online SPARQL queries for
our Virtuoso server (http://virtuoso.openlinksw.com/); and (3) the implemen-
tation of a graphical user interface from scratch by using open-source knowledge
management tools such as Exhibit, see http://www.simile-widgets.org/exhibit/.
Acknowledgements:This research has been supported by the THESEUS Pro-
gramme funded by the German Federal Ministry of Economics and Technology
(01MQ07016).

253

Complex Matching of RDF Datatype Properties

Bernardo P. Nunes1, Alexander Mera1, Marco A. Casanova1, Karin K. Breitman1

Luiz André P. Paes Leme2

1Department of Informatics PUC-Rio Rio de Janeiro, RJ Brazil
{bnunes, acaraballo, casanova, karin}@inf.puc-rio.br

2Instituto de Computação UFF Rio de Janeiro, RJ Brazil
lapaesleme @ ic.uff.br

Abstract. Property mapping is a fundamental component of ontology matching,
and yet there is little support that goes beyond the identification of single
property matches. Real data often requires some degree of composition,
trivially exemplified by the mapping of FirstName, LastName to FullName on
one end, to complex machings, such as parsing and pairing symbol/digit strings
to SSN numbers, at the other end of the spectrum. In this paper, we briefly
introduce a two-phase instance-based technique for complex datatype property
matching.

Keywords: Ontology Matching, Genetic Programming, Mutual Information.

1 Introduction

Ontology matching is a fundamental problem in many applications areas [1]. Using
OWL concepts, by datatype property matching we mean the special case of matching
datatype properties from two classes.

Very briefly, an instance of a datatype property p is a triple of the form (s,p,l),
where s is a resource identifier and l is a literal. A datatype property matching from a
source class S to a target class T is a partial relation between sets of datatype
properties of S and sets of datatype properties of T. We say that a match (A,B) is
m:n iff A and B contain m and n properties, respectively. A match (A,B) should be
accompanied by one or more datatype property mappings that indicate how to
construct instances of the properties in B from instances of the properties in A. A
match (A,B) is simple iff it is 1:1 and the mapping is a simple translation;
otherwise, it is complex.

In this paper, we briefly introduce a two-phase, instance-based datatype property
matching technique that is able to find complex n:1 datatype property matches and to
construct the corresponding property mappings. The technique extends the ontology
matching process described in [2] to include complex matches between sets of
datatype properties and is classified as instance-based since it depends on sets of
instances.

254

2 The Two-Phase Property Matching Technique

Given two sets, s and t, that contain instances of the datatype properties of the source
class S and the target class T, respectively, the first phase of the technique constructs
the Estimated Mutual Information matrix [2,3] of the datatype property instances in s
and the datatype property instances in t, which intuitively measures the amount of
related information of the observed property instances. This phase possibly identifies
simple datatype property matches. For example, it may detect that the eMail datatype
property of one class matches the ElectronicAddress datatype property of the other
class. The first phase may also suggest, for the second phase, sets of datatype
properties that may match in more complex ways, thereby reducing the search space.

The second phase uses a genetic programming approach [4] to find complex n:1
datatype property matches. For example, it may discover that the FirstName and
LastName datatype properties of the source class matches the FullName datatype
property of the target class, and return a property mapping function that concatenates
the values of FirstName and LastName (of the same class instance) to generate the
FullName value. The reason for adopting genetic programming is two-fold: it reduces
the cost of traversing the search space; and it may be used to generate complex
mappings between datatype property sets.

3 Conclusion

In this paper, we briefly described an instance-based, property matching technique
that follows a two-phase strategy. The first phase constructs the Estimated Mutual
Information matrix of the property values to identify simple property matches and to
suggest complex matches, while the second phase uses a genetic programming
approach to detect complex property matches and to generate their property
mappings. Our early experiments suggest that the technique is a promising approach
to construct complex property matches, a problem rarely addressed in the literature.
Full details can be found in [5].

Acknowledgements. This work was partly supported by CNPq, under grants
473110/2008-3 and 557128/2009-9, by FAPERJ under grant E-26/170028/2008, and
by CAPES under grant CAPES/PROCAD NF 21/2009.

References

1. Euzenat, J., Shvaiko, P. Ontology matching. Springer-Verlag (2007).
2. Leme, L. A. P. P., Casanova, M. A., Breitman, K. K., Furtado, A. L. Instance-Based OWL

Schema Matching, Lectures Notes in Business Info. Proc., vol. 24, 2009, pp.14-25.
3. Leme, L. A. P. P., Brauner, D. F., Breitman, K. K., Casanova, M. A., Gazola, A. Matching

Object Catalogues, Innov. in Sys. and Soft. Eng. Springer, 4(4), 2008, pp. 315-328.
4. Koza, J. Genetic Programming. The MIT press, 1998.
5. Nunes, B. P., Mera, A., Casanova, M. A., Breitman, K. K., Leme, L. A. P. P. Complex

Matching of RDF Datatype Properties. MCC12/11, Dept Informatics, PUC-Rio
(September 2011).

255

Automated Matching of Data Mining Dataset Schemata
to Background Knowledge

Stanislav Vojı́ř, Tomáš Kliegr, Vojtěch Svátek, and Ondřej Šváb-Zamazal

University of Economics, Prague, Dept. Information and Knowledge Engineering
{stanislav.vojir,tomas.kliegr,svatek,ondrej.zamazal}@vse.cz

1 Problem Setting

Interoperability in data mining is supported by a standard for dataset and model rep-
resentation: Predictive Model Markup Language (PMML).1 It allows to describe the
columns (which are continuous, categorical or ordinal) of the source data table, pre-
processing transformations (such as discretization of continuous values) as well as the
structure of the discovered model (e.g. neural network or set of association rules).

In addition to source data, the input to the mining task typically includes expert-
provided background knowledge. It may be related, for example, to standard ways of
discretizing numerical quantities (e.g. boundaries between ‘normal blood pressure’ and
‘hypertension’, which help intuitive reading of discovered hypotheses), or may itself
have the form of predictive models to which the discovered models can be compared
during or after the mining process. The proposal for Background Knowledge Exchange
Format (BKEF) [?], in many aspects similar to PMML, aims to support interoperability
of data mining (and related) applications dealing with background knowledge.

Case studies [?] showed that one BKEF model typically has to be aligned with dif-
ferent PMML models (from different mining sessions in the same domain). The align-
ments are stored in the Field Mapping Language (FML) [?], expressing that a data field
(column) in a PMML model semantically corresponds to an abstract ‘field’ in a BKEF
model. However, writing FML alignments (analogous to instances of the Alignment
Format [?] used in ontology matching) by hand is tedious and recognizing suitable cor-
respondences may be hard; partial automation is thus desirable. Furthermore, existing
tools for ontology/schema matching are not straightforwardly usable, since PMML (and
even BKEF) are, compared to ontologies, more biased by data structures, but BKEF is
more abstract and weakly structured than database schemata. Therefore, specific meth-
ods (inspired by existing ones) and a new tool have been devised.

2 Method, Implementation and Experiments

The matching process consists of several steps. First, the data are pre-processed into
a unified format that removes most syntactic differences between PMML and BKEF.
Then the similarity between data columns of both input resources is calculated based

1 http://www.dmg.org/

256

on string measures over the column names, as well as based on allowed values. Based
on the similarity matrix, suitable alignment (1:1 or 1:N) is finally designed.

An important feature of the system is (simple) machine learning from interaction
with the user; as far as the positive examples are concerned, the learning component dis-
tinguishes between automatically suggested correspondences that were explicitly con-
firmed by the user (or manually entered) and those that were merely tolerated. The
output of the learned rules is used to adjust the final similarity value.

The system has been implemented as a web application in PHP (as component to the
Joomla! CMS) on server side and in JavaScript (with AJAX) on client side. Its graphical
interface conveniently displays the columns of both to-be-matched resources and allows
to 1) align one to another, 2) let one be ignored (in subsequent automatic matching),
3) confirm an automatic alignment, or 4) revoke any of the previous operations. Similar
operations can be applied on the values for a pair of columns.

The system has been tested within the SEWEBAR project2 on data from medicine
and finance. Furthermore, a conventional schema matching benchmark dataset was bor-
rowed from the Illinois Semantic Integration Archive, which describes universities and
their courses.3 The evaluation achieved the precision of about 70% and recall about
77% on unknown columns, while when matching the data previously aligned by the
user (using the machine learning facility), the recall was improved to 90-100%.

3 Relevance for Semantic Web (and Ontology Matching) Research

Although BKEF models structurally differ from ontologies, they are close to them in
covering a certain domain in contrast to PMML models that only cover a certain dataset.
Experience with such asymmetric matching could cross-fertilize with the task of match-
ing the ad-hoc mixes of vocabulary entities underlying many Linked Data sets to care-
fully engineered domain ontologies. A promising direction could also be that of linking
BKEF entities explicitly to domain ontologies; BKEF could represent an intermediate
layer between concrete datasets (that are subject to business-analytics processes) and
ontologies as sophisticated resources that are often too abstract for industrial users.

Stanislav Vojı́ř and Tomáš Kliegr are supported by the IGA VSE under 26/2011. Vojtěch
Svátek and Ondřej Šváb-Zamazal are supported by the CSF under P202/10/0761.

References

1. David J., Euzenat J., Scharffe F., Trojahn dos Santos C.: The Alignment API 4.0. Semantic
Web, 2(1):3-10, 2011.

2. Kliegr T., Svátek V, Ralbovský M., Šimůnek M.: SEWEBAR-CMS: Semantic Analyti-
cal Report Authoring for Data Mining Results. Journal of Intelligent Information Systems,
Springer, 2010 (Online First).

3. Kliegr, T., Vojı́ř, S., Rauch, J.: Background Knowledge and PMML – First Considerations.
In: PMML Workshop at KDD’11,August 21, 2011, San Diego, CA, USA.

2 http://sewebar.vse.cz
3 http://pages.cs.wisc.edu/˜anhai/wisc-si-archive/domains/
courses.html

257

A Criteria for Selecting Background Knowledge
for Domain Specific Semantic Matching

Jetendr Shamdasani, Peter Bloodsworth, Tamas Hauer, Andrew Branson,
Mohammed Odeh, and Richard McClatchey

CCCS, UWE, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK
firstname.lastname@cern.ch

Abstract. Ontology matching is a problem that is rapidly reaching ma-
turity especially in the context of the emergent semantic web. Semantic
matching is the detection of specific correspondences between concepts
in two ontologies including but not limited to ≡, and �. Many seman-
tic matching approaches today use some form of background knowledge
to aid them in discovering correspondences. This paper presents criteria
that can be used when selecting a background knowledge source.

1 Introduction

The selection of a correct resource of the semantic matching process is a crucial
step since it seeds the final reasoning step in the semantic matching process.
Many of these resources are selected manually for example Aleksovski et al used
the FMA as a source of background knowledge [1]. The SMatch approach uses
WordNet [2] as its background resource. This poster paper deals with the manual
selection of a resource for the medical domain. Previously in [3] it was shown that
using a resource that is too general may yield in ambiguous alignment results. To
aid in background knowledge selection criteria have been developed. The next
section will detail the criteria for selection of such a resource.

2 Selection Criteria for Background Knowledge

The selection criteria have been defined to be the following: coverage, se-
mantics, granularity and meta-information. Examples from the domain of
medicine are used to describe and justify the criteria accordingly.

1. Coverage This criterion concerns insuring that sufficient concepts from the
medical domain are covered to enable the semantic matching process. For
example many medical ontologies today do not cover a single domain or
may slightly overlap with another domain. For example, Galen covers the
areas of Anatomy with some Pathological information. By using a source of
background knowledge which only covers a single subdomain of medicine,
some information may be missed. Therefore, the background resource needs
to be able to cover as many terms from the medical domain as possible.

258

2. Semantics are required for the derivation of subsumption and equivalence
correspondences between ontologies and to create the background theory for
the reasoning process. This background theory is present in most semantic
matching methods that are available today. For example let us consider two
terms search as “Heart” and “Aorta”, these two terms have very little in
common lexically. Here a source of background knowledge is useful in that
it states the relationships between these terms explicitly which is that Heart
is more general than Aorta. Therefore relationships such as this need to be
explicitly stated in a source of background knowledge.

3. Granularity is the availability of terms to a high-level of detail. In compar-
ison to the previous requirement of coverage, granularity is the availability
of terms in a background resource which are lower in the semantic hierar-
chy. Granularity therefore can be thought of as a detailed description of a
domain. Therefore to seed the semantic matching process, terms need to be
available in a background resource at a high-level of detail. In the medical
domain this is especially an issue since many medical terms are related to
each other, but they may also have very little lexical information in common.
Although the reasoning process may be able to detect a mapping by infer-
ence, the relationship from a background resource is given a higher weighting
because it is viewed as a more trusted source.

4. Meta-information refers to the presence of meta-data within the back-
ground knowledge source. For anchoring purposes this can provide a mean-
ingful string to concept mapping. Meta-data needs to be present, either hav-
ing been derived algorithmically or stated explicitly for this purpose. This is
so that information can be extracted from the ontology using it.

3 Conclusion

In this paper the importance of background knowledge in the semantic matching
process was stated. It was suggested that background knowledge from a trusted
source would be an asset to the semantic matching process, since it seeds the final
reasoning process with initial relationships. Criteria were defined for the selection
of a background resource for semantic matching. These criteria were justified to
be coverage, semantics, granularity and meta-information. These criteria have
already been utilised in the creation of the MedMatch algorithm [3].

References

1. Z. Aleksovski et al. Exploiting the structure of background knowledge used in
ontology matching. In Ontology Matching Workshop (ISWC-2006), 2006.

2. F. Giunchiglia et al. Semantic Matching: Algorithms and Implementation. Journal
on Data Semantics, 9:1–38, 2007.

3. J. Shamdasani. Semantic Matching for the Medical Domain. PhD thesis, University
of the West of England, December 2010.

259

Towards a Framework for Ontology Mapping

based on Description Logic Reasoning.

Quentin Reul, Jeff Z. Pan, and Derek Sleeman

University of Aberdeen, Aberdeen AB24 3F , UK

Abstract. In this paper, we describe the Knowledge Organisation Sys-
tem Implicit Mapping (KOSIMap) framework, which differs from exist-
ing ontology mapping approaches by using description logic reasoning
(i) to extract implicit information for every entity, and (ii) to remove
inappropriate mappings from an alignment.

1 KOSIMap Framework

Ontology matching has been recognised as a means to achieve semantic inter-
operability by resolving lexical and structural heterogeneities between two on-
tologies. Given two ontologies O1 and O2, the task of mapping one ontology to
another is that of finding an entity in O1 that matches an entity in O2 based on
their intended meanings. As OWL ontologies are normally used with an inference
engine, it is important to consider inference and reasoning as part of the ontol-
ogy mapping process [2]. However, most approaches have to date disregarded
the role of description logic reasoning because of efficiency reasons (e.g. [1]).
While these approaches generally deliver good results, they are limited to the
asserted axioms contained in the input ontologies. Therefore, the extraction of
logical consequences embedded in the input ontologies may result in alignments
containing less erroneous mappings.

In this paper, we describe the Knowledge Organisation System Implicit Map-
ping (KOSIMap) framework [3], which respects the uniform comparison principle
[1] by restricting each comparison to entities (i.e. classes and properties) in the
same category. KOSIMap consists of three main steps; namely Pre-Processing,
Matcher Execution, and Alignment Extraction. The pre-processing step extracts
logical consequences embedded in both ontologies using a DL reasoner (e.g. Pellet
[4]). Note that we have enhanced its functionality by developing rules to extract
further information about classes and properties. For example, we have devised
several rules to extract the properties associated with a class. The pre-processing
step also applies language-based techniques (e.g. tokenization, lemmatization) to
lexical descriptions (i.e. labels). Next, KOSIMap applies three different types of
matchers for every pair of entities (see 2). The final step extracts an alignment
between two ontologies and consists of two phases. The first phase extracts a
pre-alignment from the similarity matrix, by selecting the maximum similarity
score above a threshold ζ for every row in the matrix. This pre-alignment is then
passed through a refinement process, which eliminates erroneous mappings from

260

the set of correspondences. This refinement approach differs from existing ones
[5] by using the implicit knowledge extracted from the axioms in the first step.

2 Mapping Strategies

KOSIMap computes the lexical and structural similarity between pairs of entities
based on three different matchers:

1. The string-based matcher assumes that domain experts share a common
vocabulary to express the labels of entities. In KOSIMap, we compute the
similarity between pairs of labels based on the SimMetrics library1.

2. The property-based matcher first computes the overlap between two proper-
ties based on the set of properties (e.g. inferred super-properties) associated
with them. It then calculates the overlap between two classes based on their
respective sets of properties (e.g. inferred domains).

3. The class-based matcher first computes the similarity between two classes
based on the set of classes (e.g. inferred super-classes) associated with them.
It then calculates overlap between sets of binary relations2 for each pair of
object properties.

The property-based and class-based matchers rely on the degree of commonality

coefficient to compute the overlap between two sets Ss and St. The degree of
commonality coefficient is defined is defined as the sum of the maximum simi-
larity for each element in source set (i.e. Ss). The aggregated scores from these
matchers are then stored in a similarity matrix.

Acknowledgements: The IPAS project is co-funded by the Technology Strat-
egy Board’s Collaborative Research and Development programme and Rolls-
Royce (project No. TP/2/IC/6/I/10292).

References

1. J. Eu enat, D. Loup, M. Tou ani, and P. altchev. Ontology alignment with OLA.
In Proc. of the 3rd Evaluation of Ontology-based Tools Workshop (EON2004), 2004.

2. . F. oy. Semantic Integration: A Survey Of Ontology-Based Approaches. SIG-
MOD Record, 33(4):6 –70, 2004.

3. Q. eul and J. Pan. KOSIMap: Use of Description Logic easoning to Align et-
erogeneous Ontologies. In Proc. of the 23rd International Workshop on Description
Logics (DL 2010), 2010.

4. E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Kat . Pellet: A practical
OWL-DL reasoner. Web Semantics: Science, Services and Agents on the World
Wide Web, (2): 1– 3, June 2007.

. P. Wang and B. u. Debugging ontology mappings: A static approach. Computing
and Informatics, 22:1001–101 , 2003.

1 http://sourceforge.net/projects/simmetrics/
2 The set of binary relation of an object property t, denoted R(t), is a collection of
ordered pairs of classes extracted from axioms in an ontology.

261

A Structuralistic Semantics for
Ontology Alignments

Christian Schäufler1, Clemens Beckstein1,2, and Stefan Artmann2

1 Artificial Intelligence Group, University of Jena, Germany
2 Frege Centre for Structural Sciences, University of Jena, Germany

1 Introduction

The definition of a formalism for ontology alignments is straightforward. Prob-
lems start when one attempts to define what they mean. The existing semantics
[3] all depend on certain preconditions for the alignments to make sense — e.g.,
that the ontology domains are empirically given, that the involved ontologies are
compatible, and that either the domains are identical or, there is a practicable
way for specifying a domain relation. Those preconditions, of course, are not
always empirically justifiable. With scientific structuralism [1] another approach
for interpreting inter-theoretical relations has been put forward. With the help
of this framework it is possible to give an exact description of the formal context
in which the distributed alignment semantics works.

2 Structuralistic Interpretation of Alignments

A structuralistic interpretation of an ontology O (see [2]) need not consist of just
one undifferentiated domain D, but may consist of several domains D1, . . . , Dn.
Structuralists call the factors of such a domain structure (domain) types. The
domain terms D1, . . . , Dn are given by a set of disjunct primitive concepts that,
according to the ontological axioms of O, are just below the top concept � of the
ontology. In analogy to the distinction between reduced and reducing theory we
assign roles to the ontologies that are involved in an alignment. Alignments in
our view always assume a specific flow of information — from a foreign knowl-
edge base W over O to the initial inquirer with a commitment to O′. Domain
inclusions relate the domains of the ontologies to be aligned. Despite the do-
main relation r in contextualized distributed semantics, a domain inclusion sets
whole (echelons of) domains in relation. An echelon set on some base sets is a
set resulting from arbitrary product or power-set-operations of the base sets or
echelon sets (of the base sets).

Let m and m′ be two models that satisfy a correspondence eR e′. Because the
domains D1, . . . , Dn match the top-level primitive concepts of ontology O, the
extension of an ontology element e in O is a subset of exactly one domainDi (or a
pair of domains if e is a role) and e′ that of exactly one D′

j . For an interpretation
of the correspondence, both ontology elements have to be interpreted in the same
domain. W.l.o.g. O′ is the querying ontology, so the interpretation of both e and

262

e′ should take place in D′
j . A domain inclusion between Di and D′

j is either a
domain inclusion Di ⊆ S where S is an echelon-set that actually uses the base
set D′

j or D′
j ⊆ S′ where S′ is an echelon-set that actually uses the base set Di.

The following disjoint cases can be distinguished:
1. Di ⊆ D′

j: The extension of e is a subset of D′
j . e can be interpreted in the

same domain D′
j as e′.

2. D′
j ⊆ Di: To assure an interpretation in simple distributed semantics, it

is necessary that in addition the domain inclusion em ⊆ D′
j holds.

3. Di ⊆ S with S �= D′
j: An interpretation in domain D′

j is possible if the
elements of Di can be ontological projected to D′

j : p(Di) ⊆ D′
j , where p is that

mapping that projects S to D′
j .

4. D′
j ⊆ S′ with S �= Di: The extension of e′ consists of complex individuals

from the point of view of the queried ontology O. Elements of e are missing
some properties in order to be interpretable as elements of D′

j . An alignment
containing such a domain inclusion does not have a model.

5. Otherwise:Di and D′
j are ontologically incompatible. Even if some indi-

viduals do appear in both domains, there is no general rule holding for every
individual. Even by introducing additional properties, neither D′

j can be recon-
structed from Di nor the other way around. For incompatible domains an inter-
pretation of the correspondence is therefore only possible wrt. the intersection
Di ∩D′

j , i.e. if the domain inclusions em ⊆ D′
j and em

′ ⊆ Di hold.
Each of the cases specifies a (maybe empty or unsatisfiable) additional pre-

condition in the form of domain inclusions that have to be fulfilled for the align-
ment to have a model in the structuralistic sense. And whenever these alignment
specific domain inclusions hold, the corresponding case can be reduced to an in-
terpretation like that of the simple distributed semantics.

3 Conclusion

Structuralism points the way to a new semantics for ontology alignments that
rests on structured domains, a distinguished direction of the alignment, and
compatibility constraints in the form of term-by-term domain inclusions. Domain
inclusions are much simpler to specify in practice than domain relations as they
are used in the contextualized distributed semantics: they are expressed wrt. a
given set of domain terms and not wrt. individuals of an empirical domain and
many of them result as a byproduct of the structuralistic alignment process.

References

1. Balzer, W., Moulines, C.U., Sneed, J.D.: An architectonic for science - the struc-
turalist program. Reidel, Dordrecht (1987)

2. Schäufler, C., Artmann, S., Beckstein, C.: A structuralistic approach to ontologies.
In: KI 2009: Advances in Artificial Intelligence. Lecture Notes in Computer Science,
vol. 5803, pp. 363–370. Springer, Berlin / Heidelberg (2009)

3. Zimmermann, A., Euzenat, J.: Three semantics for distributed systems and their
relations with alignment composition. In: The Semantic Web - ISWC 2006. Lecture
Notes in Computer Science, vol. 4273, pp. 16–29. Springer Berlin / Heidelberg (2006)

263

A Similarity Measure based on Semantic,
Terminological and Linguistic Information

Nitish Aggarwal∗, Tobias Wunner∗◦, Mihael Arcan∗,
Paul Buitelaar∗, Seán O’Riain◦

∗Unit for Natural Language Processing and ◦eBusiness Unit
Digital Enterprise Research Institute,
National University of Ireland, Galway

firstname.lastname@deri.org

Introduction

The fundamental task of ontology matching is based on measuring the
similarity between two ontology concepts [1]. However, we argue that
a deeper semantic, terminological and linguistic analysis of specialized
domain vocabularies is needed in order to establish a more sophisticated
similarity measure that caters for the specific characteristics of this data.
In particular we propose ’STL’, a novel similarity measure that takes
semantic, terminological and linguistic variation into account.

The STL Similarity

We base our approach on the three-faceted STL ontology enrichment
process introduced in [3]. We calculate similarity according to semantic,
terminological and linguistic variation and then take a linear combination
by using linear regression, called STL similarity, which we describe as
follows:

Semantic similarity (simS) is calculated based on semantic (taxo-
nomic or ontological) structure. For our purposes we used a recently pro-
posed semantic similarity measure proposed by Pirro Sim [2], which uses
intrinsic information content, i.e. the information content of a concept
defined by the number of its subconcepts.

Terminological similarity (simT) is defined by maximal subterm
overlap, i.e. we calculate simT between two concepts c1 and c2 as the
number of subterms ti in a termbase that can be matched on the labels
of c1 and c2. A term ti is said to match on a concept when no other
longer term tj can be matched on the same concept (label). To calcu-
late simT we use monolingual as well as multilingual termbases as the
latter reflect terminological similarities that may be available in one lan-
guage but not in others, e.g. there is no terminological similarity between

264

the English terms ”Property Plant and Equipment” and ”Tangible Fixed
Asset”, whereas in German these concepts are actually identical on the
terminological level (they both translate into ”Sachanlagen”).

Linguistic similarity (simL) is defined as the Dice coefficient applied
on the head&modifier syntactical arguments of two terms, i.e., the ratio
of common modifiers to all modifiers of two concepts. For instance the
concepts ”Financial Income” and ”Net Financial Income” have 3 modi-
fiers ”financial” ”net” and ”net financial”, whereby only ”financial” is a
common modifier.
Putting it all together we define STL similarity as a linear combination
of the sub-measures where the weights wS,T,L are their contributions on
the data set:

simS,T,L = wS ∗ simS + wT ∗ simT + wL ∗ simL + constant

We evaluated our approach on a data set of 59 financial term pairs, drawn
from the xEBR (European Business Registry) vocabulary, that were an-
notated by four human annotators. Table 1 shows the correlations ρ of
all measures on the data set and that STL outperforms all of its S,T and
L contributions.

Measure ρ Type Measure ρ Type Measure ρ Type
PathLength 0.16 S UnigMulti 0.72 T SubtermMulti 0.75 T
Wu−Palmer 0.18 S BigMono 0.53 T Lemmatized 0.70 L
Pirro Sim 0.20 S Bi Multi 0.54 T Head&Mod 0.51 L

UnigramMono 0.72 T SubtermMono 0.74 T STL 0.78 S,T,L

Table 1. Correlation of STL similarity measures with human evaluator scores

References

1. Euzenat, J., Meilicke, C., Stuckenschmidt, H., Shvaiko, P., dos Santos, C.T.: Ontol-
ogy alignment evaluation initiative: Six years of experience. J. Data Semantics 15,
158–192 (2011)

2. Pirró, G.: A semantic similarity metric combining features and intrinsic information
content. Data Knowl. Eng. 68, 1289–1308 (November 2009)

3. Wunner, T., Buitelaar, P., O’Riain, S.: Semantic, terminological and linguistic in-
terpretation of xbrl. In: In Reuse and Adaptation of Ontologies and Terminologies
Workshop at 17th EKAW (2010)

Acknowledgements

This work is supported in part by the European Union under Grant No.
248458 for the Monnet project and by the Science Foundation Ireland
under Grant No. SFI/08/CE/I1380 (Lion-2).

265

Folksodriven Structure Network

Massimiliano Dal Mas

me @ maxdalmas.com

Abstract. Nowadays folksonomy is used as a system derived from user-generated electronic tags or keywords that
annotate and describe online content. But it is not a classification system as an ontology. To consider it as a
classification system it would be necessary to share a representation of contexts by all the users. This paper is
proposing the use of folksonomies and network theory to devise a new concept: a “Folksodriven Structure
Network” to represent folksonomies. This paper proposed and analyzed the network structure of Folksodriven tags
thought as folsksonomy tags suggestions for the user on a dataset built on chosen websites. It is observed that the
Folksodriven Network has relative low path lengths checking it with classic networking measures (clustering
coefficient). Experiment result shows it can facilitate serendipitous discovery of content among users. Neat
examples and clear formulas can show how a “Folksodriven Structure Network” can be used to tackle ontology
mapping challenges.

Keywords. Ontology, Folksonomy, Natural Language Processing, Information filtering, Metadata, Semantic
networks, Scale-free Network, Reasoning, Algorithms, Experimentation, Theory

1 Introduction
The communicative form of the World Wide Web is based on user-centric publishing and knowledge management
platforms as sharing systems for social and collaborative matching like: Wikis, Blogs, Facebook, etc… Ontology
defines a common set of sharing concepts [1], but unfortunately ontologies are not wide spread at the moment. While
Folksonomy is said to provide a democratic tagging system that reflects the opinions of the general public, but it is
not a classification system and it is difficult to make sense of [2]. A representation of contexts should be share by all
the users. The goal of this work is to help the users to choose proper tags thanks to a “Folksodriven Structure
Network” intended as a dynamical driven system of folksonomy that could evolve during the time. In this work the
main network characteristics was analyzed by a group of articles from a chosen websites and analyzed according to
the Natural Language Processing. The data structures extracted is represented on folksonomy tags that are correlated
with the source and the relative time exposition - measure of the time of its disposal. Considering those we define a
tag structure called Folksodriven, and adapt classical network measures to them.
An extension of this paper is available on Arxiv (http://arxiv.org/abs/1109.3138).

2 Folksodriven Notation

A Folksodriven will be considered as a tuple (1) defined by finite sets composed by:

Formal Context (C) is a triple C:=(T, D, I) where the objects T and the attributes D are sets of data and I is a
relation between T and D [3] – see 3 (Folksodriven Data Set);
Time Exposition (E) is the clickthrough rate (CTR) as the number of clicks on a Resource (R) divided by the
number of times that the Resource (R) is displayed (impressions);
Resource (R) is represented by the uri of the webpage that the user wants to correlate to a chosen tag;
X is defined by the relation X = C × E × R in a Minkowski vector space [4] delimited by the vectors C, E and R.

3 Folksodriven Data Set
The data set has been built from articles taken from web sites news for a period of one month, because they are
frequently updated. Tokens will be extracted from the title (T) and the description (D) of the articles. Those tokens
compose a data set of words proposed to the users as Tags that he/she can add to a document - the articles on the
web sites - to describe it. Chunking was used in this work as a starting point but it is at a very low semantic level.
In this paper the notion context is used in the sense of formal context as used in the ontological sense defined by the
Formal Concept Analysis (FCA) - a branch of Applied Mathematics [5] - for the dynamic corpus on chunking
operation. A set of formal contexts C is defined by (2) considering: T as a set of title tags, D as a set of description
tags, I as a set of incidence relations of context defined by the frequency of occurrence of the relation between T and
D as depicted in (3). The tag T derived by the title was considered as a facet described by the tag D derived by the
description. On (2) the set of incidence relations of context I is defined by the matching between T and D tags by
relation (3) allowing multiple associations among D tags and the faceted context defined by every T tag.
Multiple matching was disambiguated by updating a Jaccard similarity coefficient [6] associated with the incidence
relation of context. In this way a selected number of chunks, defined according to the Formal Context (C), are
proposed to the user as folksonomy tags for the correlated uri Resource (R). So the “Folksodriven Data Set” can
“drive” the user on the choice of a correct folksonomy tag.

(1) : , , ,C E R XFD

(4) : r r
r

r r

C i E i
K i

C i E i(2) : , ,n n n nC T D I (3) I T D

266

Figure 1: Set of data compared with the corresponding
Random graphs for Folksodriven Clustering Coefficient.
It is depicted how the characteristic path length takes
quite similar values for the corresponding Random
graph.

Figure 2: Clustering coefficient is depicted in the space
delimited by C, E, and R. For larger time exposition E
the Clustering Coefficients become drastically smaller, as
expected for the E and C 0 limit.

4 Folksodriven as a Network
The Folksodriven tags can be depicted by network patterns in which nodes are Folksodriven tags and links are
semantic acquaintance relationships between them according to the SUMO (http://www.ontologyportal.org) formal
ontology that has been mapped to the WordNet lexicon (http://wordnet.princeton.edu). It is easy to see that
Folksodriven tags tend to form groups (as small groups in which tags are close related to each one) and Folksodriven
tags of a group also have a few acquaintance relationships to Folksodriven tags outside that group. Folksodriven tags
may be considered the hubs responsible for making such network a “Scale-free Network”. In a Scale-free Network
most nodes of a graph are not neighbors of one another but can be reached from every other by a small number of
hops or steps, considering the mutual acquaintance of Folksodriven tags [7, 8].
An important characteristic of Scale-free Networks is the Clustering Coefficient distribution, which decreases as the
node degree increases following a power law [8]. We consider an exclusive vs. an overlapping clustering as the ratio
between the maximum and the minimum value connectedness of the neighbours of a Folksodriven tag to the uri
resource r considered (4).

5 Experiments
A test network model was realized in a simulated environment to check the Scale-free Network structure of the
Folksodriven tags. The Scale-free Network was compared with a random graph generated adding tags one at a time
joining to a fixed number of starting tags, that are chosen with probability proportional to the graph degree - model
developed by Barabasi and Albert [8]. All data were obtained from averages over 100 identical network realizations
with a sample of 400 nodes taken randomly from each graph performing twenty runs to ensure consistency. The
Clustering Coefficient has remained almost constant at about 2.5 while the number of nodes has grown about twenty
during the observation period. On average, every Formal Context (C), Time Exposition (T) and Resource (R) defined
on the original data set can be reached within 2.5 mouse clicks from any given page. This attest the context of
“serendipitous discovery” of contents in the folksonomy community [9].

Massimiliano Dal Mas is an engineer at the Web Services division of the Telecom Italia Group, Italy. His interests include: user
interfaces and visualization for information retrieval, automated Web interface evaluation and text analysis, empirical computational
linguistics, and text data mining. He received BA, MS degrees in Computer Science Engineering from the Politecnico di Milano,
Italy. He won the thirteenth edition 2008 of the CEI Award for the best degree thesis with a dissertation on "Semantic technologies
for industrial purposes" (Supervisor Prof. M. Colombetti).

References
[1] M. Dal Mas (2010). Ontology Temporal Evolution for Multi-Entity Bayesian Networks under Exogenous

 and Endogenous Semantic, CORR - Arxiv (http://arxiv.org/abs/1009.2084)
[2] E. K. Jacob (2004). Classification and categorization: a difference that makes a difference
[3] G. Stumme (1999). Acquiring expert knowledge for the design of conceptual information systems, in Proc.

11 th. European Workshop on Knowledge Acquisition”, Dagstuhl Castle, 1999, pp. 275-290
[4] F. Catoni, D. Boccaletti, R. Cannata (2008). Mathematics of Minkowski Space, Birkhäuser, Basel.
[5] K. Shen, L. Wu (2005). Folksonomy as a Complex Network, CORR
[6] T. Pang-Ning, M. Steinbach, V. Kumar (2005). Introduction to Data Mining, Boston: Addison-Wesley
[7] C. Cattuto, C. Schmitz, A. Baldassarri, V. D.P. Servedio, V. Loreto, A. Hotho, M. Grahl, G. Summe.

(2007). Network properties of folksonomies Proceedings of the WWW2007
[8] A. Vazquez, J Oliveira, Z. Dezso, K Goh, I. Kondor, A. Barabási (2006). Modeling bursts and heavy tails

in human dynamics. Physical Review E 73(3), 2006
[9] M. Dal Mas (2011). Folksodriven Structure Network, CORR - Arxiv (http://arxiv.org/abs/1109.3138)

267

