
CODI: Combinatorial Optimization for Data
Integration – Results for OAEI 2011

Jakob Huber, Timo Sztyler, Jan Noessner, and Christian Meilicke

KR & KM Research Group
University of Mannheim, Germany

{jahuber, tsztyler}@mail.uni-mannheim.de
{jan, christian}@informatik.uni-mannheim.de

Abstract. In this paper, we describe our probabilistic-logical alignment system
CODI (Combinatorial Optimization for Data Integration). The system provides a
declarative framework for the alignment of individuals, concepts, and properties
of two heterogeneous ontologies. CODI leverages both logical schema informa-
tion and lexical similarity measures with a well-defined semantics for A-Box and
T-Box matching. The alignments are computed by solving corresponding combi-
natorial optimization problems.

1 Presentation of the system

1.1 State, purpose, general statement

CODI (CombinatorialOptimization forDataIntegration) leverages terminological struc-
ture for ontology matching. The current implementation produces mappings between
concepts, properties, and individuals. The system combines lexical similarity measures
with schema information to completely avoidincoherenceandinconsistencyduring the
alignment process. CODI participates in 2011 for the secondtime in an OAEI campaign.
Thus, we put a special focus on differences compared to the previous 2010 version of
CODI.

1.2 Specific techniques used

CODI is based on the syntax and semantics of Markov logic [2] and transforms the
alignment problem to a maximum-a-posteriori optimizationproblem. This problem
needs a-priori confidence values for each matching hypotheses as input. Therefore, we
implemented an aggregation method of different similaritymeasures. Another new fea-
ture of CODI is the recognition of ontology pairs belonging to different versions of the
same ontology. In instance matching CODI does not compute lexical similarities for
all existing pairs of instances but utilizes object-property assertions for reducing the
necessary comparisons.

Markov Logic Framework Markov logic combines first-order logic and undirected
probabilistic graphical models [11]. A Markov logic network (MLN) is a set of first-
order formulae with weights. Intuitively, the more evidence there is that a formula is
true the higher the weight of this formula. It has been proposed as a possible approach
to several problems occurring in the context of the semanticweb [2]. We have shown
that Markov logic provides a suitable framework for ontology matching as it captures
bothhard logical axioms andsoftuncertain statements about potential correspondences
between entities. The probabilistic-logical framework wepropose for ontology match-
ing essentially adapts the syntax and semantics of Markov logic. However, we always
typepredicates and we require a strict distinction betweenhard andsoft formulae as
well ashiddenandobservablepredicates. Given a set of constants (the classes and ob-
ject properties of the ontologies), a set of formulae (the axioms holding between the
objects and classes), and confidence values for correspondences, a Markov logic net-
work defines a probability distribution over possible alignments. We refer the reader to
[8, 7] for an in-depth discussion of the approach and some computational challenges.
For generating the Marcov logic networks we used the approach described in [12]. Our
OAEI paper from last year contains a more technical description of the framework [9].

Cardinality ConstraintsA method often applied in real-world scenarios is the selection
of a functional one-to-one alignment [1]. Within the ML framework, we can include a
set of hard cardinality constraints, restricting the alignment to be functional and one-to-
one.

Coherence ConstraintsIncoherence occurs when axioms in ontologies lead to logi-
cal contradictions. Clearly, it is desirable to avoid incoherence during the alignment
process. All existing approaches that put a focus on alignment coherence remove cor-
respondences after computing the alignment. Within the ML framework we can incor-
porate incoherence reducing constraintsduring the alignment process.

Stability ConstraintsSeveral approaches to ontology matching propagate alignment
evidence derived from structural relationships between concepts and properties. These
methods leverage the fact that existing evidence for the equivalence of conceptsC and
D also makes it more likely that, for example, child concepts of C andD are equivalent.
One such approach to evidence propagation issimilarity flooding[6]. As a reciprocal
idea, the general notion of stability was introduced, expressing that an alignment should
not introduce new structural knowledge [5].

Combination of Different Similarity Measures Compared to last year we improved
our lexical string similarity measures significantly. In a first step we collect and stan-
dardize all string information like ids, labels and annotations from the entities. Dur-
ing the standardization process we split tokens into separate words if necessary (e.g.
hasAuthoris transformed tohas Author), replace special characters with spaces, and
remove few words likea or theaccording to a stop-words list.

Furthermore, the functionality of computing string similarities has been improved.
CODI is able to combine several string similarity measures by taking the average,

the maximum or by weighting each measure with a specific predefined weight. These
weights could be learned with machine learning algorithms.In the standard configu-
ration CODI combines the Cosine, Levenshtein, Jaro Winkler, Simth Waterman Goto,
Overlap coefficient, and Jaccard similarity measures1 with specific weights.

Matching different Ontology Versions A specific task in ontology matching is the
alignment of different versions of the same ontology. The test cases of the benchmark
track can be seen as an example for this kind of task. In the following we argue that
(a) matching versions requires a different approach compared to a standard matching
task, and (b) that, therefore, it is required to detect automatically that two ontologies are
different versions of the same ontology.

(a) Suppose thatO andO′ are versions of the same ontology. Further, letO contain
less concepts and properties thanO′. Then it is highly probable that many or nearly all
entities inO have a counterpart inO′. A good one-to-one alignment will have, thus,
as many correspondences as there are entities inO. Based on this assumption it makes
sense to lower the threshold or to use a structural measure inaddition to the computation
of string-based similarities. In particular, we apply the following measure.

We first calculate the number of subclasses#sub, superclasses#sup, disjoint
classes#dis, and domain- and range-restrictions (#dom and#ran) for a specific
conceptC. These results are then used to calculate a similarity. For example, given
C ∈ O andD ∈ O′ we havesim#sub(C,D) = (1+min(#sub(C),#sub(D)))/(1+
max(#sub(C),#sub(D))). The overall similaritysim(C,D) is then computed as
weighted average over all different similarity values for each of#sub, #sup, #dis,
#dom, #ran.

The resulting similarity measure is highly imprecise, but has a high recall if we ap-
ply it to two ontologies with high structural similarity. Whenever there is a high prob-
ability that the two input ontologies are versions of the same ontology, we add for each
conceptC the top-k counterpartsD with respect tosim(C,D) as matching hypotheses
with low confidence to the optimization problem (same for properties). This approach
sounds quite drastic, but keep in mind that there are anchor-correspondences generated
by our string-based measures and constraints that interactand result in a meaningful
final alignment.

(b) In order to determine whether two ontologies are versions ofeach other, we
apply the Hungarian method on the input generated by our structural measure. The
Hungarian method finds an optimal one-to-one alignmentAopt. Now suppose that we
match an ontology on itself. The number of correspondences in Aopt is then equal
to the number of entities in the ontology, i.e.,Aopt has a full coverage. Moreover,
the total of confidences

∑
c∈Aopt

conf(c) will be |Aopt|. In general, we assume that
∑

c∈Aopt
conf(c) divided by the size of the smaller ontology is close to1 for versions

of the same ontology. In particular, we treat each pair of ontologies as versions if the
measured value is above0.9.

1 Implemented in http://sourceforge.net/projects/simmetrics/.

Fig. 1. Process of Selecting Individuals for Computing their Lexical Similarities withthres =

0.7.

Instance Matching In real-world instance matching tasks we are often faced with data
sources containing a large amount of instances. Hence, it isobvious that computing the
lexical similarity for every pair of these instances is not suitable. We implemented an
approach which utilizes object-properties to determine the instances for which the simi-
larity should be computed. Our approach assumes that we haveone common TBox and
two different ABoxes. Consequently, we assume that both TBoxes have been integrated
beforehand.

In a first step we computeanchor-alignments. Therefore, we compare a small sub-
set of all individuals with each other (e.g. all individualswhich are asserted to a specific
concept likeFilm), compute their lexical similaritieslexSim, and add those to the
anchor-alignments if their respective similarities are above a thresholdthres. Then,
we take the first anchor-alignmenta. For all individuals which are connected with an
object-property-assertion with one of the individuals in the alignmenta we again com-
pute the lexical similaritylexSim. We add them to theendof the anchor-alignments if
lexSim is higher than the thresholdthres. Figure 1 visualizes this process. The anchor-
alignments is a unique set, which means that only new alignments are added. We repeat
this procedure for the second, third, and all following anchor-alignments until we went
through the whole set.

The lexical similaritylexSim is computed as described in [9]. However, we inte-
grated coherence checks as proposed by [10] in order to avoidinconsistent alignments.
Comparisons can be further reduced, by omitting those individual pairs which have no
asserted inferred concept in common.

This basic idea is extended by some post-processing steps. For catching correspon-
dences which are not connected with an object-property-assertion, we compare all re-
maining individuals which do not yet occur in the anchor-alignment and add them if
their lexical similaritylexSim is abovethres. At the end, a greedy algorithm for com-
puting a one-to-one alignment is applied.

These techniques reduce the runtime significantly on large instance-matching bench-
marks.

1.3 Adaptations made for the evaluation

Prior to each matching task, CODI automatically analyzes the input ontologies and
adapts itself to the matching task. The first distinction is based on the use of OBO
constructs. If this is the case CODI automatically switchesto a setting optimized for
matching biomedical terms. The main difference in this setting is the use of a different
similarity measure which exploits the fact that in medical domains the order of words is
often transposed. The measure basically splits the two strings in two sets of words and
computes the largest common subset of these sets relative tothe smaller one.

If this is not the case CODI checks if the ontologies might be versions of the same
ontology. This test does not always correctly discriminateand we sometimes do not
detect that two ontologies are different version of the sameontology resulting in poor
performance for some of the benchmark test cases.

1.4 Link to the System

CODI can be downloaded from the SEALS portal viahttp://www.seals-project.
eu/tool-services/browse-tools. Further information, an executable jar file,
and the source code are available athttp://code.google.com/p/codi-matcher/.

1.5 Link to the Set of Provided Alignments

The alignments for the tracksBenchmark, Conference, and Anatomyhas been cre-
ated on top of the SEALS platform. ForIIMB the alignments can be found athttp:
//code.google.com/p/codi-matcher/downloads/list

2 Results

Benchmark Track The benchmark track is constructed by applying controlled trans-
formations on one source ontology. Thus, all test-cases consist of different versions of
the same ontology. However, ouradaptivemethod for detecting these ontologies only
categorize about 50 % beeing different versions of each other. Especially if their se-
mantic structure is heavily changed (e.g. deleting class hierarchy, etc.) our algorithm

fails. Nevertheless, with our adaptive method we were able to improve ourF1 score
from 0.51 to 0.75 compared to last year. If all test-cases would have beencorrectly
categorized as different versions CODI’sF1 score would have been 0.83 which is 32
% higher than last year. For the newly introduced dataset 2 our adaptive setting even
produces a slightly higherF1 score of 0.70 compared to the correct assignments. Thus,
the structure of some test cases differs so much that it is beneficial to consider themnot
as ontologies of the same version (even if they are). The results are shown in Table 1.

Table 1.Benchmark results

Dataset 1 Dataset 2
2011 2010 2011

adaptive correct adaptive correct
Precision 0.88 0.90 0.72 0.86 0.80
Recall 0.65 0.77 0.44 0.59 0.61
F1 score 0.75 0.83 0.51 0.70 0.69

Conference Track Since the conference dataset contains many trivial correspondences
matchers can easily reach a high precision. The challenge ofthis dataset consists in
finding the non-trivial correspondences. Concentrating onthese non-trivial correspon-
dences we were able to increase our recall from 0.51 to 0.61 compared to the results of
last year and gained 2 % additionalF1 score. In the conference track CODI was able
to detect that all ontology pairs are not versions of the sameontology. Consequently,
the adaptive and the correctly assigned results are similar(see Table 2). We also made
some experiments where we matched the Conference ontologies with the fixed version-
setting. We observed a significant loss in precision. This illustrates the importance of
an adaptive approach.

Table 2.Conference results

2011 2010
adaptive correct

Precision 0.75 0.75 0.87
Recall 0.61 0.61 0.51
F1 score 0.66 0.66 0.64

Anatomy Track Due to our special lexical similarity measure for medical ontologies,
we were able to improve ourF1 score of last year from 0.794 to 0.879. Currently, our
results are better than the best participating system of theOAEI 2010. CODI requires
approximately 35min to finish this matching task on a 2.3GHz dual core machine with
8G RAM.

Table 3.Anatomy results

2011 2010
Precision 0.955 0.954
Recall 0.815 0.680
F1 score 0.879 0.794

IIMB Track The IIMB benchmark is created by applying lexical, semantical, and
structural transformation techniques on real data extracted from freebase [3]. The trans-
formations are divided into four transformation categories containing 20 transforma-
tions each. The size of the IIMB track heavily increased compared to last year. Each of
the 80 existing transformations consist of ontology files with sizes larger than 20 MB.
For computing a very basic string similarity for every pair of individuals the runtime
explodes to over one hour per test case. With our new instancematching method which
only compares related individuals we were able to reduce theruntime to 34 minutes
per test-case in average. This runtime includes the time forconsistency checking, for
computing a functional one-to-one alignment, and for calculating a more sophisticated
lexical similarity.

Beside the increase in size, the transformations have been made much harder. Thus,
comparisons to last year results are not expedient. Table 4 summarizes the different
results of the CODI system for each of the 4 transformation categories2.

Table 4. IIMB results

Transformations 0-20 21-40 41-60 61-80 overall
Precision 0.93 0.83 0.73 0.66 0.79
Recall 0.78 0.59 0.67 0.28 0.63
F1 score 0.84 0.68 0.64 0.36 0.66

3 General comments

3.1 Discussions on the way to improve the proposed system

Improvements in usability by designing a suitable user interface are future steps that
have to be taken. Although we focussed this year on the implementation and evalua-
tion of a combination of more sophisticated lexical similarity measures, we think that
we still have not exploit CODIs full potential regarding this issue. Last but not least
improvements in matching different ontology versions willbe subject of next years
participation.

3.2 Comments on the OAEI 2011 procedure

The SEALS evaluation campaign is very beneficial since it is the first time that the
matchers are publically available for download implementing a common interface.

3.3 Comments on the OAEI 2011 measures

We encourage the organizers to use semantic precision and recall measures as described
in [4].

2 In several test cases every supplementary information for individuals has been deleted. These
test cases will not be considered in the official OAEI evaluation and, thus, are omitted here.

4 Conclusion

This year we improved the lexical similarity measures and developed a methodology
for automatically choosing between different settings. Combining these improvements
with our Markov logic system from last year, we were able to improve our results for the
anatomy, conference, and benchmark track significantly. Furthermore, we developed a
new instance matching algorithm, which only computes the similarity of promising in-
stances. With this technique we were able to reduce the runtime of the large instance
matching benchmark.

The strength of the CODI system is the combination of lexicaland structural infor-
mation and the declarative nature that allows easy experimentation. We will continue the
development of the CODI system and hope that our approach inspires other researchers
to leverage terminological structure and logical reasoning for ontology matching.

References

1. I. Cruz, F. Palandri, Antonelli, and C. Stroe. Efficient selection of mappings and automatic
quality-driven combination of matching methods. InProceedings of the ISWC 2009 Work-
shop on Ontology Matching, 2009.

2. P. Domingos, D. Lowd, S. Kok, H. Poon, M. Richardson, and P.Singla. Just add weights:
Markov logic for the semantic web. InProceedings of the Workshop on Uncertain Reasoning
for the Semantic Web, pages 1–25, 2008.

3. A. Ferrara, S. Montanelli, J. Noessner, and H. Stuckenschmidt. Benchmarking matching
applications on the semantic web. InThe Semanic Web: Research and Applications - 8th
Extended Semantic Web Conference, ESWC 2011, Lecture Notes in Computer Science, pages
108–122, Heraklion, Crete, Greece, 2011. Springer.

4. D. Fleischhacker and H. Stuckenschmidt. A Practical Implementation of Semantic Precision
and Recall. In2010 International Conference on Complex, Intelligent andSoftware Intensive
Systems, pages 986–991. IEEE, 2010.

5. C. Meilicke and H. Stuckenschmidt. Analyzing mapping extraction approaches. InProceed-
ings of the Workshop on Ontology Matching, Busan, Korea, 2007.

6. S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph matching
algorithm and its application to schema matching. InProceedings of ICDE, pages 117–128,
2002.

7. M. Niepert. A Delayed Column Generation Strategy for Exact k-Bounded MAP Inference in
Markov Logic Networks. InProceedings of the 25th Conference on Uncertainty in Artificial
Intelligence, 2010.

8. M. Niepert, C. Meilicke, and H. Stuckenschmidt. A Probabilistic-Logical Framework for
Ontology Matching. InProceedings of the 24th AAAI Conference on Artificial Intelligence,
2010.

9. J. Noessner and M. Niepert. Codi: Combinatorial optimization for data integration–results
for oaei 2010.Ontology Matching, page 142, 2010.

10. J. Noessner, M. Niepert, C. Meilicke, and H. Stuckenschmidt. Leveraging Terminological
Structure for Object Reconciliation.The Semantic Web: Research and Applications, pages
334–348, 2010.

11. M. Richardson and P. Domingos. Markov logic networks.Machine Learning, 62(1-2):107–
136, 2006.

12. S. Riedel. Improving the accuracy and efficiency of map inference for markov logic. InPro-
ceedings of the Conference on Uncertainty in Artificial Intelligence, pages 468–475, 2008.

