
Utilizing Regular Expressions for
Instance-Based Schema Matching

Benjamin Zapilko, Matthäus Zloch, and Johann Schaible

GESIS - Leibniz Institute for the Social Sciences
Unter Sachsenhausen 6-8, 50667 Cologne, Germany

{benjamin.zapilko,matthaeus.zloch,johann.schaible}@gesis.org

Abstract. Statistical data consists mostly of numerical values, entries of
codelists like country codes or acronyms for gender. Such values are typ-
ically described according to specific patterns. In this paper we present
a novel approach for instance-based schema matching, where regular ex-
pressions are utilized for matching patterns of instance values.

1 Motivation and Background

In various domains, e.g. the social sciences, the matching of statistical data is
a typical task. Schema elements of statistical data, e.g. rows or columns of a
spreadsheet, are named usually by simple and short labels, sometimes even with
abbreviated terms. However, the structure and semantics of their instances (e.g.
numerical values, entries of codelists) differ in various aspects from text-heavy
data. Instances are often described by a specific syntactical pattern, e.g. dates
consist of numerical values divided by periods or slashes or a three-letter code
for a geographical area.

For instance-based schema matching [3] states that different domains reveal
new challenges like treating new types of information resources, e.g. spatial or
temporal information or domain-specific constrains. According to [2] especially
domain-specific values, significant occurrences and patterns of values are relevant
characteristics to be considered at instance level, as well as integrity constraints
for schema elements and their instance values. In [1] the matching process is en-
hanced by applying a constraint-based matching. Moreover, regular expressions
and catchwords are considered for instance-based schema matching in [4]. We
focus on statistical data, where the potential of patterns and regular expressions
for schema matching can be fully exposed.

2 Schema Matching using Regular Expressions

By utilizing pattern classes our approach considers two schema elements as
a match, if their instances can be expressed via at least one regular expres-
sion of the same pattern class. We define multiple pattern classes, which corre-
spond to a specific data element, e.g. dates, age groups or geographical codes,

and contain various patterns for describing this data element. For a data ele-
ment ”date” different patterns might be e.g. [0-9]{4}, [0-9]{2}-[0-9]{4} or
[0-9]{2}.[0-9]{2}.[0-9]{4}. Each pattern is expressed as a regular expres-
sion and is assigned a weighting, which states the accuracy of the pattern to
compass typical instances of the data element. Inside a pattern class the regular
expressions are sorted by their weightings in descending order.

We assume two datasets M and N with their schema elements SM ∈ M
and SN ∈ N . The pattern classes Cx with Cx = {(regex, ω)|regex matches x,
0 < ω < 1} contain multiple regular expressions regex describing the statistical
data element x of the class. They are accompanied with a weighting ω.

For each pattern class Cx, we compute an average weighting for every schema
element SM and SN . This average weighting indicates how often instances of the
schema element can be expressed by a pattern of the class. Hereby, as soon as an
instance can be expressed by a (regex, ω) ∈ Cx, the value of ω is added to the sum
of all weightings, whose regular expressions previously matched another instance
from this same schema element, resulting in the final

∑
0 ω. The average is then

retrieved by normalizing this sum regarding the total number of instances inside

this particular schema element. For each SM , this is avg(SM) =
∑

0 ω

|Instances in SM | .

For SN the average is calculated analogously. If this average weight is not 0, the
schema element is collected among its average weight in a set. We define these
sets as Mx and Nx with Mx = {(SM , avg(SM)} and Nx = {(SN , avg(SN)}.

The Cartesian product of Mx and Nx is computed and added to Matchesx,
in which a triple (SM , SN , avg(SM) ∗ avg(SN)) defines a match between a SM

and a SN with the probability of avg(SM) ∗ avg(SN). Finally, the result set
Matchesx contains all matches between two datasets M and N .

Our approach has been implemented in Java using the JENA API. The source
code and an executable jar file are available at https://github.com/mazlo/smurf.
In first experiments with real-world statistical data we obtained better results
for matching schema elements than other existing matching systems. A detailed
evaluation with generic test datasets is currently work-in-progress. We aim to
extend our approach to extract patterns from instance values and to generate
weightings automatically. Feature extraction from instance values can enhance
our approach in computing weightings and in assigning regular expressions to
adequate pattern classes.

References

1. Engmann, D.; Maßmann, S. Instance Matching with COMA++. BTW Workshops,
2007, 28-37

2. Halevy, A. Why Your Data Won’t Mix Queue, ACM, 2005, 3, 50-58
3. Shvaiko, P.; Euzenat, J. Ontology Matching: State of the Art and Future Challenges.

IEEE Transactions on Knowledge and Data Engineering, 2011, 99
4. Zaiss, K.; Schlueter, T.; Conrad, S. Instance-Based Ontology Matching Using Differ-

ent Kinds of Formalisms. Proceedings of the International Conference on Semantic
Web Engineering, Oslo, Norway, July, 2009, 29-31

