
ODGOMS - Results for OAEI 2013**

I-Hong Kuo1,2, Tai-Ting Wu1,3

1  Industrial Technology Research Institute, Taiwan
2 yihonguo@itri.org.tw
3 taitingwu@itri.org.tw

Abstract. ODGOMS  is  a  multi-strategy  ontology  matching  system  which
consists of elemental level, structural level, and optimization level strategies.
When it starts to match ontologies, it first exploits appropriate string-based and
token-based similarity computing strategies to find preliminary aligned results,
and  then  it  filters  these results  and merges them by  using  the  optimization
strategies. Despite ODGOMS uses simple matching logic, the results show that
it is competitive with other well known ontology matching tools.

1 Presentation of the system

1.1 State, purpose, general statement

ODGOMS (Open Data Group Ontology Matching System) is an ontology matching
system exploited by our looking forward research plan in the company. The target of
mentioned above research plan is to offer people an user-friendly integrated interface
to search and to browse linked open data on the internet. 

The main idea of ODGOMS is to exploit simple but useful matching and merging
strategies to produce robust aligned results.  All strategies used in the system can be
grouped  into  three  groups  that  are  elemental  level  strategies,  structural  level
strategies, and optimization level strategies. 

We have submitted two versions of ODGOMS which are version 1.1 and version
1.2 to participate in OAEI 2013 campaign. Of the two the latter is better than the
former. This is because the latter has fixed some bugs existed in the former and has
added some new features. Since ODGOMS version 1.2 is the latest version of the
system, we only describe the contents of it in the following sections.

1.2 Specific techniques used

ODGOMS focuses on developing individual ontology matching modules for different
matching aspects and on finding an appropriate way to merge all matching modules.

* Supported by the looking-forward research plan in Industrial Technology Research Institute.
The mentioned above plan is named "Data Refining for LOD Using Linked Data Integration
Technology."



Each matching module of ODGOMS can be exploited individually by setting filter
threshold and the positions of input ontologies. The system architecture of ODGOMS
is shown in Fig. 1.

Fig. 1. System architecture of ODGOMS

The workflow of ODGOMS shown in Fig. 1 is described as follows. It first reads
input  ontologies  into the  memory,  then it  runs all  matching modules  individually
which are LabelMatcher,  IDMatcher,  LCSMatcher, SMOAMatcher, PurityMatcher,
TFIDFMatcher, NETMatcher, PBCTMatcher, and PBCSMatcher. After that it uses a
filtering  module  named ThresholdFilter  to  filter  all  aligned results  stored  in  each
matching module, and merges them in an special order by exploiting an optimizating
module named AlignmentMerger. At last, it outputs the integrated aligned results. All
modules are divided into three groups which are elemental level modules, structural
level modules, and optimization level modules. The detailed description of mentioned
above modules are described as follows.

1.2.1 Elemental Level Modules

LabelMatcher  For each entity in the first input ontology, this module finds a best
matched entity in the second input ontology that has at least one common label (e.g.
rdfs:label), and stores them as aligned results. Please note that it deletes non-English
and non-Numeric characters from the labels of input entities and transforms the labels
into lowercase characters before it starts to match entities. 

IDMatcher  The  matching  procedure  of  this  module  is  the  same  as  that  of
LabelMatcher, except that it finds a best matched entity in the second input ontology
for each entity in the first input ontology that has identical ID (e.g. rdf:ID).

LCSMatcher  It finds a best matched entity with highest LCS [5] (Longest Common
Subsequence)  similarity  in  the  second  ontology  for  each  entity  in  the  first  input
ontology and stores them as aligned results. When it computes the LCS similarity of



two input entities, it  first  delete non-English and non-Numeric characters from all
labels (e.g. rdf:ID, rdfs:label, rdfs:comment) of the input entities. Then it computes
the LCS similarities of each pair of labels between the input entities and considers the
highest similarity as the final similarity of the input two entities. The LCS similarity
of two input labels can be computed using the following equation:

In above equation, A and B mean the input labels, function LCSlen(A,B) returns the
length of longest common subsequence between A and B, and functions Length(A)
and Length(B) returns the lengths of A and B respectively.

SMOAMatcher  The  matching  procedure  of  this  module  is  the  same  as  that  of
LCSMatcher, except that it replaces the LCS similarity computing scheme with the
SMOA [4] similarity computing scheme.

PurityMatcher  The  matching  procedure  of  this  module  is  similar  to  that  of
LabelMatcher and IDMatcher,  except  that  it  deletes  all  useless English stopwords
(such as  words “has”)  of  all  labels  within the classes  and properties  in  the input
ontologies before it starts to match ontologies. It can find interesting aligned results
such as the mapping of labels “has_an_Email” versus “email”.

TFIDFMatcher   This module matches only classes from different input ontologies
based  on  the  TF-IDF  [1]  Cosine  similarity  [2]  computing  scheme.  The  idea  of
exploiting text-mining techniques (such as TF-IDF representation) in the system is
inspired by YAM++ version 2012 [6].  The matching procedure  of  this  module is
described as follows. For each class in the first input ontology, it computes the TF-
IDF Cosine similarities of the class and all classes in the second ontology. Then it
chooses the best matched class with highest similarity in the second ontology, and
stores them as aligned results. When it tries to compute the TF-IDF Cosine similarity
of two input classes, it first splits the all labels (e.g. rdf:ID and rdfs:label) of input
classes into two English token sets, and then it computes the TF-IDF values of each
token within the two token sets respectively. Please note that the TF value of a token
means the frequency of this token appears in the token set, and the IDF value of a
token means the inverted frequency of this token appears in all token sets that all
classes hold in the ontology. After that, it normalizes the TF-IDF values of two token
sets,  considers  them as two normalized TF-IDF vectors,  and finally computes the
Cosine similarity of these two TF-IDF vectors.

NETMatcher  It  finds  a  best  matched  class  with  highest  NET  (named-entity
transformation)  similarity  in  the  second ontology for  each class  in  the  first  input
ontology  and  stores  them as  aligned  results.  When  it  tries  to  compute  the  NET
similarity  of  two  input  classes,  it  first  deletes  non-English  and  non-Numeric
characters of all labels (e.g. rdf:ID and rdfs:label) of input classes and splits them into
tokens. Please note that if there are n tokens and n is no less than 2, then at least n-1
tokens leads by capital English character or numeric character. Then it computes the
input classes' NET similarity using the following equation:



In above equation, A and B mean the token sets belong to different input classes,
function  commonTokens  returns  the  total  common  tokens  of  input  token  sets,
function commonPrefix returns the average of total common prefix characters versus
total characters of all tokens within different input token sets. This module can find
interesting  aligned  results  such  as  the  mappings  of  tokens  “OWL”  versus  “Web
Ontology Language” or “PCMembers” versus “Program Community Members”, etc.

1.2.2. Structural Level Modules

There are two structural level matching modules, PBCTMatcher and PBCSMatcher in
the system now. The former computes classes'  integrated similarities using token-
based computing scheme and the latter computes them using string-based ones. The
ideas  of  the  above  matching  modules  are  derived  from  the  matcher
NameAndPropertyAlignment of Alignment API 4.5 [3]. 

PBCTMatcher  The full name of it is Property-based Class Token Matcher. For each
class in the first input ontology, it finds a best matched class with highest integrated
similarity  in  the  second  input  ontology.  It  computes  input  classes'  integrated
similarities  by  combining  the  input  classes'  similarities  and  their  properties'
similarities using the following equation:

In the above equation, CStfidf means the TF-IDF Cosine similarity between the input
classes,  and  PStfidf means  the  TF-IDF  Cosine  similarity  between  the  belonged
properties of input classes. The computing procedure of TF-IDF Cosine similarity is
the same as that of TFIDFMatcher.

PBCSMatcher  The full name of it is Property-based Class String Matcher. It's like
PBCTMatcher,  except  it  computes  input classes'  integrated  similarities  using LCS
(Longest Common Subsequence) similarity computing scheme rather than using TF-
IDF similarity computing scheme in PBCTMatcher.

1.2.3. Optimization Level Modules

ThresholdFilter  It  filters  the  stored  aligned  results  in  each  matching  module
according  to  the  default  filter  threshold,  respectively.  Each  aligned  result  whose
similarity  is  lower  than  the  specified  filter  threshold  is  deleted  from the  original
matching module.

AlignmentMerger  It merges all stored aligned results of each matching module by a
special order. The merging type of AlignmentMerger is called Absorb. That means
when it merges the aligned results of two matching modules, it preserves all aligned
results of the former and filters any aligned results of the latter which is partly or



completely  overlapped in the  former.  A merging example of  AlignmentMerger  is
given in Fig. 2.

Fig. 2. A merging example of AlignmentMerger.

In Fig. 2, AlignmentMerger is to merge the aligned results of the matching modules
A1 and A2.  Let Ci,j be the jth object in ontology i.  If  the aligned results in A1 are
{ <C1,1,C2,1>, <C1,2,C2,4> } and the ones in A2 are { <C1,2,C2,5>, <C1,3,C2,8> }. Because
<C1,2,C2,5> in A2 is partly overlapped with <C1,2,C2,4> in A1, the merged aligned results
are thus { <C1,1,C2,1>, <C1,2,C2,4>, <C1,3,C2,8> }.

1.3 Adaptations made for the evaluation

ODGOMS uses the same parameters to run each experiment in all tracks of OAEI
2013. The parameters are divided into two groups as follows. 

The first group of parameters includes the default filter thresholds used by module
ThresholdFilter  in the system, which are set  to be 1.0 for modules LabelMatcher,
IDMatcher, and SMOAMatcher, 0.87 for modules LCSMatcher, PurityMatcher, and
NETMatcher, 0.8 for module PBCSMatcher, 0.781 for module TFIDFMatcher, and
0.3 for module PBCTMatcher, respectively.

The  second  group  of  parameters  includes  the  merging  order  used  by  module
AlignmentMerger  in  the  system.  The  mentioned  above  merging  order  is  :
LabelMatcher,  IDMatcher,  LCSMatcher,  SMOAMatcher,  PurityMatcher,
TFIDFMatcher, NETMatcher, PBCTMatcher, and PBCSMatcher.

1.4 Link to the system and parameters file

The readers  can download  execution  files  of  all  versions of  ODGOMS from our
Google SkyDrive download position1, and test them using SEALS client 4.1. Please
refer to SELAS client tutorial2 to learn more testing examples.

2 Results

In this section, the OAEI 2013 official results of ODGOMS are listed in from Table 1
to Table 5, and they can be find on the OAEI 2013 website too. 

Since some tasks in Largebio track are time-consuming and ODGOMS cannot
finish those tasks in 18 hours, we have run ODGOMS for three lightweight tasks of
Largebio track by SEALS client 4.1 at local side, and have listed the results in Table
6. The mentioned above experiments are executed on a PC with Intel Core i7-3770S
CPU (3.10GHz), 4GB RAM, and Ubuntu 12.04 LTS (64-bit version). 

1ODGOMS download position: http://goo.gl/SKkhnU
2http://oaei.ontologymatching.org/2013/seals-eval.html#tutorial

http://goo.gl/SKkhnU
http://oaei.ontologymatching.org/2013/seals-eval.html#tutorial


2.1 Benchmark 

The official results of ODGOMS version 1.2 released from OAEI 2013 website are
listed in Table 1. 

Table 1. The results for Benchmark track.

2.2 Anatomy

The official results of ODGOMS version 1.2 released from OAEI 2013 website are
listed in Table 2.

Table 2. The results for Anatomy track.

2.3 Conference 

The official results of ODGOMS version 1.2 released from OAEI 2013 website are
listed in Table 3. In Table 3, the pre-test results (ra1) are listed in the first row, and the
blind-test results (ra2) are listed in the second row.

Table 3. The results for Conference track.

2.4 Multifarm

The official results of ODGOMS version 1.2 released from OAEI 2013 website are
listed in Table 4.

Table 4. The results for Multifarm track.

The results show that the F-Measures of the MultiFarm track are not good. We think
the reasons for these results are that  ODGOMS is  not  designed to  match ontologies
which are written in completely different languages yet.



2.5 Library 

The official results of ODGOMS version 1.1 (not version 1.2 in this track) released
from OAEI 2013 website are listed in Table 5. In this track, ODGOMS got the highest
F-measures  of  all  attended  systems.  By  the  way,  in  our  local  test  the  results  of
ODGOMS version 1.2 is slightly better than it of version 1.1.

Table 5. The results for Library track.

2.6 Largebio

We run ODGOMS for three small tasks of Largebio track by SEALS client 4.1 at
local side. The results are listed in Table 6. In Table 6, the F-Measures are identical to
the official results released on OAEI 2013 website except the execution time of the
former are faster than the latter. The results of SNOMED-NCI (small) are not shown
in the official results on OAEI 2013 website since its execution time exceeded the
maximum limit of 18 hours.

Table 6. The results for Largebio track.

3 General Comments

3.1 Comments on the results 

The official results of OAEI 2013 show that ODGOMS is competitive with other well
known ontology matching systems in all OAEI tracks, especially in Library track it
got  the  highest  F-measures  of  all  attended  systems.  The  worst  performance  is
happened in Multifarm track. The reason is that ODGOMS is not designed to deal
with purely multilingual ontology matching problems yet.

3.2 Discussions on the way to improve the proposed system 

ODGOMS exploits simple string-matching schemes and text-mining techniques to
match ontologies now. It suffers from the following two problems. The first one is
that  it  cannot  optimize  the  results  for  each  matching  question  automatically.  The
second one is that it cannot perfectly deal with purely multilingual ontology matching
problems. 



In order to solve the above two problems, we are extending the new abilities into
the  system  as  follows.  For  the  first  problem,  we  will  apply  machine  learning
technologies into the system so that it can find the best parameters that can be used in
the system automatically when it deals with different ontology matching questions.
And for  the  second problem, we  will  add the  off-line  translation  ability  between
foreign languages and English into the system so that it doesn't need the help of on-
line translation API (e.g. Microsoft On-Line Translation API).

4 Conclusion

It's the first time ODGOMS attended OAEI campaign. Although it got good results in
almost all OAEI 2013 tracks, but it still suffers from some problems such as time-
consuming and multilingual problems. The further research topics would be extend
the  machine  learning  and  multilingual  abilities  into  the  system.  We  hope  the
performance of it can be improved when it attends the OAEI campaign next year.
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