
Learning Linkage Rules using Genetic
Programming

Robert Isele and Christian Bizer

Freie Universität Berlin, Web-based Systems Group
Garystr. 21, 14195 Berlin, Germany

mail@robertisele.com, chris@bizer.de

Abstract. An important problem in Linked Data is the discovery of
links between entities which identify the same real world object. These
links are often generated based on manually written linkage rules which
specify the condition which must be fulfilled for two entities in order to be
interlinked. In this paper, we present an approach to automatically gen-
erate linkage rules from a set of reference links. Our approach is based on
genetic programming and has been implemented in the Silk Link Discov-
ery Framework. It is capable of generating complex linkage rules which
compare multiple properties of the entities and employ data transforma-
tions in order to normalize their values. Experimental results show that
it outperforms a genetic programming approach for record deduplication
recently presented by Carvalho et. al. In tests with linkage rules that
have been created for our research projects our approach learned rules
which achieve a similar accuracy than the original human-created linkage
rule.

Keywords: Genetic Programming, Linked Data, Link Discovery, Du-
plicate Detection, Deduplication, Record Linkage

1 Introduction

In the decentralized Web of Data, many data sources use different URIs for
the same real world object. Identifying these URI aliases, is a central problem
in Linked Data. Two approaches are widely used for that purpose: The first
category includes fully automatic tools which identify links using unsupervised
learning [11]. The second category includes tools which improve the accuracy
of the generated links using user-provided linkage rules. A linkage rule [30],
specifies the conditions two entities must fulfill in order to be interlinked. For
this purpose, a linkage rule typically uses one or more distance measures to
compare the properties of the entities. If the data sources use different data
types, the property values may be normalized by applying transformations prior
to the comparison. Linkage rules aggregate multiple similarity measures into one
compound similarity value. As these conditions are strongly domain dependent,
a separate linkage rule is typically used for each type of entities.

In this paper, we present an approach to automatically learn linkage rules
from a set of reference links. The approach is based on genetic programming



2 R. Isele, C. Bizer

and generates linkage rules that can be understood and further improved by
humans. Our approach has been implemented and evaluated in Silk [16], a link
discovery framework which generates RDF links between data items based on
linkage rules which are expressed using the Silk Link Specification Language
(Silk-LSL). The current version of Silk which includes the presented learning
method can be downloaded from the project homepage1 under the terms of the
Apache Software License.

The experimental evaluation shows that it produces better results than a
recently developed genetic programming approach by Carvalho et. al. [8]. In tests
with linkage rules that have been created for our research projects our approach
learned rules which achieve a similar accuracy than the original human-created
linkage rule.

This paper is organized as follows: The following Section gives an overview of
related work. Section 3 describes the proposed approach in detail. Afterwards,
Section 4 presents the results of the experimental evaluation of the learning
algorithm. Finally, Section 5 concludes this paper.

2 Related Work

Supervised learning of linkage rules in the context of linked data can build on
previous results in record linkage. In literature many approaches suitable for
learning binary classifiers have been adapted for learning linkage rules [18]. This
section gives an overview of the most widely used approaches.

Naive Bayes. Based on the original Fellegi-Sunter statistical model [13] of
record linkage, methods from Bayesian statistics such as Naive Bayes classi-
fiers [31] have been used to learn linkage rules. The main disadvantage of Naive
Bayes classifiers from a practical point of view is that they represent a black
box system to the user. This means that the user can not easily understand and
improve the learned linkage rules.

Support Vector Machines. Another widely used approach is to learn param-
eters of the linkage rule using Support Vector Machines (SVM) [5]. A SVM is a
binary linear classifier which maps the input variables into a high-dimensional
space where the two classes are separated by a hyperplane via a kernel func-
tion [2]. In the context of learning linkage rules, SVMs are often employed to
learn specific parameters of a linkage rule such as the weights of different sim-
ilarity measures. One popular example is MARLIN (Multiply Adaptive Record
Linkage with INduction) [1], which uses SVMs to learn how to combine multiple
similarity measures.

Decision Trees. Linkage rules can also be modeled using Decision Trees which
can be learned by a variety of algorithms including genetic algorithms. The main
advantage of Decision Trees is that they provide explanations for each classifi-
cation and thus can be understood and improved manually. Active Atlas [28, 29]

1 http://www4.wiwiss.fu-berlin.de/bizer/silk/



Learning Linkage Rules using Genetic Programming 3

learns mappings rules consisting of a combination of predefined transformations
and similarity measures. TAILOR [10] is another tool which employs decision
trees to learn linkage rules.

Genetic Programming. Another approach which is more expressive than de-
cision trees and promising to learn complex linkage rules is genetic programming
(GA). Genetic programming is an extension of the genetic algorithm [15] which
has been first proposed by Cramer [6]. Similar to a genetic algorithm, it starts
with a randomly created population of individuals. Each individual is represented
by a tree which is a potential solution to the given problem. From that starting
point the algorithm iteratively transforms the population into a population with
better individuals by applying a number of genetic operators. These operations
are applied to individuals which have been selected based on a fitness measure
which determines how close a specific individual is to the desired solution. The
three genetic operators typically used in genetic programming are [19]:

Reproduction: An individual is copied without modification.
Crossover: Two selected individuals are recombined into a new individual.
Mutation: A random modification is applied to the selected individual.

The algorithm stops as soon as either the configured maximum number of iter-
ations or a user-defined stop condition is reached.

Genetic programming has been applied to many problems in a variety of do-
mains [26]. In many of these areas genetic programming is capable of producing
human-competitive results [23, 21, 22]. Examples include the synthesis of electri-
cal circuits [20], the creation of quantum algorithms [27], and the development
of controllers [22].

To the best of our knowledge, genetic programming for learning linkage rules
has only been applied by Carvalho et. al. so far [7, 4, 8]. Their approach uses ge-
netic programming to learn how to combine a set of presupplied pairs of the form
<attribute, similarity function> (e.g. <name, Jaro>) into a linkage rule.
These pairs can be combined by the genetic programming method arbitrarily by
using mathematical functions (e.g. +, -, *, /, exp) and constants. Carvalho et. al.
show that their method produces better results than the state-of-the-art SVM
based approach by MARLIN [8]. Their approach is very expressive although
it cannot express data transformations. On the downside, using mathematical
functions to combine the similarity measures does not fit any commonly used
linkage rule model [12] and leads to complex and difficult to understand linkage
rules.

We are not aware of any previous application of genetic programming to
learn linkage rules in the context of Linked Data.

3 Approach

This Section explains our approach of learning linkage rules using genetic pro-
gramming. It is organized as follows: First of all, in order to learn a linkage



4 R. Isele, C. Bizer

rule using genetic programming, a rule must be represented as a tree structure.
Thus, Section 3.1 describes our approach of representing a linkage rule using
4 basic operators. For each candidate solution the fitness function described in
Section 3.2 is used to determine the performance of a linkage rule. Section 3.3
describes how the initial population of candidate solutions is generated. After
the initial population has been generated, the candidate solutions are iteratively
transformed into better ones by breeding the population according to the rules
described in Section 3.4. Finally, Section 3.5 describes our approach to avoid the
occurrence of bloat in linkage rules.

3.1 Representation of a Linkage Rule

We represent a linkage rule as a tree which is built from 4 basic operators:

Property: Creates a set of values to be used for comparison by retrieving all
values of a specific property of the entity.

Transformation: Transforms the input values according to a specific data
transformation function.

Comparison: Evaluates the similarity between the values of two input oper-
ators according to a specific distance measure. A user-specified threshold
specifies the maximum distance. If the underlying properties do not provide
any values for a specific entity, no similarity value is returned.

Aggregation: Aggregates the similarity values from multiple operators into a
single value according to a specific aggregation function. Aggregation func-
tions such as the weighted average may take the weight of the operators into
account. If an operator is marked as required, the aggregation will only yield
a value if the operator itself provides a similarity value.

The resulting linkage rule forms a tree where the terminals are given by the
properties and the nodes are represented by transformations, comparisons and
aggregations. The linkage rule tree is strongly typed [25] i.e. it does not allow
arbitrary combinations of its four basic operators. Figure 1 specifies the valid
structure of a linkage rule. Figure 2 shows a simple example of a linkage rule.

Fig. 1. Structure of a linkage rule



Learning Linkage Rules using Genetic Programming 5

Fig. 2. Example linkage rule

3.2 Fitness Function

The quality of a linkage rule is assessed by the fitness function based on user-
provided training data. The training data consists of a set of positive reference
links (connecting entities which identify the same real world object) and a set of
negative reference links (connecting entities which identify different objects). The
prediction of the linkage rule is compared with the positive reference links while
counting true positives (TP) and false negatives (FN) and the negative reference
links while counting false positives (FP) and true negatives (TN). Based on
these counts, a fitness value between -1 and 1 is assigned to the linkage rule by
calculating Matthews correlation coefficient (MCC):

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

In contrast to many other popular fitness measures such as the F-measure (i.e.
the harmonic mean of precision and recall), Matthews correlation coefficient
yields good results even for heavily unbalanced training data.

3.3 Generating the Initial Population

This section explains our approach of generating the initial population: Before
the population is generated, we build a list of property pairs which hold sim-
ilar values as described below. Based on that, random linkage rules are built
by selecting property pairs from the list and applying data transformations,
comparisons and aggregations. Finally, we seed the population with common
comparison patterns in order to increase the efficiency of the algorithm.

Finding Compatible Properties Prior to generating the population, we gen-
erate a list of pairs of properties which hold similar values. For this purpose,
the datasets are preprocessed in order to find the 100 most frequent properties
in the data set where the entity is in subject position and the 10 most frequent
properties where the entity is in object position. The selection of the owl:sameAs
property has been disallowed as it usually is the result of an existing run of a
link discovery tool. For each possible property pair, the values of the entities
referenced by the positive reference links as well as the negative reference links



6 R. Isele, C. Bizer

are analyzed. This is done by tokenizing the values and counting the reference
links for which there is a distance measure in the list of functions configured
to be used for learning linkage rules according to which both values are similar
(given a certain threshold). Finally, the list of compatible properties is generated
by collecting all pairs of properties for which more positive than negative links
are counted.

Generating a Random Linkage Rule A random linkage rule is generated
according to the following rules: First of all, a linkage rule is built consisting of a
random aggregation and up to two comparisons. For each comparison a random
pair from the pre-generated list of compatible properties is selected. In addition,
with a possibility of 50% a random transformation is appended to each property.

Note that this does not limit the algorithm to learn more complex linkage
rules as it is the purpose of the genetic operators to generate more complex
linkage rules from the ones in the initial population.

Seeding with Common Comparison Patterns Analyzing a set of linkage
rules manualy developed for the LATC EU project (http://latc-project.eu/)
revealed that certain patterns occur in many linkage rules. Most noticeable, 84
% of the analyzed linkage rules compare the labels and 66 % the geographic
coordinates of the entities. For that reason, the population has been seeded not
only with fully random linkage rules, but also with linkage rules which contain
these two special cases. While these patterns can also be learned by the algo-
rithm, previous work [26, 14] shows that seeding them in the initial population
can improve the efficiency.

3.4 Breeding

In order to improve the population our approach employs all three common
genetic operations: reproduction, crossover and mutation. At first, 1% of the in-
dividuals with the highest fitness are directly selected for reproduction following
a elitist strategy [9]. After this, new individuals are generated using crossover
and mutation until the population size is reached.

Instead of using subtree crossover, which is commonly used in genetic pro-
gramming, our approach uses a set of specific crossover operators which are
tailored to the domain. For each crossover operation an operator from this set is
selected randomly and applied to two selected individuals. Each operator learns
one aspect of the linkage rule. For our experiments, we used the following oper-
ators:

Function Crossover Used to find the best similarity, transformation or ag-
gregation function. Selects one operator at random in each linkage rule and
interchanges the functions. For example, it may select a comparison with the
levensthein distance function in the first linakge rule and a comparison with the
jaccard distance function in the second linkage rule and than interchange these
two functions.



Learning Linkage Rules using Genetic Programming 7

Operators Crossover As a linkage rule usually needs to combine multiple
comparisons, this operator combines aggregations from both linkage rules. For
this, it selects two aggregations, one from each linkage rule and combines theirs
comparisons. The comparisons are combined by selecting all comparisons from
both aggregations and removing each comparison with a propability of 50%.
For example, it may select an aggregation of a label comparison and a date
comparison in the first linkage rule and an aggregation of a label comparison and
a comparison of the geographic coordinates in the second linkage rule. In this case
the operator replaces the selected aggregations with a new aggregation which
contains all 4 comparisons and then removes each comparison with a propability
of 50%. Note that the comparisons are exchanged including the complete subtree
i.e. the distance functions as well as existing transformations are retained.

Aggregation Crossover While most linkage rules are linear i.e. can be ex-
pressed using a single weighted average aggregation, some linkage rules need
more complex aggregation hierarchies. In order to learn these hierachies, aggre-
gation crossover selects a random aggregation or comparison operator in the first
linkage rule and replaces it with a random aggregation or comparison operator
from the second linkage rule. This way, the operator builds a hierachy as it may
select operators from different levels in the tree. For example, it may select a
comparison in the first linkage rule and replace it with a aggregation of multiple
comparisons from the second linakge rule.

Transformation Crossover This operator is used to learn complex transfor-
mations by selecting a random path of transformations in both linkage rules. It
then combines both paths by executing a two point crossover.

Threshold Crossover This operator is used to find the optimal thresholds.
For this, one comparison operator is selected at random in each individual. The
new threshold is then set to the average of both comparisons.

Weight Crossover Finds the optimal weights analog to the treshold crossover.

Mutation is implemented similarly by selecting a random crossover operator
and executing a headless chicken crossover [17] i.e. crossing an individual from
the population with a randomly generated individual.

3.5 Avoiding Bloat

One well-known problem in genetic programming is that over time the indi-
viduals may develop redundant parts which do not contribute to their overall
fitness [3, 24]. One possibility to control this bloating is to penalize big trees in
order to force the algorithm to favor smaller trees over bigger ones. In literature
this method is known as parsimony pressure [32]. Another more sophisticated
method is to automatically analyze the trees and remove redundant parts. For
that purpose a simplification algorithm has been developed which detects re-
dundant parts in the linkage rule and removes them. In order to avoid bloated
linkage rules the simplification algorithm is executed every 5 generations.



8 R. Isele, C. Bizer

4 Evaluation

The proposed learning approach has been evaluated in 3 different experiments.
Because genetic algorithms are non-deterministic and may yield different results
in each run, all experiments have been run 10 times. For each run the reference
links have been randomly split into 2 folds for cross-validation. The results of
all runs have been averaged and the standard deviation has been computed. For
each experiment, we provide the evaluation results with respect to the training
data set as well as the validation dataset. All experiments have been run on a
3GHz Intel(R) Core i7 CPU with 4 cores while the Java heap space has been
restricted to 1GB.

4.1 Parameters

Table 1 lists the parameters which have been used in all experiments. As it is
the purpose of the developed method to work on arbitrary datasets without the
need to tailor its parameters to the specific datasets that should be interlinked,
the same parameters have been used for all experiments.

Table 1. Learning Parameters

Parameter Value

Population size 500
Maximum number of generations 50
Selection method Tournament selection with a group size of 5
Probability of Crossover 75%
Probability of Mutation 25%
Stop Condition MCC = 1.0

Our approach is independent of any specific aggregation functions, distance
measures or data transformations. Thus, it can learn linkage rules with any
functions provided to it. Table 2 shows the set of functions which has been used
by us in all experiments. The details about the functions are provided in the Silk
user manual on the website.

Table 2. Set of functions used in all experiments

Aggregation Functions Distance Measures Transformations

Average similarity Levenshtein distance Convert to lower case
Maximum similarity Jaccard index Tokenize the string
Minimum similarity Numeric distance Strip the URI prefix

Geographic distance



Learning Linkage Rules using Genetic Programming 9

4.2 Experiment 1: Comparison with related work

At first, we evaluated how our approach compares to the genetic programming
approach by Carvalho et. al. [8], which claims to produce better results than
the state-of-the-art SVM based approach by MARLIN. One dataset commonly
used for evaluating different record deduplication approaches is Cora. The Cora
dataset contains citations to research papers from the Cora Computer Science
research paper search engine. For the purpose of evaluating our approach, we
converted the Cora dataset provided at 2 to RDF.

For evaluation we used 1617 randomly selected positive links and 1617 ran-
domly selected negative reference links. Table 4.2 summarizes the cross validation
results. On average, our approach achieved an F-measure of 96.9% against the
training set and 93.6% against the validation set and needed less than 5 minutes
to perform all 50 iterations on the test machine. The learned linkage rules com-
pared by title, author and date. For the same dataset, Carvalho et. al. report
an F-measure of 90.0% against the training set and 91.0% against the validation
set [8].

Table 3. Average results of all learning runs. The last row contains the best results of
Carvalho et. al. for comparison.

Iter. Time in s (σ) Train. F1 (σ) Train. MCC (σ) Val. F1 (σ) Val. MCC (σ)

1 4.0 (0.3) 0.896 (0.022) 0.806 (0.042) 0.896 (0.021) 0.805 (0.041)
10 31.1 (3.9) 0.956 (0.013) 0.912 (0.026) 0.954 (0.015) 0.907 (0.029)
20 71.4 (18.3) 0.964 (0.008) 0.928 (0.017) 0.960 (0.010) 0.919 (0.020)
30 132.5 (48.5) 0.965 (0.007) 0.931 (0.013) 0.962 (0.007) 0.924 (0.015)
40 217.6 (106.7) 0.968 (0.004) 0.936 (0.008) 0.945 (0.036) 0.900 (0.053)
50 271.1 (140.1) 0.969 (0.003) 0.938 (0.007) 0.936 (0.056) 0.902 (0.057)

Ref. - 0.900 (0.010) - 0.910 (0.010) -

4.3 Experiment 2: Learning linkage rules for geographic datasets

With 16 datasets in the LOD cloud3, interlinking geographic datasets is a very
common problem. For this reason we evaluated our approach by learning a link-
age rule for interlinking cities in DBpedia and LinkedGeoData.

In order to evaluate the learned linkage rules we used a manually collected
set of 100 positive and 100 negative reference links. Special care has been taken
to include rare corner cases such as for example cities which share the same
name but don’t represent the same city and cities which are very closely located
so that. Table 4.3 summarizes the cross validation results. In all runs, the stop
condition (i.e. an MCC of 100%) has been reached before the 25th iteration.

2 http://www.hpi.uni-potsdam.de/naumann/projekte/repeatability/datasets/

cora_dataset.html
3 http://www4.wiwiss.fu-berlin.de/lodcloud/state/



10 R. Isele, C. Bizer

Table 4. Average results of all learning runs.

Iter. Time in s (σ) Train. F1 (σ) Train. MCC (σ) Val. F1 (σ) Val. MCC (σ)

1 2.6 (1.0) 0.984 (0.025) 0.970 (0.046) 0.932 (0.059) 0.883 (0.099)
10 3.8 (2.1) 0.996 (0.007) 0.993 (0.013) 0.932 (0.059) 0.883 (0.099)
20 3.9 (2.3) 0.998 (0.004) 0.996 (0.007) 0.964 (0.032) 0.945 (0.056)
25 4.0 (2.4) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

4.4 Experiment 3: Learning complex linkage rules

While the vast majority of linkage rules commonly used are very simple, a few
of them employ more complex structures. Interlinking drugs in DBpedia and
Drugbank is an example where the original linkage rule which has been pro-
duced by humans is very complex. In order to match two drugs, it compares the
drug names and their synonyms as well as a list of well-known and used iden-
tifiers (e.g. the CAS number4). In total, the manually written linkage rule uses
13 comparisons and 33 transformations. This includes complex transformations
such as replacing specific parts of the strings.

All 1,403 Links which have been generated by executing the original linkage
rule have been used as positive reference links. Negative reference links have
been generated by shuffling the target URIs of the positive links.

Table 5 shows the averaged results of all runs. The learned linkage rules
yield an F-Measure of 99.8% for the training data and 99.4% for the validation
data. Figure 3 shows that from the 30th iteration the generated linkage rules on
average only use 5.6 comparisons and 3.2 transformations and the simplification
algorithm successfully avoids bloating in the subsequent iterations. Thus, the
learned linkage rules use less than half of the comparisons and only one-tenth of
the transformations of the manually written linkage rules.

Table 5. Average results of all learning runs

Iter. Time in s (σ) Train. F1 (σ) Train. MCC (σ) Val. F1 (σ) Val. MCC (σ)

1 67.5 (2.2) 0.929 (0.026) 0.876 (0.042) 0.928 (0.029) 0.874 (0.045)
10 334.1 (157.4) 0.994 (0.002) 0.987 (0.003) 0.991 (0.003) 0.983 (0.006)
20 1014.1 (496.8) 0.996 (0.001) 0.992 (0.002) 0.988 (0.010) 0.977 (0.017)
30 1829.7 (919.3) 0.997 (0.001) 0.994 (0.002) 0.985 (0.016) 0.973 (0.027)
40 2685.4 (1318.9) 0.998 (0.001) 0.996 (0.002) 0.994 (0.002) 0.988 (0.004)
50 3222.2 (1577.7) 0.998 (0.001) 0.996 (0.001) 0.994 (0.002) 0.989 (0.004)

5 Conclusion and Outlook

We presented an approach for learning complex linkage rules which compare
multiple properties of the entities and employ data transformations in order

4 A unique numerical identifier assigned by the ”Chemical Abstracts Service”



Learning Linkage Rules using Genetic Programming 11

Fig. 3. Average number of comparisons and transformations

to normalize their values. As the current algorithm requires manually supplied
reference links, future work will focus on the efficient generation of these. For
this, we will investigate into semi-supervised learning and active learning in order
to minimize the user effort to generate the reference links.

References

1. M. Bilenko and R. Mooney. Adaptive duplicate detection using learnable string
similarity measures. In Proceedings of the ninth ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 39–48. ACM, 2003.

2. M. Bilenko and R. J. Mooney. Learning to combine trained distance metrics for
duplicate detection in databases. Technical report, 2002.

3. T. Blickle and L. Thiele. Genetic Programming and Redundancy. 1994.
4. M. Carvalho, A. Laender, M. Gonçalves, and A. da Silva. Replica identification

using genetic programming. In Proceedings of the 2008 ACM symposium on Applied
computing, pages 1801–1806. ACM, 2008.

5. C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20:273–297,
1995. 10.1007/BF00994018.

6. N. Cramer. A representation for the adaptive generation of simple sequential pro-
grams. In Proceedings of the First International Conference on Genetic Algorithms,
volume 183, page 187, 1985.

7. M. G. de Carvalho, M. A. Gonçalves, A. H. F. Laender, and A. S. da Silva. Learning
to deduplicate. In Proceedings of the 6th ACM/IEEE-CS joint conference on Digital
libraries, JCDL ’06, pages 41–50, New York, NY, USA, 2006. ACM.

8. M. G. de Carvalho, A. H. F. Laender, M. A. Goncalves, and A. S. da Silva. A
genetic programming approach to record deduplication. IEEE Transactions on
Knowledge and Data Engineering, 99(PrePrints), 2010.

9. K. A. De Jong. An analysis of the behavior of a class of genetic adaptive systems.
PhD thesis, Ann Arbor, MI, USA, 1975.

10. M. Elfeky, V. Verykios, and A. Elmagarmid. Tailor: A record linkage toolbox.
In Data Engineering, 2002. Proceedings. 18th International Conference on, pages
17–28. IEEE, 2002.

11. J. Euzenat, A. Ferrara, C. Meilicke, et al. First Results of the Ontology Alignment
Evaluation Initiative 2010. Ontology Matching, page 85, 2010.

12. J. Euzenat and P. Shvaiko. Ontology matching. Springer-Verlag, Heidelberg (DE),
2007.



12 R. Isele, C. Bizer

13. I. P. Fellegi and A. B. Sunter. A Theory for Record Linkage. Journal of the
American Statistical Association, 64(328), 1969.

14. C. Henrik Westerberg and J. Levine. Investigation of different seeding strategies in
a genetic planner. Applications of Evolutionary Computing, pages 505–514, 2001.

15. J. Holland. Adaptation in natural and artificial systems. 1975.
16. R. Isele, A. Jentzsch, and C. Bizer. Silk server - adding missing links while con-

suming linked data. In 1st International Workshop on Consuming Linked Data
(COLD 2010), Shanghai, 2010.

17. T. Jones. Crossover, macromutation, and population-based search. In Proceedings
of the Sixth International Conference on Genetic Algorithms, pages 73–80, 1995.

18. H. Köpcke and E. Rahm. Frameworks for entity matching: A comparison. Data &
Knowledge Engineering, 69(2):197 – 210, 2010.

19. J. Koza. Genetic programming: on the programming of computers by means of
natural selection.

20. J. Koza, F. Bennett III, F. Bennett, D. Andre, and M. Keane. Genetic Program-
ming III: Automatic programming and automatic circuit synthesis, 1999.

21. J. Koza, M. Keane, and M. Streeter. What’s AI done for me lately? Genetic
programming’s human-competitive results. Intelligent Systems, IEEE, 18(3):25–
31, 2003.

22. J. Koza, M. Keane, M. Streeter, W. Mydlowec, J. Yu, and G. Lanza. Genetic pro-
gramming IV: Routine human-competitive machine intelligence. Springer Verlag,
2005.

23. J. Koza, M. Keane, J. Yu, F. Bennett, and W. Mydlowec. Automatic creation of
human-competitive programs and controllers by means of genetic programming.
Genetic Programming and Evolvable Machines, 1(1):121–164, 2000.

24. W. Langdon and R. Poli. Fitness causes bloat. Soft Computing in Engineering
Design and Manufacturing, 1:13–22, 1997.

25. D. Montana. Strongly typed genetic programming. Evolutionary computation,
3(2):199–230, 1995.

26. R. Poli, W. Langdon, and N. McPhee. A field guide to genetic programming. Lulu
Enterprises Uk Ltd, 2008.

27. L. Spector, H. Barnum, H. Bernstein, and N. Swamy. Finding a better-than-
classical quantum AND/OR algorithm using genetic programming. In Evolutionary
Computation, 1999. CEC 99. Proceedings of the 1999 Congress on, volume 3. IEEE,
1999.

28. S. Tejada, C. Knoblock, and S. Minton. Learning object identification rules for
information integration. Information Systems, 26(8):607–633, 2001.

29. S. Tejada, C. A. Knoblock, and S. Minton. Learning domain-independent string
transformation weights for high accuracy object identification. In Proceedings of
the eighth ACM SIGKDD international conference on Knowledge discovery and
data mining, KDD ’02, pages 350–359, New York, NY, USA, 2002. ACM.

30. W. E. Winkler. Matching and Record Linkage. In Business Survey Methods, pages
355–384, 1995.

31. W. E. Winkler. Methods for record linkage and bayesian networks. Technical
report, Series RRS2002/05, U.S. Bureau of the Census, 2002.

32. B. Zhang and H. M
”uhlenbein. Balancing accuracy and parsimony in genetic programming. Evolu-
tionary Computation, 3(1):17–38, 1995.


