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Abstract. We present the OAEI 2012 evaluation results for the matching system
GOMMA developed at the University of Leipzig. The original application fo-
cus of GOMMA has been the life science domain but as a generic tool it can
also match ontologies from other areas. It could thus participate in all OAEI
tracks running on the SEALS platform. GOMMA supports several methods for
efficiently matching large ontologies in particular parallel matching on multiple
cores or machines, reducing the search space as well as reusing and composing
previous mappings to related ontologies.

1 Presentation of the system

1.1 State, purpose, general statement

GOMMA (Generic Ontology Matching and Mapping Management) [6] is a compre-
hensive infrastructure to manage and analyze the evolution of life science ontologies
and mappings [4]. It includes a generic component to semantically align (match) on-
tologies. GOMMA is able to match very large ontologies as common in the life sci-
ences. To deal with large ontologies GOMMA provides several scalable match tech-
niques:

1. Parallel ontology matching on multiple computing nodes and CPU cores [2],
2. Indirect computation of ontology mappings by reusing and composing previously

determined ontology mappings via intermediate ontologies [3], and
3. A newly introduced blocking approach to reduce the search space by restricting

matching to overlapping ontology parts.

These techniques all support efficiency, in particular reduced computation times. The
latter two approaches can also improve match quality. While the original focus of
GOMMA has been in the life science domain, the match component is generic. We
could thus participate in all 2012 match problems of the Ontology Alignment Evalua-
tion Initiative (OAEI)1 running on the SEALS platform.

1.2 GOMMA Matching Workflow

The GOMMA matching workflow used for OAEI 2012 is displayed in Fig. 1. In the
following, we describe its three main phases, namely the initial phase (including the
new blocking strategy), the matching phase as well as a set of postprocessing steps.

1 http://oaei.ontologymatching.org
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Fig. 1. GOMMA matching workflow for OAEI 2012

Generally, the input of the matching are two ontologies, source O1 and target O2,
each consisting of concepts (classes, properties) as well as a structure (relationships
between concepts, e.g., is a, part of). Internally, ontologies are represented as rooted,
acyclic graphs. A concept has different attributes such as its name or a set of synonyms.
The output of the matching workflow is a mapping M consisting of a set of correspon-
dences whereby each correspondence has a similarity value denoting the strength of the
connection between two concepts c1 and c2: M = {(c1, c2, sim) |c1 ∈ O1, c2 ∈ O2}.

Initial Phase and Blocking In the initial phase we first parse and load the ontologies.
In this step, we assign all information relevant for matching to concepts, in particular
name, synonyms, comments and instances. Note, that some attributes are multi-valued,
e.g., there can be several synonyms or instances per concept. The information is stored
within text attributes and used for string-based match comparisons.

During preprocessing we also check the language of attribute values (using xml:lang
of rdfs:label). In case it is different from English we translate the term to English and
add it as a new synonym to the concept. We used a free translation API2 to automatically
translate non-English terms. Using this facility, we iteratively established a dictionary
to store the retrieved synonyms. All concept attribute values are further normalized, i.e.,
we remove delimiters and stop words, and normalize strings to lower case.

In the initial phase, we further apply a blocking strategy to reduce the number of
comparisons for large ontologies. There have been various approaches to reduce the
search space for large scale matching (see [7] for a recent survey). Our current approach
is different and focuses on ”asymmetric” match problems where a specific ontology is
matched to a broader ontology from which only a part is relevant. An example for such
an asymmetric match problem is the alignment of a pure anatomy ontology such as
the Foundational Model of Anatomy (FMA) against a broad biomedical ontology such
as NCI Thesaurus covering anatomy in one part. Another scenario for linked data is
to match a domain-specific ontology, e.g. from the geographical domain, to the broad
DBpedia ontology.

To deal with such match problems we aim at automatically identifying the relevant
part of the broader ontology and to match only this part with the more specific, and typ-
ically smaller ontology. This blocking strategy is expected to (1) dramatically improve
efficiency in applicable cases and (2) improve match quality (in particular precision)
due to fewer false positive correspondences. The blocking strategy is based on an initial
mapping and works in the following steps:

2 http://mymemory.translated.net/
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Fig. 2. Blocking ontology subgraphs

1. Determine an initial mapping Minitial using a very efficient match method, e.g.,
exact name matching with hashed attribute values (applied in OAEI 2012) or the
reuse of precomputed mappings.

2. Identify a set of subgraph roots below the top root. Determine the number of cor-
respondences from Minitial per subgraph root, |Minitial (subgraph (root))|, by
propagating the correspondence counts from the leaf level upwards. In case of mul-
tiple inheritance, the correspondence count is partially propagated upwards the on-
tology structure (for the example in Fig. 2 this is done for O2 concept c2).

3. For each root compute a correspondence fraction corrFrac(root) that is the num-
ber of correspondences assigned to the root |Minitial (subgraph (root))| divided
by the overall size of the initial mapping |Minitial| (see Fig. 2).

4. Select the most valuable root(s) with a corrFrac above a given threshold. All con-
cepts in the subgraph of this root will be used for matching, other concepts will
not be compared. If no root exceeds the threshold, blocking is not applied, i.e., the
whole ontology needs to be matched since no dominating part is found.

Fig. 2 illustrates the approach for two ontologies and a set of predetermined corre-
spondences. To choose a promising subgraph for matching, we consider roots on the
second ontology level (b1,e1,h1 for O1 and l2,n2,p2 for O2 ). Applying a corrFrac
threshold of 0.7 means that a subgraph must cover at least 70% of all initial correspon-
dences. This is only the case for root l2 in O2, i.e., in the example only O2 can be
partitioned so that the whole O1 will be matched with the l2-subgraph of O2.

Matching GOMMA’s matching component allows for direct and indirect matching of
ontologies. Direct match strategies involve internal ontology knowledge like concept-
associated or structural information. By contrast, our indirect matching is based on
the composition of existing mappings to intermediate (background) ontologies. To ef-
ficiently match especially large ontologies, we further parallelize the direct matching
process. In the following we describe the match strategies used for OAEI 2012.

To directly match two ontologies we combine up to three different matchers. We
always apply a name/synonym matcher that determines the maximal string similarity
for the names and multi-valued synonyms per concept pair. In case the necessary infor-
mation is available, we also apply a comment matcher and instance matcher. GOMMA
supports further matchers such as structural matchers [6] but we found them less ef-
fective for life science ontologies. We thus did not include them in our default strategy
used for all OAEI tasks.
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To efficiently match large ontologies we apply intra-matcher parallelization [2]. For
this purpose, we uniformly partition the input ontologies into smaller fragments with
the same number of concepts and we solve the fragment-level match tasks in parallel.
This parallelization is made easy since for the applied matchers all information used for
matching is directly associated to the concepts.

To improve match quality we further apply an indirect composition-based match
approach [3]. This approach allows the reuse of existing high quality mappings to ef-
ficiently match two so far unmatched ontologies. For example, anatomy ontologies O1

and O2 can be matched by composing two mappings O1 - H and H - O2 with an
intermediate ”hub” ontology H , e.g. UMLS. For OAEI we used our direct match strat-
egy to precompute several mappings from the source and target ontology via different
intermediate ontologies and combine these composed mappings. Since the resulting
mapping may still be incomplete, we identify the unmatched source and target concepts
and match them directly to extend the result mapping.
Postprocessing The main task of this phase is the combination or aggregation of the
directly and indirectly determined mappings and to select the most likely correspon-
dences from the combined mapping. Before this, we first filter out all correspondences
per mapping with a similarity below a specified threshold. To combine several map-
pings we take their union and average the similarity values per correspondence. We
then apply a maxDelta selection [1] for the remaining correspondences. This approach
returns for each concept only those correspondences with the maximal similarity value
or those within a small delta distance to the maximal value, i.e., we only keep the best
correspondences for each source and target concept.

We further apply techniques to improve the consistency of mappings by removing
presumably wrong and by adding presumably missing correspondences. We currently
check four simple constraints; additional checks may be added in the future to fur-
ther improve consistency. Fig. 3 shows small exemplary scenarios for each consistency
checker. The first two conditions check situations that may result in a removal of cor-
respondences (to improve precision), similar as in systems like ASMOV [5]. The two
other conditions can lead to the addition of correspondences (to improve recall).

First, correspondences must meet a so-called Criss Cross condition (Fig. 3a), i.e.,
we eliminate conflicting correspondences (c1, d1) and (c2, d2) where c2, is a child of
c1, but d1 a child of d2 (or vice versa). One can either remove both correspondences
or only remove the one with the lower similarity value. Second, we check the datatype
consistency (Fig. 3b). In particular, we remove correspondences between properties and
classes, i.e., only class-class / property-property correspondences are allowed.



The first rule to extend the mapping checks whether two concepts match but only a
subset of their children (Fig.3c). Here, we add a correspondence for the most similar,
unmatched pair of children. Finally, in case of matching properties we add correspon-
dence(s) for the domain/range classes if they have no corresponding class, or we con-
clude a property match if both, domain and range class, have correspondences (Fig.3d).

1.3 Adaptations made for the evaluation

GOMMA’s modular structure helped us to adapt the system to work for the OAEI
tasks. One major effort was the adaptation of the ontology import mechanism. We
implemented a new SAX-based ontology parser which can be used to load multiple
ontologies in parallel via threading. Usually, parallel execution of match workflows in
GOMMA requires multiple compute nodes. To better utilize the single machine used
for the evaluation, we adapted parallel matching to the use of threading to distribute
several match jobs on all available CPU cores on only one machine.

1.4 Link to the system and parameters file

GOMMA is available at http://dbs.uni-leipzig.de/GOMMA.

2 Results

We now present and discuss the evaluation results of GOMMA in the OAEI 2012 cam-
paign. We participated in six tracks: Anatomy, Large Biomedical Ontologies, Bench-
marks, Library, Conference and Multifarm. Detailed results and descriptions about the
used computation environments are provided on the OAEI 2012 result page3.

2.1 Anatomy and Large Biomedical Ontologies

Anatomy Results For the Anatomy Track two real-world anatomy ontologies namely
the Mouse Anatomy (2,744 concepts) and the anatomy part of the NCI Thesaurus (3,304
concepts) should be matched. GOMMA achieves a good F-Measure value of ≈87% in
a short amount of time (17 sec.) (Fig.4). In a separate configuration using background
knowledge (GOMMA-bk) we apply indirect (composition-based) matching [3] using
mappings to three intermediate ontologies (UMLS, Uberon or FMA). By doing so we
could increase F-Measure to 92.2% in a reduced execution time (15 sec.).
Large Biomedical Ontologies Results This track was extended w.r.t. its first evalu-
ation in OAEI2011.5. In addition to matching FMA and NCI, two new tasks namely
FMA–SNOMED and SNOMED–NCI were introduced. All tasks are divided into three
subtasks where small and large ontology fragments or whole ontologies need to be
matched. In this track GOMMA’s approaches (composition-based matching, parallel
matching and blocking) helped to achieve high quality match results with relatively low
execution times. Since all ontologies consist of more than 4,000 (and up to 120,000)

3 OAEI 2012 campaign: http://oaei.ontologymatching.org/2012/results/
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Fig. 4. Evaluation results for the Anatomy and Large Biomedical Ontologies tracks (FMA–NCI,
FMA–SNOMED, SNOMED–NCI).

concepts, we apply our blocking strategy (Sec. 1.2) to reduce the overall runtime. Block-
ing leads to the selection of subgraphs for NCI (FMA–NCI task) and SNOMED (FMA–
SNOMED, SNOMED–NCI) thereby reducing the search space by factor 2–6.

The results are summarized in Figure 4. The shown F-Measure values are based on
the UMLS reference mapping. There are further results based on refined reference map-
pings available4. As for the Anatomy task, using background knowledge increases the
match quality substantially with still acceptable runtime. The best results with 93-94%
F-Measure are achieved for the small FMA-related subtasks for GOMMA-bk (map-
pings to UMLS, Uberon). The small SNOMED–NCI task seems to be more challeng-
ing (≈75% F-Measure with bk). Comparing GOMMA and GOMMA-bk for FMA-
SNOMED, we observe a very strong improvement of≈40% F-Measure when applying
composition-based matching. For the whole FMA-SNOMED (SNOMED-NCI) task we
achieve a good F-Measure of 71% (64%) thereby consuming ≈ 30 min computation
time. Overall GOMMA-bk takes slightly longer than GOMMA except for the whole
FMA-SNOMED task. In this case the result of composition-based matching might al-
ready cover a higher part of the input ontologies and we do not need to execute a direct
matching on whole ontologies.

2.2 Benchmarks and Library

Benchmarks Track Results This track is subdivided into five sub-tracks namely Bib-
lio, Finance and Benchmark 2–4. There are multiple match tasks per sub-track where
one source ontology is compared with a number of systematically modified target on-
tologies. Overall, GOMMA achieved F-Measure values in the range between 60–70%
with favoring precision over recall. The recall results are slightly better than in the
2011.5 campaign due to new postprocessors to extend the mapping as described in
Sec. 1.2. Using our new thread-based parser, we solved each of the problems in less
than one minute.
Library Results In this new, real-world match task the two ontologies STW and The-
Soz consisting of about 6,500 and 8,500 concepts need to be aligned. Both ontologies
provide a lightweight vocabulary for economic/social science topics and are used in
libraries for indexing and search. GOMMA achieved a high recall of ≈91%, however

4 oaei.ontologymatching.org/2012/results/largeBioMed/



the precision was low (54%). The resulting F-Measure of 67% is comparable to the
Benchmark results. Since the vocabularies provide a huge number of labels and syn-
onyms (≈5 per concept), our name/synonym matcher had to evaluate 40,000x32,000
≈1.3 billion comparisons leading to a runtime of ≈13min. on a 2 core machine.

2.3 Conference and Multifarm

Conference Results The Conference track consists of 16 small ontologies from the do-
main of conference organization. Each ontology must be matched against each other. In
summary, we required about 91 seconds to solve the complete task. The match quality
was evaluated against an original (ra1) as well as entailed reference alignment (ra2). For
both evaluations we achieved F-Measure values better than the Baseline2 results (61%
for ra1 and 56% for ra2). Compared to the 2011.5 campaign, we were able to increase
match quality by about 3% in terms of F-Measure (for ra2). In particular, we improved
recall by applying the postprocessing methods described in Sec. 1.2.
Multifarm Results The Multifarm task is an extension of the Conference task since
conference ontologies in nine different languages (e.g. English, Russian, Chinese) should
be matched among each other (36 language pairs). We performed a translation ap-
proach (see Sec. 1.2) as a preprocessing step to translate non-English labels into English
ones, so that we can afterwards match the translated ontologies with each other. Overall
GOMMA required 35 minutes to solve all 36 match problems, i.e. less than one minute
per language-pair. The average F-Measure is 35% with an average recall (precision) of
31% (45%). The best results emerge for language pairs where one language is English
or for pairs with similar languages, e.g., Spanish to Portuguese with 47% F-Measure.

3 General comments

3.1 Comments on the results and future improvements

The evaluation confirmed that GOMMA has the following strengths:

– Scalable matching of ontologies of different size by performing blocking, parallel
matching and mapping composition. A high efficiency and effectiveness is espe-
cially achieved in the Anatomy and Large Biomedical Ontologies tracks.

– Substantial improvement of match quality by using domain knowledge, in partic-
ular by composing mappings with domain-specific hub ontologies or by applying
multi-language translation services for improved synonyms.

We plan to further improve the consistency of the result mapping by applying addi-
tional checks during postprocessing. Moreover, we like to apply a more general block-
ing method to boost both the runtime and match quality (precision) for additional match
problems.

3.2 Comments on the OAEI 2012 procedure

Measuring the overall runtimes per match task and system is useful but insufficient to
identify and analyze underlying bottlenecks. For example, it would be helpful to see



the time requirements for major phases such as import vs. match. When evaluating
scalability (e.g., between a 1-core and a 4-core CPU) the import time might be constant
whereas the real match time is reduced with good speed-up. Moreover, it might be
interesting to compare the runtime of tools over different years. For each participating
tool, available older versions might be re-executed on the currently used machine such
that execution times are comparable.

Tools developed by co-organizers of OAEI tracks should not be considered in the
official evaluation. This is to avoid the possible suspicion that the design of the match
tasks might be tailored to the co-organizers’ tools or that the configuration of these tools
might be favored by the co-organizers’ access to critical data that is unknown for other
participants (e.g., Library track gold standard).

4 Conclusion

The participation in six tracks of OAEI 2012 showed that GOMMA is able to effi-
ciently and effectively match ontologies of different size. Especially in the Anatomy
and Large Biomedical Ontologies tracks GOMMA’s techniques such as composition-
based matching, parallel matching and blocking showed to be valuable for a scalable
ontology matching. We envision further improvements of GOMMA, e.g. by applying a
more general blocking strategy or by additional consistency checks for result mappings.
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