
A Time-Efficient Hybrid Approach to Link
Discovery

Axel-Cyrille Ngonga Ngomo1

Department of Computer Science
University of Leipzig

Johannisgasse 26, 04103 Leipzig
ngonga@informatik.uni-leipzig.de,

WWW home page: http://bis.uni-leipzig.de/AxelNgonga

Abstract. With the growth of the Linked Data Web, time-efficient Link
Discovery frameworks have become indispensable for implementing the
fourth Linked Data principle, i.e., the provision of links between data
sources. Due to the sheer size of the Data Web, detecting links even when
using trivial specifications based on a single property can be very time-
demanding. Moreover, non-trivial Link Discovery tasks require complex
link specifications and are consequently even more challenging to opti-
mize with respect to runtime. In this paper, we present a novel hybrid
approach to link discovery that combines two very fast algorithms. Both
algorithms are combined by using original insights on the translation of
complex link specifications to combinations of atomic specifications via a
series of operations on sets and filters. We show in three experiments that
our approach outperforms SILK by more than six orders of magnitude
while abiding to the restriction of not losing any link.

Keywords: Linked Data, Link Discovery, Algorithms, Constraints

1 Introduction

The Linked Data Web has evolved from 12 knowledge bases in May 2007 to 203
knowledge bases in September 2010, i.e., in less than four years [6]. While the
number of RDF triples available in the Linked Data Web has now surpassed
27 billion, less than 3% of these triples are links between knowledge bases [10].
Yet, links between knowledge bases play a key role in important tasks such as
cross-ontology question answering [9], large-scale inferences [15] and data inte-
gration [2]. Given the enormous amount of information available on the Linked
Data Web, time-efficient Link Discovery (LD) frameworks have become indis-
pensable for implementing the fourth Linked Data principle, i.e., the provision
of links between data sources [16, 10]. These frameworks rely on link specifica-
tions, which explicate conditions for computing new links between entities in
knowledge bases. Due to the mere size of the Web of Data, detecting links even
when using trivial specifications can be very time-demanding. Moreover, non-
trivial LD tasks require complex link specifications for discovering accurate links

between instances and are consequently even more challenging to optimize with
respect to runtime. In this paper, we present a novel lossless hybrid approach
to LD. Our approach is based on original insights on the distribution of prop-
erty domain and ranges on the Web of Data. Based on these insights, we infer
the requirements to efficient LD frameworks. We then use these requirements to
specify the time-efficient approaches that underlie our framework, LIMES ver-
sion 0.51. We show that our framework outperforms state-of-the-art frameworks
by several orders of magnitude with respect to runtime without losing links.

The contributions of this paper are as follows:

1. We present a formal grammar for link specifications that encompasses the
functionality of state-of-the-art frameworks for LD.

2. Based on this grammar, we present a very time-efficient approach for LD
that is based on translating complex link specifications into a combination
of atomic specifications via a concatenation of operations on sets and filter
operations.

3. We use this method to enable the PPJoin+ [18] algorithm to be used for
processing complex link specifications.

4. We specify and evaluate the HYpersphere aPPrOximation algorithm HYPPO,
a fully novel LD approach designed to operate on numeric values.

5. We evaluate our approach against SILK [7] within three experiments and
show that we outperform it by up to six orders of magnitude with respect
to runtime while abiding to the constraint of not losing links.

The rest of this paper is structured as follows: In Section 2, we give a brief
overview of related work on LD and related research fields. Section 3 presents
the preliminaries to our work. These preliminaries are the basis for Section 4,
in which we specify a formal grammar for link specification and an approach to
convert complex link specifications into an aggregation of atomic link specifica-
tions via set operations and filters. We subsequently present the core algorithms
underlying our approach in Section 5. In section 6, we evaluate our approaches in
three different large-scale experiments and show that we outperform the state-of-
the-art approach SILK. After a discussion of our findings, we present our future
work and conclude.

2 Related Work

Current frameworks for LD on the Web of Data can be subdivided into two
categories: domain-specific and universal frameworks [10]. Domain-specific LD
frameworks aim to discover links between knowledge bases from a particular
domain. For example, the RKB knowledge base (RKB-CRS) [5] uses Universal
Resource Identifier (URI) lists to compute links between universities and confer-
ences. Another domain-specific tool is GNAT [12], which discovers links between

1 LIMES stands for Link Discovery Framework for Metric Spaces. An online demo of
the framework can be found at http://limes.sf.net

music data sets by using audio fingerprinting. Further simple or domain-specific
approaches can be found in [14, 11].

Universal LD frameworks are designed to carry out mapping tasks indepen-
dent from the domain of the source and target knowledge bases. For example,
RDF-AI [13] implements a five-step approach that comprises the preprocessing,
matching, fusion, interlinking and post-processing of data sets. SILK [7] (Version
2.3) implements a time-efficient and lossless approach that maps complex config-
urations to a multidimensional metric space. A blocking approach is then used in
the metric space to reduce the number of comparisons by generating overlapping
blocks. The original LIMES approach [10] presupposes that the datasets to link
are in a metric space. It then uses the triangle inequality to portion the metric
space so as to compute pessimistic approximations of distances. Based on these
approximations, it can discard a large number of computations without losing
links.

Although LD is closely related with record linkage [17, 4] and deduplica-
tion [3], it is important to notice that LD goes beyond these two tasks as LD aims
to provide the means to link entities via arbitrary relations. Different blocking
techniques such as standard blocking, sorted-neighborhood, bi-gram indexing,
canopy clustering and adaptive blocking have been developed by the database
community to address the problem of the quadratic time complexity of brute
force comparison [8]. In addition, very time-efficient approaches have been pro-
posed to compute string similarities for record linkage, including AllPairs [1],
PPJoin and PPJoin+ [18]. However, these approaches alone cannot deal with
the diversity of property values found on the Web of Data as they cannot deal
with numeric values. In addition, most time-efficient string matching algorithms
can only deal with simple link specifications, which are mostly insufficient when
computing links between large knowledge bases.

The novel version of the LIMES framework goes beyond the state of the
art (including previous versions of LIMES [10]) by integrating PPJoin+ and
extending this algorithm so as to enable it to deal with complex configurations. In
addition, LIMES0.5 integrates the fully novel HYPPO algorithm, which ensures
that our framework can deal efficiently with numeric values and consequently
with the whole diversity of data types found on the Web of Data.

3 Problem Definition

The goal of LD is to discover the set of pair of instances (s, t) ∈ S × T that are
related by a relation R, where S and T are two not necessarily distinct sets of
instances. One way to automate this discovery is to compare the s ∈ S and t ∈ T
based on their properties using a (in general complex) similarity metric. Two
entities are then considered to be linked via R if their similarity is superior to a
threshold τ . We are aware that several categories of approaches can be envisaged
for discovering links between instances, for example using formal inferences or
semantic similarity functions. Throughout this paper, we will consider LD via

properties. This is the most common definition of instance-based LD [10, 16],
which translates into the following formal specification.

Definition 1 (Link Discovery). Given two sets S (source) and T (target) of
instances, a (complex) similarity measure σ over the properties of s ∈ S and
t ∈ T and a similarity threshold τ ∈ [0, 1], the goal of LD is to compute the set
of pairs of instances (s, t) ∈ S × T such that σ(s, t) ≥ τ .

This problem can be expressed equivalently as follows:

Definition 2 (Link Discovery on Distances). Given two sets S and T of
instances, a (complex) distance measure δ over the properties of s ∈ S and
t ∈ Tand a distance threshold θ ∈ [0,∞[, the goal of LD is to compute the set of
pairs of instances (s, t) ∈ S × T such that δ(s, t) ≤ θ.

Note that a normed similarity function σ can always be derived from a dis-
tance function δ by setting σ(x, y) = (1 + δ(x, y))−1. Furthermore, the dis-
tance threshold θ can be transformed into a similarity threshold τ by setting
τ = (1 + θ)−1. Consequently, distance and similarities are used interchangeably
within our framework.

Although it is sometimes sufficient to define atomic similarity functions (i.e.,
similarity functions that operate on exactly one property pair) for LD, many LD
problems demand the specification of complex similarity functions over several
datatypes (numeric, strings, ...) to return accurate links. For example, while the
name of bands can be used for detecting duplicate bands across different knowl-
edge bases, linking cities from different knowledge bases requires taking more
properties into consideration (e.g., the different names of the cities as well as
their latitude and longitude) to compute links accurately. Consequently, linking
on the Data Web demands frameworks that support complex link specifications.

4 Link Specifications as Operations on Sets

In state-of-the-art LD frameworks, the condition for establishing links is usu-
ally expressed by using combinations of operations such as MAX (maximum),
MIN (minimum) and linear combinations on binary similarity measures that
compare property values of two instances (s, t) ∈ S × T . Note that transforma-
tion operations may be applied to the property values (for example a lower-case
transformation for strings) but do not affect our formal model. We present a
formal grammar that encompasses complex link specifications as found in cur-
rent LD frameworks and show how complex configurations resulting from this
grammar can be translated into a sequence of set and filter operations on simple
configurations. We use to denote generation rules for metrics and specifica-
tions, ≡ to denote the equivalence of two specifications and A v B to denote
that the set of links that results from specification A is a subset of the set of
links that results from specification B.

Our definition of a link specification relies on the definition of atomic sim-
ilarity measures and similarity measures. Generally, a similarity measure m is

a function such that m : S × T → [0, 1]. We call a measure atomic (dubbed
atomicMeasure) when it relies on exactly one similarity measure σ (e.g., tri-
grams similarity for strings) to compute the similarity of two instances s and t.
A similarity measure m is either an atomic similarity measure atomicMeasure
or the combination of two similarity measures via operators OP such as MAX,
MIN or linear combinations as implemented in LIMES. Thus, the following rule
set for constructing metrics holds:

1. m atomicMeasure
2. m OP (m1,m2)

Note that frameworks differ in the type of operators they implement.
We call a link specification atomic (atomicSpec) if it compares the value of

a measure m with a threshold τ , thus returning the pairs (s, t) that satisfy the
condition σ(s, t) ≥ τ . A link specification spec(m, τ) is either an atomic link
specification or the combination of two link specifications via operations such as
AND (the conditions of both specifications must be satisfied, equivalent to set
intersection), OR (set union), XOR (symmetric set difference), or DIFF (set
difference). Thus, the following grammar for specifications holds :

1. spec(m, θ) atomicSpec(m, θ)
2. spec(m, θ) AND(spec(m1, θ1), spec(m2, θ2))
3. spec(m, θ) OR(spec(m1, θ1), spec(m2, θ2))
4. spec(m, θ) XOR(spec(m1, θ1), spec(m2, θ2))
5. spec(m, θ) DIFF (spec(m1, θ1), spec(m2, θ2))

Most very time-efficient algorithms such as PPJoin+ operate solely on atomic
measures and would not be usable if specifications could not be reduced to run
only on atomic measures. For the operators MIN, MAX and linear combinations,
we can reduce configurations that rely on complex measures to operations on
configurations that rely on atomic measures via the following rules:

1. spec(MAX(m1,m2), θ) ≡ OR(spec(m1, θ), spec(m2, θ))
2. spec(MIN(m1,m2), θ) ≡ AND(spec(m1, θ), spec(m2, θ))
3. spec(αm1 + βm2, θ) v AND(spec(m1, (θ − β)/α), spec(m2, (θ − α)/β))

Note that while we can derive equivalent conditions on a smaller number of
dimensions for the first two operations, the simpler linking specifications that can
be extracted for linear combinations are necessary to fulfill their premise, but not
equivalent to the premise. Thus, in the case of linear combinations, it is important
to validate the final set of candidates coming from the intersection of the two
sets specified on a smaller number of dimensions against the premise by using
filters. Given these transformations, we can reduce all complex specifications that
abide by our grammar to a sequence of set and filter operations on the results
of atomic measures. Consequently, we can apply very time-efficient approaches
designed for atomic measures on each category of data types to process even
highly complex link specifications on the Web of Data. In the following, we
present the approaches used by our framework on strings and numerical values.

5 Processing Simple Configurations

Our framework implements a hybrid approach to LD. The first approach im-
plemented in our framework deals exclusively with strings by harnessing the
near-duplicate detection algorithm PPJoin+ [18]. Instead of mapping strings to
a vector space, PPJoin+ uses a combination of three main insights to imple-
ment a very time-efficient string comparison approach. First, it uses the idea
that strings with a given similarity must share a certain number of characters in
their prefix to be able to have a similarity beyond the user-specified threshold.
A similar intuition governs the suffix filtering implemented by PPJoin+. Finally,
the algorithm makes use of the position of each word w in the index to retrieve
a lower and upper bound of the index of the terms with which w might be simi-
lar. By combining these three approaches, PPJoin+ can discard a large number
of non-matches. The integration of the PPJoin+ algorithm into our framework
ensures that we can mitigate the pitfall of the time-demanding transformation
of strings to vector spaces as implemented by multidimensional approaches. The
main drawback of PPJoin+ is that it can only operate on one dimension [8].
However, by applying the transformations of configurations specified above, we
make PPJoin+ applicable to link discovery tasks with complex configurations.
While mapping strings to a vector space demands some transformation steps and
can be thus computationally demanding, all numeric values explicitly describe a
vector space. The second approach implemented in our framework deals exclu-
sively with numeric values and implements a novel approach dubbed HYPPO.

The HYPPO algorithm addresses the problem of efficiently mapping instance
pairs (s, t) ∈ S × T described by using exclusively numeric values in a n-
dimensional metric space. The approach assumes a distance metric δ for measur-
ing the distance between objects and returns all pairs such that δ(s, t) ≤ θ, where
θ is a distance threshold. Let ω = (ω1, ..., ωn) and x = (x1, ..., xn) be points in the
n-dimensional space Ω = S∪T . The observation behind HYPPO is that in spaces
(Ω, δ) with orthogonal, i.e., uncorrelated dimensions, distance metrics can be de-
composed into the combination of functions φi,i∈{1...n} which operate on exactly
one dimension of Ω : δ = f(φ1, ..., φn). For example, for Minkowsky distances of
order p > 1, φi(x, ω) = |xi − ωi| for all values of i and δ(x, ω) = p

√∑
φi(x, ω)p.

Note that the Euclidean distance is the Minkowsky distance of order 2. The
Minkowsky distance can be extended further by weighting the different axes of
Ω. In this case, δ(x, ω) = p

√∑
γpiiφi(x, ω)p and φi(x, ω) = γii|xi−ωi|, where γii

are the entries of a positive diagonal matrix.
Some distances do exist, which do not assume an orthogonal basis for the met-

ric space. Mahalanobis distances for example are characterized by the equation
δ(x, ω) =

√
(x− ω)Γ (x− ω)T , where Γ is a n× n covariance matrix. However,

given that each space with correlated dimensions can always be transformed into
an affine space with an orthonormal basis, we will assume in the remainder of
this paper that the dimensions of Ω are independent. Given this assumption, it
is important to notice that the following inequality holds:

φi(x, ω) ≤ δ(x, ω), (1)

ergo, δ(x, ω) is the upper bound of φi(x, ω). Note that this is the sole condition
that we pose upon δ for HYPPO to be applicable. Also note that this condition
can always be brought about in a metric space by transforming its basis into an
orthogonal basis.

The basic intuition behind HYPPO is that the hypersphere H(ω, θ) = {x ∈
Ω : δ(x, ω) ≤ θ} is a subset of the hypercube V defined as V (ω, θ) = {x ∈
Ω : ∀i ∈ {1...n}, φi(xi, ωi) ≤ θ} due to inequality 1. Consequently, one can
reduce the number of comparisons necessary to detect all elements of H(ω, θ) by
discarding all elements which are not in V (ω, θ) as non-matches. HYPPO uses
this intuition by implementing a two-step approach to LD. First, it tiles Ω into
hypercubes of the same volume. Second, it compares each s ∈ S with those t ∈ T
that lie in cubes at a distance below θ. Note that these two steps differ from
the steps followed by similar algorithms (such as blocking) in two ways. First,
we do not use only one but several hypercubes to approximate H(ω, θ). Most
blocking approach rely on finding one block that contains the elements that are
to be compared with ω [8]. In addition, HYPPO is guaranteed not to lose any
link, as H is completely enclosed in V , while most blocking techniques are not
lossless.

Formally, let ∆ = θ/α. We call α ∈ N the granularity parameter. HYPPO
first tiles Ω into the adjacent hypercubes (short: cubes) C that contain all the
points ω such that ∀i ∈ {1...n}, ci∆ ≤ ωi < (ci + 1)∆, (c1, ..., cn) ∈ Nn. We call
the vector (c1, ..., cn) the coordinates of the cube C. Each point ω ∈ Ω lies in
the cube C(ω) with coordinates (bωi/∆c)i=1...n. Given such a space tiling and
inequality (1), it is obvious that all elements of H(ω, θ) lie in the set C(ω, α) of
cubes such that ∀i ∈ {1...n} : |ci− c(ω)i| ≤ α. Figure 1 shows examples of space
tilings for different values of α.

θ

(a) α = 1

θ

(b) α = 2

θ

(c) α = 4

Fig. 1. Space tiling for different values of α. The colored squares show the set of
elements that must be compared with the instance located at the black dot. The points
within the circle lie within the distance θ of the black dot.

The accuracy of the approximation performed by HYPPO can be computed
easily: The number of cubes that approximate H(ω, θ) is (2α+ 1)n, leading to a

total volume VC(α, θ) = ((2α+ 1)∆)n =
(
2α+1
α θ

)n
that approximates H(ω, θ).

The volume VH(θ) of H(ω, θ) is given by Snθ
n

n , where Sn is the volume of a unit
sphere in n dimensions, i.e., 2 for n = 1, π for n = 2, 4π

3 for n = 3 and so on.
The approximation ratio

VC(α, θ)

VH(θ)
=

n

Sn

(
2α+ 1

α

)n
, (2)

permits to determine the accuracy of HYPPO’s approximation as shown in Fig-
ure 2 for dimensions between 1 and 3 and values of α up to 10. Note that VC and

VH do not depend on ω and that VC(α,θ)
VH(θ) does not depend on θ. Furthermore,

note that the higher the value of α, the better the accuracy of HYPPO. Yet,
higher values of α also lead to an exponentially growing number of hypercubes
|C(ω, α)| and thus to longer runtimes when constructing C(ω, α) to approximate
H(ω, θ). Once the space tiling has been completed, all that remains to do is to
compare each s ∈ S with all the t ∈ T ∩ (

⋃
C ∈ C(ω, α)) and to return those

pairs of entities such that δ(s, t) ≤ θ. Algorithm 1 shows HYPPO’s pseudocode.

1 2 3 4 5 6 7 8 9 10

Granularity

0

1

2

3

4

5

6

7

Ap
pr

ox
im

at
io

n
ra

tio

n=1
n=2
n=3

Fig. 2. Approximation ratio for n ∈ {1, 2, 3}. The x-axis shows values of α while the
y-axis shows the approximation ratios.

6 Evaluation

We compared our framework (i.e., LIMES Version 0.5) with SILK version 2.3. in
three large-scale experiments of different complexity based on geographic data.
We chose SILK because (to the best of our knowledge) it is the only other LD
framework that allows the specification of such complex linking experiments.
We ran all experiments on the same computer running a Windows 7 Enterprise
64-bit installation on a 2.8GHz i7 processor with 8GB RAM. The JVM was

Algorithm 1 Current implementation of HYPPO

Require: S, T , θ, δ, α as defined above
Mapping M := ∅
∆ = θ/α
for ω ∈ S ∪ T do

C(bω1/∆c, ..., bωn/∆c) := C(bω1/∆c, ..., bωn/∆c) ∪ {ω}
end for
for s ∈ S do

for C ∈ C(s, α) do
for t ∈ C ∩ T do

if δ(s, t) ≤ θ then
M := M ∪ (s, t)

end if
end for

end for
end for
return M

allocated 7.4GB RAM. For each tool we measured exclusively the time needed
for computing the links. All experiments were carried out 5 times except when
stated otherwise. In all cases, we report best runtimes. Experiments marked
with an asterisk would have lasted longer than 48 hours when using SILK and
were not computed completely. Instead, SILK’s runtime was approximated by
extrapolating the time needed by the software to compute 0.1% of the links.

We chose to use geographic datasets because they are large and allow the
use of several attributes for linking. In the first experiment, we computed links
between villages in DBpedia and LinkedGeoData based on the rdfs:label and
the population of instances. The link condition was twofold: (1) the difference in
population had to be lower or equal to θ and (2) the labels had to have a trigram
similarity larger or equal to τ . In the second experiment, we aimed to link towns
and cities from DBpedia with populated places in Geonames. We used the names
(gn:name), alternate names (gn:alternateName) and population of cities as
criteria for the comparison. Finally, we computed links between Geo-locations in
LinkedGeoData and GeoNames by using 4 combinations of criteria for comparing
entities: their longitude (wgs84:long), latitude (wgs84:lat), preferred names
and names.

Experiment |S| |T | Dims Complexity Source Target Thresholds

Villages* 26717 103175 2 3.8 ×109 DBpedia LGD τs, θp
Cities* 36877 39800 3 1.5 ×109 Geonames DBpedia τs, θp

Geo-Locations* 50031 74458 4 3.7 ×109 LGD GeoNames τs, θp, θl
Table 1. Summary of experimental setups for LIMES and SILK. Dims stands for
dimensions.

The setup of the experiments is summarized in Table 1. We used two thresh-
old setups. In the strict setup, the similarity threshold τs on strings was set to
0.9, the maximal difference in population θp was set to 9 and the maximal dif-
ference in latitude and longitude θl was set to 1. In the lenient setup, τs was
set to 0.7 and θp to 19. The lenient setup was not used in the Geo-Locations
experiments because it led to too many links, which filled up the 7.4G of RAM
allocated to both tools and led to swapping, thus falsifying the evaluation of the
runtimes. In all setups, we use the trigrams similarity metrics for strings and the
euclidean distance for numeric values.

Our results (see Figure 3) confirm that we outperform SILK by several orders
of magnitude in all setups. In the Cities experiment, we are more than 6 orders of
magnitude faster than SILK. We compared the runtimes of LIMES for different
values of α as shown in Figure 4. Our results show that our assumption on the
relation between α and runtimes is accurate as finding the right value for α
can reduce the total runtime of the algorithm by approximately 40% (see Geo-
Locations, α = 4). In general, setting α to values between 2 and 4 leads to an
improved performance in all experiments.

Villages (strict) Villages (lenient) Cities (strict) Cities (lenient) Geo-Locations (strict)

10
4

10
6

10
8

10
10

R
un

tim
e

in
 m

s

α = 1
α = 2
α = 4
α = 8
α = 16
SILK*

Fig. 3. Comparison of the runtime of LIMES and SILK on large-scale link discovery
tasks.

7 Discussion and Future Work

In this paper, we introduced and evaluated a novel hybrid approach to LD.
We presented original insights on the conversion of complex link specifications

1 2 4 8 16

Granularity

60%

80%

100%

120%

140%

160%

180%

200%

R
el

at
iv

e
ru

nt
im

e

Villages (strict)
Villages (lenient)
Cities (strict)
Cities (lenient)
Geo-Locations (strict)

Fig. 4. Runtimes of LIMES relatively to the runtime for α = 1.

into simple link specifications. Based on these conversions, we inferred that effi-
cient means for processing simple link specifications are the key for time-efficient
linking. We then presented the two time-efficient approaches implemented in
LIMES0.5 and showed how these approaches can be combined for time-efficient
linking. A thorough evaluation of our framework in three large-scale experiments
showed that we outperform SILK by more than 6 orders of magnitude while not
losing a single link.

One of the central innovations of this paper is the HYpersphere aPPrOxi-
mation algorithm HYPPO. Although it was defined for numeric values, HYPPO
can be easily generalized to the efficient computation of the similarity of pairs
of entities that are totally ordered, i.e., to all sets of entities e = (e1, ..., en) ∈ E
such that a real function fi exists, which preserves the order � on the ith di-
mension of E, ergo ∀e, e′ ∈ E : ei � e′i → f(ei) > f(e′i). Yet, it is important
to notice that such a function can be very complex and thus lead to overheads
that may nullify the time gain of HYPPO. In future work, we will aim to find
such functions for different data types. In addition, we will aim to formulate an
approach for determining the best value of α for any given link specification.
The new version of LIMES promises to be a stepping stone for the creation of a
multitude of novel semantic applications, as it is time-efficient enough to make
complex interactive scenarios for link discovery possible even at large scale.

Acknowledgement

This work was supported by the Eurostars grant SCMS E!4604 and a fellowship
grant of the Mainz University.

References

1. Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. Scaling up all pairs
similarity search. In WWW, pages 131–140, 2007.

2. David Ben-David, Tamar Domany, and Abigail Tarem. Enterprise data classifica-
tion using semantic web technologies. In ISWC, 2010.

3. Jens Bleiholder and Felix Naumann. Data fusion. ACM Comput. Surv., 41(1):1–41,
2008.

4. Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. Du-
plicate record detection: A survey. IEEE Transactions on Knowledge and Data
Engineering, 19:1–16, 2007.

5. Hugh Glaser, Ian C. Millard, Won-Kyung Sung, Seungwoo Lee, Pyung Kim, and
Beom-Jong You. Research on linked data and co-reference resolution. Technical
report, University of Southampton, 2009.

6. Tom Heath and Christian Bizer. Linked Data: Evolving the Web into a Global
Data Space. Morgan & Claypool, 2011.

7. R. Isele, A. Jentzsch, and C. Bizer. Efficient Multidimensional Blocking for Link
Discovery without losing Recall. June 2011.

8. Hanna Köpcke, Andreas Thor, and Erhard Rahm. Comparative evaluation of entity
resolution approaches with fever. Proc. VLDB Endow., 2(2):1574–1577, 2009.

9. Vanessa Lopez, Victoria Uren, Marta Reka Sabou, and Enrico Motta. Cross on-
tology query answering on the semantic web: an initial evaluation. In K-CAP
’09: Proceedings of the fifth international conference on Knowledge capture, pages
17–24, New York, NY, USA, 2009. ACM.

10. Axel-Cyrille Ngonga Ngomo and Sören Auer. A time-efficient approach for large-
scale link discovery on the web of data. In IJCAI, 2011.

11. George Papadakis, Ekaterini Ioannou, Claudia Niedere, Themis Palpanasz, and
Wolfgang Nejdl. Eliminating the redundancy in blocking-based entity resolution
methods. In JCDL, 2011.

12. Yves Raimond, Christopher Sutton, and Mark Sandler. Automatic interlinking of
music datasets on the semantic web. In Proceedings of the 1st Workshop about
Linked Data on the Web, 2008.

13. Franois Scharffe, Yanbin Liu, and Chuguang Zhou. Rdf-ai: an architecture for rdf
datasets matching, fusion and interlink. In Proc. IJCAI 2009 workshop on Identity,
reference, and knowledge representation (IR-KR), Pasadena (CA US), 2009.

14. Jennifer Sleeman and Tim Finin. Computing foaf co-reference relations with rules
and machine learning. In Proceedings of the Third International Workshop on
Social Data on the Web, 2010.

15. Jacopo Urbani, Spyros Kotoulas, Jason Maassen, Frank van Harmelen, and Henri
Bal. Owl reasoning with webpie: calculating the closure of 100 billion triples. In
Proceedings of the ESWC 2010, 2010.

16. Julius Volz, Christian Bizer, Martin Gaedke, and Georgi Kobilarov. Discovering
and maintaining links on the web of data. In ISWC, pages 650–665, 2009.

17. William Winkler. Overview of record linkage and current research directions. Tech-
nical report, Bureau of the Census - Research Report Series, 2006.

18. Chuan Xiao, Wei Wang, Xuemin Lin, and Jeffrey X. Yu. Efficient similarity joins
for near duplicate detection. In WWW, pages 131–140, 2008.

