
RAVEN – Active Learning of Link Specifications

Axel-Cyrille Ngonga Ngomo, Jens Lehmann, Sören Auer, Konrad Höffner

Department of Computer Science, University of Leipzig
Johannisgasse 26, 04103 Leipzig, Germany

{ngonga|lehmann|auer}@informatik.uni-leipzig.de,
konrad.hoeffner@uni-leipzig.de

WWW home page: http://aksw.org

Abstract. With the growth of the Linked Data Web, time-efficient ap-
proaches for computing links between data sources have become indis-
pensable. Yet, in many cases, determining the right specification for a
link discovery problem is a tedious task that must still be carried out
manually. We present RAVEN, an approach for the semi-automatic de-
termination of link specifications. Our approach is based on the com-
bination of stable solutions of matching problems and active learning
with the time-efficient link discovery framework LIMES. RAVEN aims
at requiring a small number of interactions with the user to generate
classifiers of high accuracy. We focus on using RAVEN to compute and
configure boolean and weighted classifiers, which we evaluate in three
experiments against link specifications created manually. Our evaluation
shows that we can compute linking configurations that achieve more than
90% F-score by asking the user to verify at most twelve potential links.

Keywords: Linked Data, Link Discovery, Algorithms, Constraints

1 Introduction

The core idea behind the Linked Data paradigm is to facilitate the transition
from the document-oriented to the Semantic Web by extending the current Web
with a commons of interlinked data sources [2]. One of the key challenges that
arise when trying to discover links between two data sources lies in the specifica-
tion of an appropriate configuration for the tool of choice [10]. Such a specifica-
tion usually consists of a set of restrictions on the source and target knowledge
base, a list of properties of the source and target knowledge base to use for simi-
larity detection, a combination of suitable similarity measures (e.g., Levenshtein
[9]) and similarity thresholds. Specifying link configurations is a tedious process,
as the user does not necessarily know which combinations of properties lead to an
accurate linking configuration. The difficulty of devising suitable link discovery
specifications is amplified on the Web of Data by the sheer size of the knowledge
bases (which often contain millions of instances) and their heterogeneity (i.e.,
by the complexity of the underlying ontologies, which can contain thousands of
different types of instances and properties) [2].

In this paper, we present the RApid actiVE liNking (RAVEN) approach.
RAVEN is the first approach to apply active learning techniques for the semi-
automatic detection of specifications for link discovery. Our approach is based on
a combination of stable matching and a novel active learning algorithm derived
from perceptron learning. RAVEN allows to determine (1) a sorted matching of
classes to interlink; this matching represents the set of restrictions of the source
and target knowledge bases, (2) a stable matching of properties based on the
selected restrictions that specifies the similarity space within which the linking is
to be carried out and (3) a highly accurate link specification via active learning.
Our evaluation with three series of experiments shows that we can compute
linking configurations that achieve more than 90% F-score by asking the user to
verify at most twelve potential links. RAVEN is generic enough to be employed
with any link discovery framework that supports complex link specifications.
The results presented herein rely on the LIMES framework for linking. We chose
LIMES because it implements lossless approaches and is very time-efficient.

2 Related Work

Current approaches for link discovery on the Web of Data can be subdivided into
two categories: domain-specific and universal approaches. Domain-specific link
discovery frameworks aim at discovering links between knowledge bases from a
particular domain. For example, the approach implemented in RKB knowledge
base (RKB-CRS) [5] focuses on computing links between universities and confer-
ences while GNAT [12] discovers links between music data sets. Further simple
or domain-specific approaches can be found in [7, 17, 11].

Universal link discovery frameworks are designed to carry out mapping tasks
independently from the domain of the source and target knowledge bases. For ex-
ample, RDF-AI [15] implements a five-step approach that comprises the prepro-
cessing, matching, fusion, interlinking and post-processing of data sets. SILK [18]
is a time-optimized tool for link discovery. It implements a multi-dimensional
blocking approach that projects the instances to match in a multi-dimensional
metric space. Subsequently, this space is subdivided into to overlapping blocks
that are used to retrieve matching instances without loosing links. Another
lossless Link Discovery framework is LIMES [10], which addresses the scala-
bility problem by utilizing the triangle inequality in metric spaces to compute
pessimistic estimates of instance similarities. Based on these approximations,
LIMES can filter out a large number of non-matches.

The task of discovering links between knowledge bases is closely related with
record linkage and deduplication [3]. The database community has produced
a vast amount of literature on efficient algorithms for solving these problems.
Different blocking techniques such as standard blocking, sorted-neighborhood,
bi-gram indexing, canopy clustering and adaptive blocking (see, e.g., [8]) have
been developed to address the problem of the quadratic time complexity of brute
force comparison methods. Active learning has been employed in the database
community [13, 14, 1] to address the configuration problem because active learn-

ing approaches usually present only few match candidates to the user for manual
verification. The technique is particularly efficient in terms of required user in-
put [16], because the user is only confronted with those match candidates which
provide a high benefit for the underlying learning algorithm.

The RAVEN approach goes beyond the state of the art in several ways: It
is the first active learning algorithm and RDF-based approach to use machine
learning for obtaining link specifications. Moreover, it is the first approach to
detect corresponding classes and properties automatically for the purpose of
Link Discovery. Note that similar approaches developed for databases assume
the mapping of columns to be known [1]. Yet, this assumption cannot be made
when trying to link knowledge bases from the Web of Data because of the possible
size of the underlying ontology. By supporting the automatic detection of links,
we are able to handle heterogeneous knowledge bases with large schemata.

3 Preliminaries

Our approach to the active learning of linkage specifications extends ideas from
several research areas, especially classification and stable matching problems. In
the following, we present the notation that we use throughout this paper and
explain the theoretical framework underlying our work.

3.1 Problem Definition

The link discovery problem, which is similar to the record linkage problem, is an
ill-defined problem and is consequently difficult to model formally [1]. In general,
link discovery aims to discover pairs (s, t) ∈ S × T related via a relation R.

Definition 1 (Link Discovery). Given two sets S (source) and T (target) of
entities, compute the set M of pairs of instances (s, t) ∈ S×T such that R(s, t).

The sets S resp. T are usually subsets of the instances contained in two
knowledge bases KS resp. KT . In most cases, the computation of whether R(s, t)
holds for two elements is carried out by projecting the elements of S and T based
on their properties in a similarity space S and setting R(s, t) iff some similarity
condition is satisfied. The specification of the sets S and T and of this similarity
condition is usually carried out within a link specification.

Definition 2 (Link Specification). A link specification consists of three parts:
(1) two sets of restrictions RS1 ... RSm resp. RT1 ... RTk that specify the sets S
resp. T , (2) a specification of a complex similarity metric σ via the combination
of several atomic similarity measures σ1, ..., σn and (3) a set of thresholds τ1,
..., τn such that τi is the threshold for σi.

A restriction R is generally a logical predicate. Typically, restrictions in link
specifications state the rdf:type of the elements of the set they describe, i.e.,
R(x) ↔ x rdf:type someClass or the features the elements of the set must

have, e.g., R(x)↔ (∃y : x someProperty y). Each s ∈ S must abide by each of
the restrictionsRS1 ...RSm, while each t ∈ T must abide by each of the restrictions
RT1 ... RTk . Note that the atomic similarity functions σ1, ..., σn can be combined
to σ by different means. In this paper, we will focus on using boolean operators
and real weights combined as conjunctions.

According to the formalizations of link discovery and link specifications above,
finding matching pairs of entities can be defined equivalently as a classification
task, where the classifier C is a function from S × T to {−1,+1}.

Definition 3 (Link Discovery as Classification). Given the set S × T of
possible matches, the goal of link discovery is to find a classifier C : S × T →
{−1,+1} such that C maps non-matches to the class −1 and matches to +1.

In general, we assume classifiers that operate in an n-dimensional similarity
space S. Each of the dimensions of S is defined by a similarity function σi
that operates on a certain pair of attributes of s and t. Each classifier C on
S can be modeled via a specific function FC . C then returns +1 iff the logical
statement PC(FC(s, t)) holds and −1 otherwise, where PC is what we call the
specific predicate of C. In this work, we consider two families of classifiers: linear
weighted classifiers L and boolean conjunctive classifiers B. The specific function
of linear weighted classifiers is of the form

FL(s, t) =

n∑
i=1

ωiσi(s, t), (1)

where ωi ∈ R. The predicate PL for a linear classifier is of the form PL(X) ↔
(X ≥ τ), where τ = τ1 = ... = τn ∈ [0, 1] is the similarity threshold. A boolean
classifier B is a conjunction of n atomic linear classifiers C1, ... ,Cn, i.e., a con-
junction of classifiers that each operate on exactly one of the n dimensions of
the similarity space S. Thus, the specific function FB is as follows:

FB(s, t) =

n∧
i=0

(σi(s, t) ≥ τi) (2)

and the specific predicate is simply PB(X) = X. Note that given that classi-
fiers are usually learned by using iterative approaches, we will denote classifiers,
weights and thresholds at iteration t by using superscripts, i.e., Ct, ωti and τ ti .

Current approaches to learning in record matching assume that the similarity
space S is given. While this is a sensible premise for mapping problems which rely
on simple schemas, the large schemas (i.e., the ontologies) that underlie many
data sets in the Web of Data do not allow such an assumption. The DBpedia
ontology (version 3.6) for example contains 275 classes and 1335 properties.
Thus, it would be extremely challenging for a user to specify the properties to
map when carrying out a simple deduplication analysis, let alone more complex
tasks using the DBpedia data set. In the following, we give a brief overview
of stable matching problems, which we use to solve the problem of suggesting
appropriate sets of restrictions on data and matching properties.

3.2 Stable Matching Problems

The best known stable matching problem is the stable marriage problem SM as
formulated by [4]. Here, one assumes two sets M (males) and F (females) such
that |M | = |F | and two functions µ : M × F → {1, ..., |F |} resp. γ : M × F →
{1, ..., |M |}, that give the degree to which a male likes a female resp. a female a
male. µ(m, f) > µ(m, f ′) means that m prefers f to f ′. Note, that for all f and
f ′ where f 6= f ′ holds, µ(m, f) 6= µ(m, f ′) must also hold. Analogously, m 6= m′

implies γ(m, f) 6= γ(m′, f). A bijective function s : M → F is called a stable
matching iff for all m, m′, f , f ′ the following holds:

(s(m) = f) ∧ (s(m′) = f ′) ∧ (µ(m, f ′) > µ(m, f))→ (γ(m′, f ′) > γ(m, f ′)) (3)

In [4] an algorithm for solving this problem is presented and it is shown
how it can be used to solve the well-know Hospital/Residents (HR) problem.
Formally, HR extends SM by assuming a set R of residents (that maps M)
and a set of hospitals (that maps F) with |R| 6= |F |. Each hospital h ∈ H is
assigned a capacity c(h). A stable solution of the Hospital/Residents problem is
a mapping of residents to hospitals such that each hospital accepts maximally
c(h) residents and that fulfills Equation 3. Note that we assume that there are
no ties, i.e., that the functions µ and γ are injective.

4 The RAVEN Approach

Our approach, dubbed RAVEN (RApid actiVE liNking), addresses the task of
linking two knowledge bases S and T by using the active learning paradigm
within the pool-based sampling setting [16]. Overall, the goal of RAVEN is to
find the best classifier C that achieves the highest possible precision, recall or F1

score as desired by the user. The algorithm also aims to minimize the burden on
the user by limiting the number of link candidates that must be labeled by the
user to a minimum.

Algorithm 1 The RApid actiVE liNking (RAVEN) algorithm

Require: Source knowledge base KS

Require: Target knowledge base KT

Find stable class matching between classes of KS and KT

Find stable property matching for the selected classes
Compute sets S and T ; Create initial classifier C0; t := 0
while termination condition not satisfied do

Ask the user to classify 2α examples; Update Ct to Ct+1; t := t+1
end while
Compute set M of links between S and T based on Ct
return M

An overview of our approach is given in Algorithm 1. In a first step, RAVEN
aims to detect the restrictions that will define the sets S and T . To achieve this

goal, it tries to find a stable matching of pairs of classes, whose instances are to
be linked. The second step of our approach consists of finding a stable matching
between the properties that describe the instances of the classes specified in
the first step. The user is also allowed to alter the suggested matching at will.
Based on the property mapping, we compute S and T and generate an initial
classifier C = C0 in the third step. We then refine C iteratively by asking the
user to classify pairs of instances that are most informative for our algorithm. C
is updated until a termination condition is reached, for example Ct = Ct+1. The
final classifier is used to compute the links between S and T , which are returned
by RAVEN. In the following, we expand upon each of these three steps.

4.1 Stable Matching of Classes

The first component of a link specification is a set of restrictions that must be
fulfilled by the instances that are to be matched. We use a two-layered approach
for matching classes in knowledge bases. Our default approach begins by select-
ing a user-specified number of sameAs links between the source and the target
knowledge base randomly. Then, it computes µ and γ on the classes CS of KS
and CT of KT as follows1:

µ(CS , CT) = γ(CS , CT) = |{s type Cs ∧ s sameAs t ∧ t type CT }|. (4)

In the case when no sameAs links are available, we run our fallback approach. It
computes µ and γ on the classes of S and T as follows:

µ(CS , CT) = γ(CS , CT) = |{s type Cs ∧ s p x ∧ t type CT ∧ t q x}|, (5)

where p and q can be any property. Let c(S) be the number of classes CS of S
such that µ(CS , CT) > 0 for any CT . Furthermore, let c(T) be the number of
classes CT of T such that γ(CS , CT) > 0 for any CS . The capacity of each CT is
set to dc(S)/c(T)e, thus ensuring that the hospitals provide enough capacity to
map all the possible residents. Once µ, γ and the capacity of each hospital has
been set, we solve the equivalent HR problem.

4.2 Stable Matching of Properties

The detection of the best matching pairs of properties is very similar to the
computation of the best matching classes. For properties p and q, we set:

µ(p, q) = γ(p, q) = |{s type Cs ∧ s p x ∧ t type CT ∧ t q x}|. (6)

The initial mapping of properties defines the similarity space in which the link
discovery task will be carried out. Note that none of the prior approaches to
active learning for record linkage or link discovery automatized this step. We
associate each of the basis vectors σi of the similarity space to exactly one of
the pairs (p, q) of mapping properties. Once the restrictions and the property
mapping have been specified, we can fetch the elements of the sets S and T .

1 Note that we used type to denote rdf:type and sameAs to denote owl:sameAs.

4.3 Initial Classifier

The specific formula for the initial linear weighted classifier L0 results from the
formal model presented in Section 3 and is given by

FL0(s, t) =

n∑
i=1

ω0
i σi(s, t). (7)

Several initialization methods can be used for ω0
i and the initial threshold τ0

of PL. In this paper, we chose to use the simplest possible approach by setting
ω0
i := 1 and τ0 := κn, where κ ∈ [0, 1] is a user-specified threshold factor.

Note that setting the overall threshold to κn is equivalent to stating that the
arithmetic mean of the σi(s, t) must be equal to κ.

The equivalent initial boolean classifier B0 is given by

FB0(s, t) =

n∧
i=0

(σ0
i (s, t) ≥ τ0i) where τ0i := κ. (8)

4.4 Updating Classifiers

RAVEN follows an iterative update strategy, which consists of asking the user to
classify 2α elements of S × T (α is explained below) in each iteration step t and
using these to update the values of ωt−1i and τ t−1i computed at step t− 1. The
main requirements to the update approach is that it computes those elements
of S × T whose classification allow to maximize the convergence of Ct to a good
classifier and therewith to minimize the burden on the user. The update strategy
of RAVEN varies slightly depending on the family of classifiers. In the following,
we present how RAVEN updates linear and boolean classifiers.

Updating linear classifiers. The basic intuition behind our update approach
is that we aim to present the user with those elements from S×T whose classifi-
cation is most unsure. We call the elements presented to the user examples. We
call an example positive when it is assumed by the classifier to belong to +1. Else
we call it negative. Once the user has provided us with the correct classification
for all examples, the classifier can be updated effectively so as to better approx-
imate the target classifier. In the following, we will define the notion of most
informative example for linear classifiers before presenting our update approach.

When picturing a classifier as a boundary in the similarity space S that
separates the classes +1 and −1, the examples whose classification is most un-
certain are those elements from S × T who are closest to the boundary. Note
that we must exclude examples that have been classified previously, as present-
ing them to the user would not improve the classification accuracy of RAVEN
while generating extra burden on the user, who would have to classify the same
link candidate twice. Figure 1 depicts the idea behind most informative exam-
ples. In both subfigures, the circles with a dashed border represent the 2 most
informative positive and negatives examples, the solid disks represent elements

from S×T and the circles are examples that have already been classified by the
users. Note that while X is closer to the boundary than Y and Z, it is not a most
informative example as it has already been classified by the user.

(a) Linear classifier (b) Boolean classifier

Fig. 1. Most informative examples for linear and boolean classifiers. The current ele-
ments of the classes −1 resp. +1 are marked with − resp. +.

Formally, let Mt be the set of (s, t) ∈ S × T classified by Lt as belonging to
+1. Furthermore, let Pt−1 (resp. N t−1) be the set of examples that have already
been classified by the user as being positive examples, i.e, links (resp. negative
examples, i.e., wrong links). We define a set Λ as being a set of most informative
examples λ for Lt+1 when the following conditions hold:

∀λ ∈ S × T (λ ∈ Λ→ λ /∈ Pt−1 ∪N t−1) (9)

∀λ′ /∈ Pt−1 ∪N t−1 : λ′ 6= λ→ |FLt(λ′)− τ t| ≥ |FLt(λ)− τ t|. (10)

Note that there are several sets of most informative examples of a given magni-
tude. We denote a set of most informative examples of magnitude α by Λα. A
set of most informative positive examples, Λ+, is a set of pairs such that

∀λ /∈ Λ+∪Pt−1∪N t−1 : (FLt(λ) < τ t)∨(∀λ+ ∈ Λ+ : FLt(λ) > FLt(λ+)). (11)

In words, Λ+ is the set of examples that belong to class +1 according to C
and are closest to C’s boundary. Similarly, the set of most informative negative
examples, Λ−, is the set of examples such that

∀λ /∈ Λ−∪Pt−1∪N t−1 : (FLt(λ) ≥ τ t)∨(∀λ− ∈ Λ− : FLt(λ) < FLt(λ−)). (12)

We denote a set of most informative (resp. negative) examples of magnitude α
as Λ+

α (resp. Λ−α). The 2α examples presented to the user consist of the union
Λ+
α ∪ Λ−α , where Λ+

α and Λ−α are chosen randomly amongst the possible sets of
most informative positive resp. negative examples .

The update rule for the weights of Lt is derived from the well-known Per-
ceptron algorithm, i.e.,

ωt+1
i = ωti + η+

∑
λ∈Λ+

ρ(λ)σi(λ)− η−
∑
λ∈Λ−

ρ(λ)σi(λ), (13)

where η+ is the learning rate for positives examples, η− is the learning rate for
negative examples and ρ(λ) is 0 when the classification of λ by the user and Lt
are the same and 1 when they differ.

The threshold is updated similarly, i.e,

τ t+1
i = τ ti + η+

∑
λ∈Λ+

α

ρ(λ)FLt(λ)− η−
∑
λ∈Λ−

α

ρ(λ)FLt(λ). (14)

Note that the weights are updated by using the dimension which they de-
scribe while the threshold is updated by using the whole specific function. Finally,
the sets Pt−1 and N t−1 are updated to

Pt := Pt−1 ∪ Λ+
α and N t := N t−1 ∪ Λ−α . (15)

Updating boolean classifiers. The notion of most informative example differs
slightly for boolean classifiers. λ is considered a most informative example for B
when the conditions

λ /∈ Pt−1 ∪N t−1 (16)

and

∀λ′ /∈ Pt−1 ∪N t−1 : λ′ 6= λ→
n∑
i=1

|σti(λ′)− τ ti | ≥
n∑
i=1

|σti(λ)− τ ti | (17)

hold. The update rule for the thresholds τ ti of B is then given by

τ t+1
i = τ ti + η+

∑
λ∈Λ+

α

ρ(λ)σi(λ)− η−
∑
λ∈Λ−

α

ρ(λ)σi(λ), (18)

where η+ is the learning rate for positives examples, η− is the learning rate for
negative examples and ρ(λ) is 0 when the classification of λ by the user and Ct−1
are the same and 1 when they differ. The sets Pt−1 and N t−1 are updated as
given in Equation 15.

5 Experiments and Results

5.1 Experimental Setup

We carried out three series of experiments to evaluate our approach. In our first
experiment, dubbed Diseases, we aimed to map diseases from DBpedia with
diseases from Diseasome. In the Drugs experiments, we linked drugs from Sider
with drugs from Drugbank. Finally, in the Side-Effects experiments, we aimed
to link side-effects of drugs and diseases in Sider and Diseasome.

In all experiments, we used the following setup: The learning rates η+ and
η− were set to the same value η, which we varied between 0.01 and 0.1. We set
the number of inquiries per iteration to 4. The threshold factor κ was set to

0.8. In addition, the number of instances used during the automatic detection
of class resp. property matches was set to 100 resp. 500. The fallback solution
was called and compared the property values of 1000 instances chosen randomly
from the source and target knowledge bases. We used the trigrams metric as
default similarity measure for strings and the Euclidean similarity as default
similarity measure for numeric values. To measure the quality of our results,
we used precision, recall and F-score. We also measured the total number of
inquiries that RAVEN needed to reach its maximal F-Score. As reference data,
we used the set of instances that mapped perfectly according to a configuration
created manually.

5.2 Results

The results of our experiments are shown in Figures 2 and 3. The first experi-
ment, Diseases, proved to be the most difficult for RAVEN. Although the sameAs
links between Diseasome and DBpedia allowed our experiment to run without
making use of the fallback solution, we had to send 12 inquiries to the user when
the learning rate was set to 0.1 to determine the best configuration that could
be learned by linear and boolean classifiers. Smaller learning rates led to the
system having to send even up to 80 inquiries (η = 0.01) to determine the best
configuration. In this experiment linear classifiers outperform boolean classifiers
in all setups by up to 0.8% F-score.

1 5 9 13 17 21 25

Number of iterations

30

40

50

60

70

80

90

100

F-
Sc

or
e

LR = 0.01
LR = 0.02
LR = 0.05
LR = 0.1

(a) Linear classifier

1 5 9 13 17 21 25

Number of iterations

30

40

50

60

70

80

90

100

F-
Sc

or
e

LR = 0.01
LR = 0.02
LR = 0.05
LR = 0.1

(b) Boolean classifier

Fig. 2. Learning curves on Diseases experiments. LR stands for learning rate.

The second and the third experiment display the effectiveness of RAVEN.
Although the fallback solution had to be used in both cases, our approach is
able to detect the right configuration with an accuracy of even 100% in the
Side-Effects experiment by asking the user no more than 4 questions. This is
due to the linking configuration of the user leading to two well-separated sets of
instances. In these cases, RAVEN converges rapidly and finds a good classifier
rapidly. Note that in these two cases, all learning rates in combination with both
linear and boolean classifiers led to the same results (see Figures 3(b) and 3(a)).

Although we cannot directly compare our results to other approaches as it is
the first active learning algorithm for learning link specifications, results reported

1 5 9 13 17 21 25

Number of iterations

0

10

20

30

40

50

60

70

80

90

100

Precision (%)
Recall (%)
F-Score (%)

(a) Learning curve in the Side-Effects ex-
periment

1 5 9 13 17 21 25

Number of iterations

0

10

20

30

40

50

60

70

80

90

100

Precision (%)
Recall (%)
F-Score (%)

(b) Learning curve in the Drug experiment

Fig. 3. Learning curve in the Side-Effects and Drugs experiments

in the database area suggest that RAVEN achieves state-of-the-art performance.
The runtimes required for each iteration ensure that our approach can be used
in real-world interactive scenarios. In the worst case, the user has to wait for 1.4
seconds between two iterations. The runtime for the computation of the initial
configuration depends heavily on the connectivity to the SPARQL endpoints.
In our experiments, the computation of the initial configuration demanded 60s
when the default solution was used. The fallback solution required up to 90s.

6 Conclusion and Future Work

In this paper, we presented RAVEN, the first active learning approach tailored
towards semi-automatic Link Discovery on the Web of Data. We showed how
RAVEN uses stable matching algorithms to detect initial link configurations.
We opted to use the solution of the hospital residence problem (HR) without
ties because of the higher time complexity of the solution of HR with ties, i.e.,
L4, where L is the size of the longest preference list, i.e., max(|R|, |H|). Still,
our work could be extended by measuring the effect of considering ties on the
matching computed by RAVEN. Our experimental results showed that RAVEN
can compute accurate link specifications (F-score between 90% and 100%) by
asking the user to classify a very small number of positive and negative examples
(between 4 and 12 for a learning rate of 0.1). Our results also showed that
our approach can be used in an interactive scenario because of LIMES’ time
efficiency, which allowed to compute new links in less than 1.5 seconds in the
evaluation tasks. The advantages of this interactive approach can increase the
quality of generated links while reducing the effort to create them.

In future work, we will explore how to detect optimal values for the threshold
factor κ automatically, for example, by using clustering approaches. In addition,
we will investigate the automatic detection of domain-specific metrics that can
model the idiosyncrasies of the dataset at hand. Another promising extension
to RAVEN is the automatic detection of the target knowledge base to even
further simplify the linking process, since users often might not even be aware

of appropriate linking targets (see [6] for research in this area). By these means,
we aim to provide the first zero-configuration approach to Link Discovery.

Acknowledgement

This work was supported by the Eurostars grant SCMS E!4604, the EU FP7
grant LOD2 (GA no. 257943) and a fellowship grant of the University of Mainz.

References

1. A. Arasu, M. Götz, and R. Kaushik. On active learning of record matching pack-
ages. In SIGMOD, pages 783–794, 2010.

2. C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the story so far. International
Journal on Semantic Web and Information Systems, 2009.

3. J. Bleiholder and F. Naumann. Data fusion. ACM Comput. Surv., 41(1):1–41,
2008.

4. D. Gale and L. S. Shapley. College admissions and the stability of marriage. The
American Mathematical Monthly, 69(1):9–15, 1962.

5. H. Glaser, I. C. Millard, W.-K. Sung, S. Lee, P. Kim, and B.-J. You. Research on
linked data and co-reference resolution. Technical report, University of Southamp-
ton, 2009.

6. C. Guéret, P. Groth, F. van Harmelen, and S. Schlobach. Finding the achilles heel
of the web of data: Using network analysis for link-recommendation. In ISWC,
pages 289–304, 2010.

7. A. Hogan, A. Polleres, J. Umbrich, and A. Zimmermann. Some entities are more
equal than others: statistical methods to consolidate linked data. In NeFoRS, 2010.

8. H. Köpcke, A. Thor, and E. Rahm. Comparative evaluation of entity resolution
approaches with fever. Proc. VLDB Endow., 2(2):1574–1577, 2009.

9. V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. Technical Report 8, 1966.

10. A.-C. Ngonga Ngomo and S. Auer. Limes - a time-efficient approach for large-scale
link discovery on the web of data. In Proceedings of IJCAI, 2011.

11. G. Papadakis, E. Ioannou, C. Niedere, T. Palpanasz, and W. Nejdl. Eliminating
the redundancy in blocking-based entity resolution methods. In JCDL, 2011.

12. Y. Raimond, C. Sutton, and M. Sandler. Automatic interlinking of music datasets
on the semantic web. In 1st Workshop about Linked Data on the Web, 2008.

13. S. Sarawagi and A. Bhamidipaty. Interactive deduplication using active learning.
In KDD, pages 269–278, 2002.

14. S. Sarawagi, A. Bhamidipaty, A. Kirpal, and C. Mouli. Alias: An active learning
led interactive deduplication system. In VLDB, pages 1103–1106, 2002.

15. F. Scharffe, Y. Liu, and C. Zhou. Rdf-ai: an architecture for rdf datasets matching,
fusion and interlink. In Proc. IJCAI 2009 IR-KR Workshop, 2009.

16. B. Settles. Active learning literature survey. Technical Report 1648, University of
Wisconsin-Madison, 2009.

17. J. Sleeman and T. Finin. Computing foaf co-reference relations with rules and
machine learning. In Proceedings of SDoW, 2010.

18. J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov. Discovering and maintaining links
on the web of data. In ISWC 2009, pages 650–665. Springer, 2009.

