
Ontology matching benchmarks:
generation and evaluation

Maria Roşoiu, Cássia Trojahn, and Jérôme Euzenat

INRIA & LIG, Grenoble, France
Firstname.Lastname@inria.fr

Abstract. The OAEI Benchmark data set has been used as a main ref-
erence to evaluate and compare matching systems. It requires matching
an ontology with systematically modified versions of itself. However, it
has two main drawbacks: it has not varied since 2004 and it has become
a relatively easy task for matchers. In this paper, we present the de-
sign of a modular test generator that overcomes these drawbacks. Using
this generator, we have reproduced Benchmark both with the original
seed ontology and with other ontologies. Evaluating different matchers
on these generated tests, we have observed that (a) the difficulties en-
countered by a matcher at a test are preserved across the seed ontology,
(b) contrary to our expectations, we found no systematic positive bias
towards the original data set which has been available for developers to
test their systems, and (c) the generated data sets have consistent results
across matchers and across seed ontologies. However, the discriminant
power of the generated tests is still too low and more tests would be
necessary to draw definitive conclusions.
Keywords: Ontology matching, Matching evaluation, Test generation,
Semantic web.

1 Introduction

Evaluating ontology matching may be achieved in several ways. The most com-
mon one consists of providing matchers with two ontologies and comparing the
returned alignment with a reference alignment [4]. However, this raises the issue
of the choice of ontologies and the validity of the reference.

Since 2004, the Ontology Alignment Evaluation Initiative (OAEI)1 makes
available a collection of data sets for evaluating matching systems. One such
data set is Benchmark. It is a well-defined set of tests in which each test is
composed of two ontologies and a reference alignment. The tests are based on one
particular ontology, from the bibliographic domain, and systematic alterations
of this ontology, e.g., removing classes, renaming properties.

Benchmark was designed with the aim of covering the problem space, i.e.,
the various situations in which a matcher may be. However, this data set has
various drawbacks: (a) lack of realism: tests are mechanically generated and cover

1 http://oaei.ontologymatching.org/



a systematic alteration space, (b) lack of variability: it always uses the same seed
ontology altered in the exact same way, and (c) lack of discriminability: the tests
are not difficult enough to discriminate well matchers.

We are not particularly interested in Drawback (a) because it has been over-
came by other data tests made available by OAEI. We focus on drawbacks (b)
and (c). To that extent, we have developed a test generator that may be used
with any seed ontology and allows for fine tuning the input parameters, as well
as randomized modifications over the ontology entities. A byproduct of this gen-
erator is that it enables us to evaluate the relevance of the Benchmark dataset:
by reproducing this dataset and using it to evaluate different matchers in the
same conditions, we can assess how much the results obtained are dependent on
the particular seed ontology or the particular matcher.

We run different matchers on the generated tests, which allows us to draw
conclusions on the results obtained so far with Benchmark:

– The difficulties encountered by a matcher at a test are preserved across the
seed ontology, hence, Benchmark is relevant.

– Matchers have, in general, no better results with the original Benchmark than
with the new generated data sets, this goes counter our expectation that,
because tests and results were available, matchers would perform better.

– Matcher results are generally consistent across seed ontologies and ontology
results are generally consistent across matchers, but with low discrimination.
This confirm that the lack of discriminability is due to Benchmark and not
to the seed ontology.

The rest of the paper is structured as follows. In Section 2, we present the
state-of-the-art in ontology matching test generation. In Section 3, we present
the architecture of our test generator and the strategy we came with in order
to reproduce the Benchmark dataset. In Section 4, we expose the results we
have obtained with new generated datasets and their variability. Finally, the
conclusions and future work are presented in Section 5.

2 Ontology matching evaluation and test generation

In this section, we briefly present the current setting of ontology matching eval-
uation (Section 2.1), the Benchmark data set (Section 2.2) and the state-of-the-
art in alignment test generators (Section 2.3). The interested reader can find a
broader overview of ontology matching evaluation in [4].

2.1 Evaluating ontology matching systems

Matching can be seen as an operation which takes as input two ontologies (o and
o′), a set of parameters (p), a possibly empty partial alignment (A′) and a set of
resources (r) and outputs an alignment (A) between these ontologies (Fig. 1).

An alignment can be defined as a set of correspondences. A correspondence
between two ontologies o and o′ is a triple 〈e, r, e′〉, where e is an entity belonging



to the first ontology, e′ is an entity belonging to the second ontology, r is a
relation, e.g., equivalence or subsumption, between them.

o

o′

matching

parameters

resources

A′

R

evaluator m

Fig. 1: Ontology matching process and evaluation (from [5]).

A matcher can be evaluated comparing its output alignment (A) with a
reference alignment (R) using some measure (Fig. 1). Usually, such measures
are precision, recall and F-measure [5]. Thus, in order to evaluate a matching
system, one has to generate datasets in which a test is composed of two ontologies
to be matched (o and o′) and a reference alignment (R).

2.2 The Benchmark dataset

Benchmark aims at testing the strengths and the weaknesses of matching sys-
tems, depending on the availability of ontology features. This dataset has 111
tests, requiring to match an ontology written in OWL-DL to another one:

– Tests 1xx - compare the original ontology with itself, a random one and its
generalization in OWL-Lite.

– Tests 2xx - compare the original ontology with the ontology obtained by
applying the following set of modifications to it (Fig. 2):
• names (naming conventions: synonyms, random strings, different gener-

alization, translation into other language)
• comments (no comments)
• hierarchy (flattened hierarchy / expanded hierarchy / no specialization)
• instances (no instance)
• properties (no properties, no restrictions)
• classes (flattened classes / expanded classes)

– Test 3xx - compare the original ontology with real ones found on the web.

Since 2004, Benchmark has been generated from the same seed ontology through
the same set of XSLT stylesheets. This means, in particular, that no random
modification is applied to these ontologies: the same 20% of classes are renamed
and this renaming is always the same. This has advantages for studying the
evolution of the field, because the test is always the same.

However, the Benchmark data set can be criticised on three main aspects:



203

208 209 210

204

201-2

205 206

207

251-2 248-2249-2 250-2252-2 202-2

230 231

259-8

259

266

260-4

260-6

260-8

254

262

260-2251-4 258-2

251-6 258-4

251

258260

265

240

261-2 247

261-4

252-8

252 261-8

261

248-4 254-2253-2

248-6 254-4253-4 262-2202-6

250-8 248-8251-8 249-8202-8

254-8250 257-8248 253-8258-8249202

225

228

239233236

259-2 257-2249-4

259-4 257-4249-6

259-6 254-6 253-6 262-4

262-8

250-6

261-6 257-6

262-6

202-4

252-6

258-6

237

246

253

250-4

257

238

252-4

201-4

241

201

101

222221224223

232

201-6

201-8

Fig. 2: The Benchmark lattice – the higher the test is in the hierarchy, the easier
it is. Tests in dashed lines are not reproduced in the tests we used here (see §4).

Lack of realism Benchmark is not realistic because it covers a whole system-
atic space of mechanical alterations and in reality a matcher is not faced
with such a space.

Lack in variability Benchmark always produces the same data set hence it
is not variable. This covers three slightly different kinds of problems: (a)
it can only be used with one seed ontology, (b) it always applies the same
transformations (to the same entities), instead of applying them randomly,
and (c) it is not flexible in the sense that it is not possible to produce an
arbitrary test (such as 12% renaming, 64% discarding properties).

Lack of discriminability [7] Benchmark seems in general easy enough to OAEI
participants so that they do not really allow them to make progress and to
compare them. This is because, many of the proposed tests are easy and
only a few are really difficult.

Our goal is to address variability and discriminability by producing a test gen-
erator (a) independent from the seed ontology, (b) with random modifications,
and (c) which allows to fine tune parameters in order to cover the alteration
space with any precision. With such a test generator it would be possible to gen-
erate different tests than Benchmark focusing on particular application profiles
or particularly difficult cases.

We do not address the lack of realism because Benchmark has been designed
to cover the problem space and not to offer one realistic profile2. Other initiatives,
such as other tracks of OAEI and other generators, address this issue.
2 One reviewer argues that we currently consider an alteration space, instead of a
problem space, which assumes some realism, i.e., that these problems actually occurs.
Moreover, (s)he write that we choose the kind of alteration and the granularity. This
is right. But this alteration space is our attempt to cover, and not to represent, the
problem space.



2.3 Other ontology alignment generators

So far, some alignment test generators have been developed.
An ontology generator inspired by Benchmark is the one developed in [2]. Its

seed ontology is a random tree which is computed using a Gaussian distribution
with average 4 and deviation 4 in order to determine the number of children per
node. The second ontology is obtained from the first one by applying a set of al-
terations, similar to the ones used in Benchmark, such as label replacement, word
addition or removal in labels, node deletion and node child addition and children
shuffling. Then, these two generated ontologies are used to generate alignments
between them. The aim of generating the original ontology is to perform realistic
tests and to allow a wider coverage of variations in their structure.

The generator proposed in [10] satisfies two requirements: (a) to generate the
structure and the instances of two taxonomies, and (b) to generate the mappings
between these two generated taxonomies. Both taxonomies must have a fixed
size and a Boltzmann sampler is used to achieve this. The probabilistic model
used ensures an equal probability of appearance of a tree having a given size.
Therefore, the input data is controlled using this sampler. The number of child
nodes is controlled as well. Then, the mappings between the two taxonomies are
generated, which must not be contradicted by the generated data. To achieve
this goal, three constraints were enforced: the mappings must not introduce a
cycle in the newly obtained graph (the mappings and the two given taxonomies),
the mappings must not contradict the knowledge of the two taxonomies and they
must not entail each other. In the end, instances are generated.

The TaxMe method [7] is build from existing directories and only approx-
imates the reference alignment, it is not really a generator. In XML schema
matching, STBenchmark [1] offers a way to generate one precise test (pair of
schemas) by altering a source schema based on the combination of 11 base alter-
ators. Their combination is defined through a set of input parameters. Swing [6]
takes a similar approach as Benchmark and introduces a new interesting way of
altering ontologies by using patterns. However, it is not an automatic generator
and it is aimed at generating instance data: the same ontology is, in the end,
used for all tests.

We decided to rewrite our own generator because we wanted to reproduce
Benchmark first. Tournaire’s generator was not suited because he was aiming at
realism; Besana’s generator would have been useful but was not available.

3 A modular benchmark test generator

We developed a test generator in Java based on the Jena API3. We present the
principles of the generator (Section 3.1) and the testing strategy (Section 3.2).

3 http://jena.sourceforge.net/ontology/index.html



3.1 Generator principles

Test generator architecture. The basic principles of the test generator is that,
from one ontology, it can generate an altered one and an alignment between these
two ontologies. The generator can as well accept a generated ontology, that is
useful for generating scalability tests.

Because the alterations may be applied in sequence, we designed an alterator
module taking as input an ontology and an alignment between this ontology and
the seed ontology. This module outputs an altered ontology and an alignment
between this ontology and the seed one (Fig. 3).

alterator

p
o

A

o′

A′

Fig. 3: Modular structure of test generators.

Test generator parameters. In order to assess the capability of matchers with
respect to particular ontology features, we consider the following alterations:
remove/add percentage of classes; remove/add percentage of properties; remove
percentage of comments; remove percentage of restrictions; remove all classes
from a level; rename percentage of classes; rename percentage of properties; add
a number of classes to a specific level; flatten a level; remove individuals.

o
o′

R

p

remove
classes

flatten
hierarchy

rename
properties

40%

100%

100%

Fig. 4: Modular one-shot test generation.

Generating a dataset. For modifying an ontology according to a set of pa-
rameters we use the generator as illustrated in Fig. 4. It receives as input the
seed ontology and the parameters which represent the alterations to be apply.
The output is the modified ontology and the reference alignment. The program
is implemented in a serial manner.

The test generator can be also used to reproduce data sets such as Bench-
mark. For that purpose, the program will either generate all the required tests
independently by running in parallel the necessary composition of alterators



253-4

253-4

254-4

254-4

202-4

202-4

o

rename
classes

40%
flatten

hierarchy

100%
remove
instances

100%

rename
classes

40%
flatten

hierarchy

100%
remove

properties

100%

rename
classes

40%

rename
classes

40%

flatten
hierarchy

100%

remove
instances

100%

remove
properties

100%

Fig. 5: Random (left) and continuous (left) test suite generation.

(Fig. 5, left) or generate them in sequence, as the initial Benchmark data set,
i.e., by using a previous test and altering it further (Fig. 5, right). In the latter
case, this corresponds to selecting paths in the lattice of Fig. 2 which cover the
whole data set.

This approach may also be used to generate complete data sets covering
the whole alteration space with a varying degree of precision (incrementing the
alteration proportion by 50% or by 2%).

3.2 Preliminary experiments

Before evaluating matchers on the generated data sets, we have tested the gen-
erator through unit tests, checking if the percentage of alteration was indeed
respected. Initially, the parameters were applied in a random order, using the
bibliographic ontology as basis. From the results, we noticed a non expected
matcher behaviour, that allowed us to improve the generation strategy.
Random vs. continuous policies. Contrary to expected, matchers did not
had a continuous degradation of their performances as more alterations were
applied. This made difficult to read one Benchmark test result, as developers
would like to read them. This is the consequence of generating the dataset fully
randomly (Fig. 5, left), where each test is generated independently from the
others. In this modality, some tests with more alterations may be easier than
other with less alterations by chance.

We validated this explanation by generating continuous tests (Fig. 5, right)
as Benchmark were generated. In this case, new tests are generated from pre-
vious ones with the modular architecture of the generator. This behaviour is
only observable locally, i.e., on one data set. When generating randomly sev-
eral datasets, matcher behaviours are on average continuous. In results reported
below, half of the tests were obtained with the random generation and half of



them with continuous generation. Their results are the same (within 1 percentage
point variation).
Modification dependencies. We observed that test difficulty may not be the
same across tests supposed to have the same amount of alteration. This is ex-
plained by the dependency between alterations. Consider, for example, a scenario
in which we would like to remove 60% of classes and to rename 20% of classes.
According to these two parameters, three extreme cases may happen (as illus-
trated in Fig. 6):

– rename 20% of classes and then remove 60% of classes, including all renamed
classes. In this situation, the test is easier than expected because all renamed
classes have been removed;

– rename 20% of classes and then remove 60% of classes, including a part of
renamed classes. In this situation, the test is as hard as expected because
the required proportion of the renamed classes have been removed.

– rename 20% of classes and then remove 60% of classes, without removing
a renamed class. In this situation, the test is harder than expected because
none of the renamed classes has been removed.

easier

removed classes
renamed classes

expected

removed classes

renamed classes

harder

removed classes

renamed classes

Fig. 6: Test dependency.

Hence, a random disposition of parameters might reduce the really hard
cases. As can be seen from the example, the nominal expected case may be
restored by removing 60% of the classes before renaming 20% of the remaining.
Therefore, we established a relevant order for parameters: remove classes, remove
properties, remove comments, remove restrictions, add classes, add properties,
rename classes, rename properties. In this way, we obtained the expected results.
This order helps determining the paths in Fig. 2 used for generating Benchmark.
Such an order was not previously observed in the Benchmark tests because the
value of parameters, except rename resources, was set to the value of 100%.

4 Benchmark validity

In order to test the validity of the Benchmark dataset principles, we used the
test generator to reproduce them with different characteristics. Three modalities
were used in the evaluation:



1. Regenerate the dataset using the same bibliographic ontology (biblio).
2. Generate datasets from two conference ontologies [11] (cmt and ekaw), of

similar size and expressiveness as biblio.
3. Generate datasets from other ontologies of two other domains (tourism4 and

finance5).

These modalities were chosen because we assume that since participants have
had the opportunity to test their systems with the original Benchmark, their
results may be higher. The same holds for the conference dataset that these
systems had the occasion to deal with, while the third group of tests is new for
them. We thus expected them to be harder. We could evaluate the robustness of
our generator, since the finance ontology has more than 300 classes and almost
2000 individuals.

In order to remove the possibility that the obtained results are an artifact
of the generated test, we ran the tests five times for each method (continuous
and random) and then we computed the average among the obtained results.
Likewise, the tests are the same at each run (these tests are 201-202, 221-225, 228,
232-233, 236-241, 246-254, 257-262, 265-266). We decided not to reproduce the
ones in which the labels are translated into another language or the ones in which
the labels are replaced with their synonyms, because the corresponding alterators
are not sufficiently good. The same algorithms with the same parameters have
been used for all tests (the tests with the original Benchmark have been run
again). In total, the results of this section are based on the execution of (1+(5
ontologies × 5 runs × 2 modalities) × 102 tests × 3 matchers =) 15606 matching
tasks, i.e., a matcher has been run against a pair of ontologies and the result has
been evaluated against a reference alignment.

4.1 Matchers

To test the generator, we used three different matchers participating in previous
OAEI: Aroma, Anchor-Flood (Aflood) and Falcon-AO (Falcon). They are stable
enough and generally available, yet sufficiently different.

Anchor-Flood tries to find alignments starting with some anchors and using
the locality of a reference (super-concepts, sub-concepts, siblings, etc.) [8]. It is
composed of two modules. The first one uses lexical and statistical information
to extract the initial anchors. Then, starting with these anchors, it builds small
blocks across ontologies and establishes the similarities between the two found
blocks. Each similarity is stored in a partial alignment and, the process continues
using as anchors the pairs found in the partial alignment. The process finishes
when no more correspondences are found. We have used the preliminary OAEI
2010 version of Aflood.

Aroma [3] is divided in three stages. First, it builds a set of relevant terms
for each entity, i.e. class or property. In order to achieve this, a single and binary

4 http://www.bltk.ru/OWL/tourism.owl
5 http://www.fadyart.com/ontologies/data/Finance.owl



term extractor applied to stemmed text is used to extract the vocabulary of
a class or a property. In the second stage, the subsumption relations between
entities are found using the implication intensity measure and an association rule
model. Third, it establishes the best correspondence for each entity deducing first
the equivalence relations, then suppressing the alignment graph cycles and the
redundant correspondences. We have used Aroma 1.1.

Falcon-AO [9] is composed of two matchers: a linguistic (LMO) and a struc-
tural matcher (GMO). The linguistic matcher has two parts. The first one uses
string comparisons and the second one uses virtual documents to describe each
ontology entity. A virtual document is a “bag of words” containing the name,
the comments, the labels and also neighbors names or labels of an entity. Vector
space techniques are employed to measure the similarity between these virtual
documents. The structural matcher represents an ontology as a bipartite graph
and tries to find the similarity between the two input ontologies. In the end, if the
result returned by the linguistic matcher is satisfying, it is returned. Otherwise,
the structural matcher result is returned. We have used Falcon-AO 0.3.

4.2 Results

Table 1 provides the aggregated precision, recall and F-measure for each matcher
and each data set. We discuss them only from the standpoint of F-measure
because it allows for a more direct comparison.

original biblio cmt ekaw tourism finance Σ

P F R P F R P F R P F R P F R P F R F
Aflood .99 .87 .78 .75 .67 .59 .95 .72 .58 .95 .72 .58 .94 .76 .62 .96 .78 .66 .75
Aroma .79 .63 .53 .86 .68 .55 .92 .65 .50 .96 .68 .52 .85 .74 .64 .94 .73 .60 .68
Falcon .83 .76 .70 .85 .77 .70 .82 .69 .59 .89 .70 .57 .83 .73 .65 .92 .77 .66 .74

Average .74 .71 .69 . .70 .74 .76 72

Table 1: Average results (on 5 random and 5 continuous runs) for the 2xx Bench-
mark series for the three matchers and six data sets.

First, we observed independently that the difficulties encountered by a matcher
at a test are preserved across the seed ontology. Hence, Benchmark is useful for
identifying weaknesses in matchers. What we mean here, is that by looking at the
results, test by test, the relative performance of test for a matcher is preserved
across seed ontologies. This is not visible in Table 1.

Then, for most of the matchers, the results obtained with the original Bench-
mark are not the highest. This goes counter our expectation of a positive bias in
favour of the original Benchmark. In fact, the results are contrasted since Aflood
has a significantly better score than with the reproduced Benchmark, Aroma
has its worse score and Falcon has a very close score. It seems that the original



Benchmark is quite hard because for two matchers, results are better on the
(randomised) reproduced Benchmark. Original Benchmark results, even if they
do not show a systematic positive bias, seems to be the outlier.

The two other groups of tests, ekaw and cmt on one hand and tourism and
finance on the other hand, have homogeneous results within the group and dif-
ferent results across groups. This indicates that the type of seed ontology has
an influence on the results but for ontologies of the same type results are ho-
mogeneous. It seems that biblio is harder than conference which is harder than
tourism-finance and this for all matchers (but Falcon).

But overall, results are found in the same range. If we exclude the results of
Aflood and Aroma on the original Benchmark, the results of matchers vary of
11, 9 and 8 percentage points respectively.

Similarly, the order between matchers observed with the original Benchmark
seems to be preserved in four out of six data sets. Surprisingly, the main outlier is
the reproduced Benchmark. However, the few percentage point difference that is
observed do not allow us to conclude, especially with respect to the 24 percentage
points observed for the original Benchmark and the 10 percentage points in
reproduced Benchmark.

What we observe is a relative homogeneity of these results: there is no more
diversity across matchers than across data sets. In fact, the lack of discriminabil-
ity observed in Benchmark is even reinforced in the other tests: the original
Benchmark has 24 percentage points span while the reproduced biblio has only
10 points and the other data sets are lower. Hence, this is a property of the
alterations generating Benchmark, thus another type of generation should be
used.

5 Conclusion

In this paper we have looked for improving the tools available for evaluating
ontology matchers. For that purpose, we have developed a test generator which
follows a simple modular architecture and API. This generator does not depend
on the seed ontology. It allows different modifications at each run of the program
and the set of input parameters can be adjusted in order to cover the problem
space with any precision. The generator can be extended by adding new ontology
modifier modules and it can be used for generating individual tests with con-
trolled characteristics as well as full data sets. Thus, we have largely improved
the variability of generated tests.

The test generator was used to reproduce the Benchmark dataset not only for
the bibliographic ontology, but for other ontologies with different structures. We
observed that the obtained results are not better on original Benchmark than
on new and different ontologies. This contradicts the assumption that there is a
systematic positive bias towards Benchmark.

We observed that for the same type of seed ontology, each matcher has ho-
mogeneous results and that the order between matchers obtained on the original



Benchmark (Aflood, Falcon, Aroma) was preserved in four cases out of six. How-
ever, the difference between systems is too small to draw definitive conclusions.
The new tests still lack discriminability. It is thus a feature of the Benchmark
generation modalities.

We plan to improve these experiments by using other matching systems. This
can be achieved using the SEALS platform and it is planned for the OAEI 2011
campaign for which the generator will be used. We may also use different more
difficult generation modalities, in order to increase discriminability. Another per-
spective is to use the test generator for exploring the notion of test hardness,
that could help to better approach the lack of discriminability.

Acknowledgements

This work has been partially supported by the SEALS project (IST-2009-238975).

References

1. Bogdan Alexe, Wang-Chiew Tan, and Yannis Velegrakis. STBenchmark: towards
a benchmark for mapping systems. In Proc. 34th Very Large Databases conference
(VLDB), Auckland (NZ), pages 230–244, 2008.

2. Paolo Besana. Predicting the content of peer-to-peer interactions. PhD thesis,
University of Edinburgh, 2009.

3. Jérôme David, Fabrice Guillet, and Henri Briand. Association rule ontology match-
ing approach. International Journal of Semantic Web and Information Systems,
3(2):27–49, 2007.

4. Jérôme Euzenat, Christian Meilicke, Heiner Stuckenschmidt, Pavel Shvaiko, and
Cássia Trojahn dos Santos. Ontology alignment evaluation initiative: Six years of
experience. Journal of Data Semantics, XV:158–192, 2011.

5. Jérôme Euzenat and Pavel Shvaiko. Ontology matching. Springer-Verlag, Heidel-
berg (DE), 2007.

6. Alfio Ferrara, Stefano Montanelli, Jan Noessner, and Heiner Stuckenschmidt.
Benchmarking matching applications on the semantic web. In Proc. 8th Extended
Semantic Web Conference (ESWC), Herssounisos (GR), number 6644 in Lecture
notes in computer science, pages 108–122, 2011.

7. Fausto Giunchiglia, Mikalai Yatskevich, Paolo Avesani, and Pavel Shvaiko. A large
scale dataset for the evaluation of ontology matching systems. Knowledge engi-
neering review, 24(2):137–157, 2009.

8. Md. Seddiqui Hanif and Masaki Aono. Anchor-flood: Results for OAEI 2009. In
Proc. 4th ISWC workshop on ontology matching (OM), Washington (DC US), 2009.

9. Wei Hu, Yuzhong Qu, and Gong Cheng. Matching large ontologies: A divide-and-
conquer approach. Data and Knowledge Engineering, 67(1):140–160, 2008.

10. Rémi Tournaire. Découverte automatique de correspondances entre ontologies. PhD
thesis, Université de Grenoble, 2010.

11. Ondřej Šváb, Vojtěch Svátek, Petr Berka, Dušan Rak, and Petr Tomášek. Onto-
farm: Towards an experimental collection of parallel ontologies. In Poster Track
of ISWC, 2005.


