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Abstract. In the course of developing an ontology-based data integration sys-
tem (OBDI) that includes automatic integration of data sources, and thus, in-
cludes algorithmic ontology mapping, we have made the following observations.
A mapping method may determine that an entity in one ontology maps with equal
likelihood to two or more entities in the other ontology. The mapping and refor-
mulation of certain queries is correct only if one pairing is chosen. The correct
choice may be different for different queries. Finally, the query itself may lend
additional semantics that correctly resolve the ambiguity.
These observations suggest a targeted ontology mapping problem, query-specific
ontology mapping. In addition to the two ontologies, a query serves as a third
argument to the mapping algorithm. Further, the mapping algorithm need not
produce a complete mapping, but only a partial mapping sufficient to correctly
reformulate the query. We detail a number of open issues on how this problem
statement might be refined, and consider features of its evaluation.

Ambiguity in Ontology Mapping: Consider the idealized representation (Fig. 1)
of a critical issue in the automatic integration of new data sources in an OBDI sys-
tem. T and S respectively represent target and data source ontologies. Looking at the
ontologies alone, there is insufficient information to determine if the class T:People
should be mapped to S:Teacher or to S:Student. A third possibility is a one-to-many
mapping entailing both. Given the SPARQL query (Fig. 1c), it becomes clear that the
query should be reformulated using only the mapping {T:People = S:Teacher}. A com-
plementary query about students should be reformulated using only the complementary
mapping. Thus, any static chose of one mapping will yield reformulated queries that
return incorrect results.

Formulations of Query-Specific Ontology Mapping: In our system we compute
a similarity matrix between all entities in the two ontologies [3]. The details may be
borrowed from any ontology mapping algorithm that includes this step [2]. Given a
query on the target ontology, our system uses a joint probability model to identify a
maximal scoring, partial mapping that covers the target ontology entities mentioned
in the query or that are needed to reformulate the query. Thus, our solution can be
characterized as one that takes three arguments, and produces a partial mapping specific
to the query.

There are at least two other approaches that may be considered and that produce a
complete mapping and thus retain more of the standard definition of ontology matching.
First is to consider complex mappings. For example, instead of choosing {T:People =
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(b) Ontology S

Prefix course : < T/Course >

Prefix people : < T/People >

Select ?t

Where {
?c course : time ?t .

?c course : teacher ?p .

?p people : name “Einstein′′ .}

Note that since the predicate of a triple pattern is not allowed to be a variable
in our definition, there exists only one query graph for each query q. The query
graph of the SPARQL query in Figure ?? is shown in Figure ??.

2.3 Problem Definition

A ss-path correspondence records the mapping confidence between two ss-paths.

Definition 9 (SS-PATH CORRESPONDENCE). Given two graphs G and
G′, a ss-path correspondence between two ss-paths p and p′ (denoted by πp,p′) is
a tuple < p, p′, cp >, such that p ∈ GRAPH-SS-PATH-SETG, p′ ∈ GRAPH-SS-
PATH-SETG′ , and cp is a confidence measure.

We say p ∈ πp,p′ , and p′ ∈ πp,p′ . We also use απp,p′ to denote the confi-
dence measure, which is απp,p′ = cp. In the above definition, we assume the
correspondence measures equivalence.

Definition 10 (MATCH CANDIDATE). Given a query graph Tq, a graph
G is called a match candidate in terms of a set of correspondences ΩTq,G, where
ΩTq,G = {πp,p′ : p ∈ GRAPH-SS-PATH-SETTq

, p′ ∈ GRAPH-SS-PATH-SETG},
if the following conditions are satisfied:

– G is a subgraph of S;
– SINKG ⊆ SINKS;
– for all ss-path p ∈ GRAPH-SS-PATH-SETTq

, there exists exact one ss-path
correspondence πp,p′ ∈ ΩTq,G, where p′ ∈ GRAPH-SS-PATH-SETG;

– for all ss-path p′ ∈ GRAPH-SS-PATH-SETG, there exists exact one ss-path
correspondence πp,p′ ∈ ΩTq,G, where p ∈ GRAPH-SS-PATH-SETTq

;
– for all pair of ss-paths p1, p2 ∈ GRAPH-SS-PATH-SETTq

, if SOURCEp1

= SOURCEp2 , the two corresponded ss-paths p′1, p
′
2 ∈ GRAPH-SS-PATH-

SETG, πp1,p′
1
∈ ΩTq,G, πp2,p′

2
∈ ΩTq,G, also share the same source, SOURCEp′

1

= SOURCEp′
2
;

(c) SPARQL query

Fig. 1. Example ontologies and SPARQL query.

S:Teacher} or {T:People = S:Student}, the mapping system can detect “Teacher is the
People who teaches” (similar for Student). However, to the best of our knowledge, there
is no automatic system that can detect this kind of complex mapping.

Another approach may consider an entire workload of queries, as a batch or as a con-
tinual pay-as-you-go refinement. In other words, a complete mapping is determined, but
the information in a set of queries is used to bias the choices made. As many applica-
tions comprise a set of dynamic web pages, their query set is easily identified. Consider
the example and a course selection application. Since students are often interested in
who is teaching a class, (and their grading policy), and privacy laws disallow revealing
their fellow student’s enrollment, the mapping {T:People = S:Teacher} would always
be correct. Incremental, pay-as-you go, solutions could integrate crowd-sourcing.

The pedagogical example’s brevity shouldn’t be used to diminish the problem’s im-
portance. Comparing to Clio’s1 algorithms our system demonstrates favorable results
[1, 3]. Inspection of individual results suggests that resolving ambiguity is the primary
source of improvement, and can be significant. However measuring the quality of the
solutions, as a whole, and quantifying the frequency of ambiguity poses its own set of
problems. Gold standard baselines must include queries and correct mappings. OAEI
benchmarks cannot be used directly. Correct query reformulation may not require a
unique mapping. Entity level ambiguity may not manifest wrt query reformulation,
making it hard to identify through manual curation. To date, we have created three
such test cases2. The test suite accommodates the unique mapping problem by includ-
ing additional partial mappings and including test data corresponding query results.
Not all ambiguity may be revealed. Our inspection of individual results looked at the
discrepancies between the two systems. False negatives are not quantifiable.
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1 Clio is an automatic relational schema mapping system. However, the algorithms are applica-
ble to ontologies.

2 The test cases are available, see http://www.cs.utexas.edu/~atian/page/dataset.html


