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Abstract. In this report, we present the results ofOptima in the Ontology Align-
ment Evaluation Initiative (OAEI) 2011. We participate in three tracks of the
campaign offered in SEALS platform: Benchmark, Conferenceand Anatomy.
We review the iterative ontology alignment approach adopted by Optima and its
results for the Benchmark and Conference tracks.

1 Presentation of the system

The increasing usefulness of the semantic Web is in part, dueto an increase in the num-
ber of ontologies on the Web. Applications such as Web service compositions and se-
mantic Web search, which utilizes these ontologies demand away to align these ontolo-
gies. Nowadays numerous ontology alignment tools exist. They can be broadly identi-
fied using, 1) the level of human intervention needed; 2) the amount of prior training
data needed; and 3) the facets of ontologies used and the way they are utilized. We
present a fully automatic, general purpose ontology alignment tool calledOptima [2],
which does not need any prior training. Like many other tools, Optima utilizes both
lexical and structural facets of ontologies to arrive at an alignment. However, it primar-
ily differs in a different aspect – being iterative – from most other alignment tools that
presently exists. Common approaches build an alignment in asingle pass using a vari-
ety of heuristics and similarity measures. In contrast to single pass approachesOptima
continues to improve an alignment in an iterative fashion.Optima formulates the prob-
lem of inferring a match between two ontologies as a maximum likelihood problem, and
solves it using the technique of expectation-maximization(EM). Specifically, it adopts
directed graphs as its model for ontology schemas and uses a generalized version of
EM to arrive at a map between the nodes of the graphs. At the endof each iteration,
Optima derives a possibly inexact match. Inexact matching is the process of finding a
best possible match between the two graphs when exact matching is not possible or is
computationally difficult.

We describe briefly the formal model of an ontology as utilized byOptima and the
EM-based algorithm adopted byOptima in the next two subsections.

1.1 Ontology Model

Optima adopts the common directed labeled graph model for ontologyschemas where
the nodes of the graphs are the concepts (named classes in RDFS and OWL) and the
labeled edges are the relationships (properties) between the classes. Contemporary lan-
guages for describing ontologies such as RDFS and OWL also allow the ontologies



to be modeled as directed labeled graphs [3]. BecauseOptima focuses on identify-
ing a many-one map, let the graph with the larger number of nodes be labeled as
the data graph while the other as themodel. Formally, the data graph is modeled as:
Od = 〈Vd, Ed, Ld〉, whereVd is the set of labeled vertices representing the concepts,
Ed is the set of edges representing the relations which is a set of ordered two subsets of
Vd, andLd : Ed → ∆ where∆ is a set of labels, gives the edge labels. Analogously,
Om = 〈Vm, Em, Lm〉 is the model graph against which the data graph is matched. Let
M be the standard|Vd|× |Vm| matrix that represents the match between the two graphs:
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(1)

Each assignment variable inM is,

maα =

{

1 if f(xa) = yα : xa ∈ Vd, yα ∈ Vm

0 otherwise

wheref(·) represents the correspondence between the two ontology graphs. Conse-
quently,M is a binary matrix representing the match.

1.2 EM-based Algorithm

Optima views the mapping between two ontologies as the problem of, the concepts of
source ontology (data graph) emitting the concepts of target ontology (model graph)
with an underlying Bernoulli distribution. It formulates this model as a maximum like-
lihood problem and solves it using the popular expectation maximization algorithm
(EM) developed by Dempster et al. [1] to find the maximum likelihood estimate of
the alignment from observed data instances in the presence of missing correspondence.
It iteratively searches for the match matrix,M∗ , that gives the maximum conditional
probability of the data graph,Od, given the model graph,Om, and the match assign-
ments. Formally,

M∗ = argmax
M∈M

Pr(Od|Om,M)

whereM is the set of all match matrices. While there may be as many as2|Vd||Vm|

possible alignments,Optima shrinks this space by considering many-one maps only.
In the equation above,Optima uses heuristics to guide its search space. Section 1.4
explains the heuristics used in Optima.

Pr (Od|Om,M) =
∏

xa∈Vd

∑

yα∈Vm

Pr(xa|yα,M)πα (2)



whereπα = Pr(yα|M) is the prior probability of the model graph vertex,yα, given
the match matrix,M . The correspondence,f , is hidden from us. The matrixM may be
seen as a mixture model by viewing each assignment variable,maα, as a model.

This modeling does not have an inherent way of finding mappingbetween edges.
Though it is viable forOptima to map the bipartition transformation of the provided
graph it avoids it for the excessive complexity involved. Hence,Optima additionally
allows matching the concept graph and labeled relationships as separate but dependent
tasks.

E Step Optima formulates a conditional expectation of the log likelihoodwith respect
to the hidden variables given the data graph and a guess of thematch matrix,Mn at
some iteration n, in order to find the most likely match matrix:

Q(Mn+1|Mn) = E
[

logPr(xa|yα,M
n+1)πn+1

α |xa,M
n
]

=
∑|Vd|

a=1

∑|Vm|
α=1 Pr(yα|xa,M

n) logPr(xa|yα,M
n+1)πn+1

α

(3)

Optima derives the probability that the data graph node,xa, is in correspondence
with the model graph node,yα, under the match matrix of iterationn , Mn as ,

Pr(xa|yα,M
n) =

[

1
Pr(xa|yα)

]|Vd||Vm|−1
∏|Vd|

b=1

∏|Vm|
β=1 Pr(xa|yα,m

n
bβ) (4)

Here, it is assumed that the individual models,mn
bβ , are independent of each other.

Optima extends the structural graph matching initially proposed by Luo and Han-
cock [5] with label similarity measures to derive the probability that xa is in correspon-
dence withyα given the assignment model,mbβ .

Pr
(

xa|yα,m
n
bβ

)

= (1− Pǫ(xa, yα))
EC

Pǫ(xa, yα)
1−EC (5)

where the correspondence error,Pǫ : Vd × Vm → [0, 1], is defined as,

Pǫ(xa, yα) = Pe(|Vd|, |Vm|)− δ × Ps(xa, yα) (6)

EC denotes the edge consistency between the two graphs, which is defined as,

EC =

{

1 〈xa, xb〉 ∈ Ed ∧ 〈yα, yβ〉 ∈ Em ∧mbβ = 1
0 otherwise

The correspondence error,Pǫ, is based on the structural error,Pe (|Vd|, |Vm|) , a func-
tion based on the sizes of the graphs, and the similarity of the node labels,Ps(xa, yα).
Parameterδ ∈ [0, 1] controls how much weight is given to the similarity between entity
labels. The structural error is defined as,

Pe(|Vd|, |Vm|) = 2
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∣

∣

Optima employs the integrated similarity mentioned in Section 1.3to evaluate the
lexical similarityPs(xa, yα).



M Step The maximization step chooses the match matrix,Mn+1
∗ , that maximizes

Q(Mn+1|Mn), as shown in Eq. 3. This mapping matrix becomes the input for the
expectation step of the next iteration.Optima adopts the generalized EM, which re-
laxes maximization by settling for a mixture model,Mn+1

∗ , that simply improves the Q
values.

Mn+1
∗ = Mn+1 ∈ M : Q(Mn+1|Mn) ≥ Q(Mn|Mn) (7)

The prior,πn+1
α , for each model graph node,α, is updated as:

πn+1
α =

1

|Vd|

|Vd|
∑

α=1

Pr (yα|xa,M
n) (8)

The updatedπn+1
α will be used in the next iteration of the EM.

1.3 Specific Techniques Used

We configuredOptima slightly different for OAEI from its default configuration.

Integrated Similarity Measure Concept or word similarity measures may be broadly
categorized into syntactic and semantic. Syntactic similarity between concepts is en-
tirely based on the string similarity between the concepts’names, labels and other as-
sociated text. Semantic similarity measures attempt to utilize the meaning behind the
concept names to ascertain the similarity of the concepts.Optima utilizes both syntactic
and semantic similarities.
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Fig. 1. Integrated similarity - 3D sigmoid
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Fig. 3. Our integrated similarity measure as a function of the WN-based semantic similarity
(Sem) and Smith-Waterman based syntactic similarity (Syn). Notice that the value is lower if
semantic similarity is low but syntactic is high compared tovice versa.

There is no standard way of integrating WN-based similaritywith syntactic mea-
sures. We employs a technique from our previous work in [8] tointegrate similarity



measures. We define a normalized 3D function that maps a givenpair of semantic and
syntactic similarity to an integrated value. In order to generate this function, we observe
that labels that are syntactically similar (such ascat andbat) may have different mean-
ings. Because we wish to meaningfully map entities, semantic similarity takes prece-
dence over syntactic. Consequently, high syntactic but lowsemantic similarity results
in a lower integrated similarity value in comparison to low syntactic but high seman-
tic similarity. We model such an integrated similarity measure as shown in Fig. 3 and
give the function in Eq. 9. Our integrated similarity function is similar to a 3D sigmoid
restricted to the quadrant where the semantic and syntacticsimilarities range from 0 to
1. One difference from the exact sigmoid is due to the specificproperty it must have
because semantic similarity takes precedence over syntactic. We used Lin [4] similarity
measure and gloss-based cosine similarity measure to evaluate the semantic similarity.
On the other hand we used Smith-Waterman [7] technique for ascertaining the syntactic
similarity between concept and relationship names.

Int(xa, yα) = γ
1

1 + et·r−c(Sem)
(9)

Here,γ is a normalization constant;r =
√

Syn2 + Sem2, which produces the 3D sig-
moid about the origin;t is a scaling factor andc(Sem) is a function of the semantic

similarity as shown below:c(Sem) =
2

1 + et
′·Sem(xa,yα)−c′

wheret′ is the scaling fac-

tor andc′ is the translation factor, if needed. The specific function in Fig. 3 is obtained
whent = 4, t′ = 3.5, andc′ = 2.

1.4 Adaptations made for the evaluation

The iterative alignment algorithm requires a seed map. Thisis an initial list of mappings
between concepts often provided to iterative algorithms. While the seed map could
be generated manually,Optima additionally utilizes a simple technique of mapping
nodes across the ontologies whose labels are syntacticallysimilar. Candidate alignments
are generated using simple but intuitive heuristics. For example, given each previously
mapped node pair, their parents are considered for a match. Additionally, their sibling
nodes could be considered. Analogous to the seed map, node pairs among the parents
that are sufficiently similar are matched. Different potential alignments are generated
based on how many parent nodes are matched and whether siblings are matched as
well. These candidate alignments are considered during each iteration ofOptima. More
details aboutOptima are available in [2].

We also relaxed theOptima ’s many-to-one constrain in candidate alignment gen-
eration to generate many-to-many alignments for OAEI.

1.5 Link to the system and parameters file

The Optima can be found athttp://thinc.cs.uga.edu/thinclabwiki/
index.php/Automated_Alignment_of_Ontologies.



1.6 Link to the set of provided alignments (in align format)

The OAEI 2011 results can be found athttp://thinc.cs.uga.edu/thinclabwiki/
index.php/OAEI_2011.

2 Results

As stated above,Optima participated in three tracks in OAEI 2011. However for this
report preliminary results of two tracks are presented and the related analysis are re-
ported.

2.1 Benchmark

The average precision and recall ofOptima are depicted in 1.

Precision Recall
100 0.90 1.0
200 0.79 0.73
300 0.74 0.79

Table 1.Recall and Precision of Optima on benchmark track

2.2 Conferences

Optima attains an average recall of 0.60 and an average precision of 0.26 in conference
track. See Appendix A for details.

2.3 Anatomy

We could not produce the results for anatomy track usingOptima within the provided
time. SinceOptima utilizes an iterative algorithm and anatomy track has very large
ontologies, we were unable to complete aligning these ontologies.

3 General comments

The primary challenge forOptima is to align very large ontologies. Due to its iterative
nature and inherent computational complexity of evaluating the Equation 3,Optima
takes considerably longer time to align larger ontologies.However it is able to align
small to medium ontologies competitively.

We also found that computing semantic similarity measures for word phrases and
compound words is difficult. Tokenizing these correctly andlocating individual glosses
in WN is often challenging1 but crucial for a better performance.

1 The conceptMeta-Reviewshould be tokenized into two words(Meta, Review)while Regis-
tration Non–Memberneeds to be tokenized into two words(Registration, NonMember)but



4 Conclusion

In this report we present the results ofOptima in OAEI 2011 campaign. We participate
in three tracks including Benchmark, Conference and Anatomy. We reviewed the iter-
ative algorithmOptima adopts to arrive at an inexact match between two ontologies.
Though we have been using OAEI datasets for various experiments and fine tuning of
Optima , this is the first time we participate officially in an OAEI campaign. Due to its
iterative natureOptima takes substantially longer time to align large ontologies.As a
result we are unable to provide our preliminary results of anatomy track for this report.
In future, we would like to participate in more tracks. Especially we hope to leverage
Optima to be able to efficiently solve instance matching and large ontology matching
challenges.
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should not be tokenized into three words(Registration, Non, Member). The hyphen (–) is a de-
limiter in the former concept but should be just ignored in the later concept. This tokenization
is demanded by WN matchers sinceMetaReviewdoes not exist in WN but the wordNonMem-
ber exists in WN.



A Optima ’s performance in conference track

The precision and recall for individual test cases in conference track is shown tn the
table 2 below.

Ontology pair PrecisionRecall
cmt-confOf 0.35 0.50
cmt-conference 0.18 0.44
cmt-edas 0.24 0.69
cmt-ekaw 0.15 0.45
cmt-iasted 0.33 1.00
cmt-sigkdd 0.39 0.75
confOf-edas 0.27 0.68
confOf-ekaw 0.30 0.55
confOf-iasted 0.33 0.67
confOf-sigkdd 0.26 0.71
conference-confOf 0.32 0.67
conference-edas 0.17 0.53
conference-ekaw 0.16 0.40
conference-iasted 0.15 0.29
conference-sigkdd 0.34 0.67
edas-ekaw 0.21 0.52
edas-iasted 0.35 0.47
edas-sigkdd 0.26 0.60
ekaw-iasted 0.20 0.60
ekaw-sigkdd 0.27 0.64
iasted-sigkdd 0.31 0.73

average 0.26 0.60

Table 2.Optima ’s performance in conference track of OAEI 2011


